首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
This study was conducted to investigate the influence of dietary lipid source and n‐3 highly unsaturated fatty acids (n‐3 HUFA) level on growth, body composition and blood chemistry of juvenile fat cod. Triplicate groups of fish (13.2 ± 0.54 g) were fed the diets containing different n‐3 HUFA levels (0–30 g kg?1) adjusted by either lauric acid or different proportions of corn oil, linseed oil and squid liver oil at 100 g kg?1 of total lipid level. Survival was not affected by dietary fatty acids composition. Weight gain, feed efficiency and protein efficiency ratio (PER) of fish fed the diets containing squid liver oil were significantly (P < 0.05) higher than those fed the diets containing lauric acid, corn oil or linseed oil as the sole lipid source. Weight gain, feed efficiency and PER of fish increased with increasing dietary n‐3 HUFA level up to 12–16 g kg?1, but the values decreased in fish fed the diet containing 30 g kg?1 n‐3 HUFA. The result of second‐order polynomial regression showed that the maximum weight gain and feed efficiency could be attained at 17 g kg?1 n‐3 HUFA. Plasma protein, glucose and cholesterol contents were not affected by dietary fatty acids composition. However, plasma triglyceride content in fish fed the diet containing lauric acid as the sole lipid source was significantly (P < 0.05) lower than that of fish fed the other diets. Lipid content of fish fed the diets containing each of lauric acid or corn oil was lower than that of fish fed the diets containing linseed oil or squid liver oil only. Fatty acid composition of polar and neutral lipid fractions in the whole body of fat cod fed the diets containing various levels of n‐3 HUFA were reflected by dietary fatty acids compositions. The contents of n‐3 HUFA in polar and neutral lipids of fish increased with an increase in dietary n‐3 HUFA level. These results indicate that dietary n‐3 HUFA are essential and the diet containing 12–17 g kg?1 n‐3 HUFA is optimal for growth and efficient feed utilization of juvenile fat cod, however, excessive n‐3 HUFA supplement may impair the growth of fish.  相似文献   

2.
Juvenile Atlantic cod (Gadus morhua) were fed extruded feeds formulated to contain 360–660 g kg?1 protein, 80–280 g kg?1 lipid and 80–180 g kg?1 starch at feeding frequencies of either once per day or every second day to satiation. The trial was conducted at 8 °C and lasted for 28 weeks during which fish were weighed five times at regular intervals. Sampling for proximate analysis was performed at the start, after 12 weeks and at the end of the trial. Fish grew from an average weight of 192 g to between 750 and 866 g, with growth being negatively affected by low dietary protein concentration. High dietary starch concentrations had some negative effects on growth, whereas changes in dietary fat concentration had no significant effect on growth. Liver indices (at the end of the experiment) varied between 80 and 170 g kg?1, and there was a negative correlation between the ratio of protein to fat and liver index. Feed conversion ratio (FCR) ranged between 0.74 and 0.88, and feed utilization improved with increasing concentrations of dietary protein and fat. Increasing dietary starch concentrations resulted in poorer feed utilization. To achieve good growth and protein retention, and avoid excessive liver size in juvenile cod, feeds should contain 500–600 g kg?1 crude protein, 130–200 g kg?1 lipid and <150 g kg?1 starch.  相似文献   

3.
A 8‐week feeding trial was conducted to determine the effect of substituting fish oil with palm oil‐laden spent bleaching clay (SBC), a by‐product from crude palm oil (CPO) refining, on growth, feed utilization, fatty acid composition and heavy metal accumulation in the muscle of Nile tilapia, Oreochromis niloticus. Four isonitrogenous and isolipidic practical diets were formulated to contain 0, 100, 200 or 300 g kg?1 SBC. Growth performance of Nile tilapia was significantly better in fish fed the 100 g kg?1 SBC diet compared with fish fed the 0, 200 or 300 g kg?1 SBC diet. Growth and feed utilization efficiency of fish fed 200 or 300 g kg?1 SBC were similar to fish fed the control diet without added SBC. Whole‐body composition, body‐organ indices and haematocrit of tilapia were not affected by dietary treatments. Fatty acid compositions in the muscle lipid of Nile tilapia were strongly influenced by dietary treatments with progressively elevated levels of total saturates and n‐6 PUFA because of the dietary influence of these fatty acids from residual CPO adsorbed onto SBC. A gradual decrease in total n‐3 PUFA concentrations were also observed with the ratio of n‐3 to n‐6 fatty acids in muscle lipids decreasing from 4.75 to 4.41, 3.23 or 2.37 after 8 weeks on the 0, 100, 200 or 300 g kg?1 SBC diet, respectively. The arsenic, cadmium and lead concentrations in the experimental diets increased with increasing dietary levels of SBC but the concentrations of these heavy metals in the whole body and bone of Nile tilapia were not significantly different among fish fed the various diets. The present 8‐week study showed that in fishmeal‐based diets for Nile tilapia, palm oil‐laden SBC can totally replace added fish oil. The use of this presently discarded waste product from palm oil refining in tilapia diets will greatly contribute to reducing the impact of rising feed costs in the culture of tilapia in many tropical countries. Other potential benefits may include acting as a feed binder, removal of mycotoxins in fish feeds as well as adsorbing toxic substances present in the culture water.  相似文献   

4.
Polka‐dot grouper, Cromileptes altivelis, a highly‐prized fish in Asian live fish markets, is a slow‐growing species. Long‐chain (LCF) or medium‐chain fatty acids (MCF) were fed to polka‐dot grouper (14 g initial weight) for 8 weeks to see if growth could be stimulated. Five dietary treatments were compared: a control diet with low fat (56 g kg?1) or diets that contained either moderate (150 g kg?1) or high (300 g kg?1) supplements of fat that were added either as olive oil for the LCF or coconut oil for the MCF. Control fish performed well; they grew at 2.2 g week?1, had a dry matter feed conversion ratio of 1.0 and deposited dietary protein and energy at efficiencies of 25 and 26%. Fish fed LCF at moderate levels performed better than controls but, when fed LCF at high levels or MCF at any level, their performance was inferior to controls. We conclude that dietary supplementation with 150 g kg?1 of LCF stimulates growth and improves protein retention of polka‐dot grouper whereas higher levels, or the same or higher levels of MCF, depress performance.  相似文献   

5.
A study was undertaken to determine the effect of dietary lipid level on growth, feed efficiency and body chemical composition of juvenile grass carp. Seven isonitrogenous diets (400 g kg?1 crude protein) containing seven dietary lipid level (0, 20, 40, 60, 80, 100 and 120 g kg?1 dry matter) were fed to triplicate groups of 40 fish with initial weight 6.52 g, for 70 days. No obvious and assured essential fatty acid deficiency symptom appeared in fish fed the lipid‐free diet. Excess dietary lipid level (100 and 120 g kg?1) resulted in decreased feed intake. The best growth performance and feed utilization was observed in fish fed 20–40 g kg?1 dietary lipid. The fish fed a lipid‐free diet had the lowest protein efficiency and protein retention. Growth performance and feed utilization increased with the increasing dietary lipid levels up to 40 g kg?1 dietary lipid. Higher dietary level (above 40 g kg?1) made growth performance and feed utilization decrease and no protein sparing effect was observed. Lipid retention decreased as dietary lipid level increased. Mesenteric fat index (MFI) increased, hepatosomatic index (HSI) decreased with dietary lipid level. The increased MFI and simultaneous decrease lipid retention can be explained by differences in growth. The effect of dietary lipid levels on the chemical composition of tissues was significant only for whole body and muscle. The excess lipid content of liver in all groups was regarded as a slight symptom of fatty liver, which was partly identified by microscopic structural study and lower plasma lipid indexes, comparing to the initial plasma data. In conclusion, grass carp is a fish with low energy requirement and excess dietary lipid level should be avoided.  相似文献   

6.
The effect of varying dietary levels of defatted soybean meal on the growth and survival of mrigal, Cirrhinus mrigala (Hamilton) was investigated. In a feeding trial of 90 days, three experimental diets containing soybean meal at 200, 300 and 400 g kg?1 level of incorporation were fed to quadruplicate groups of 10 fish each. The conventional feed used in India, consisting of a mixture of groundnut oil cake and rice bran in 1 : 1 ratio served as the control. Best growth in terms of percentage weight gain, specific growth rate, protein efficiency ratio (PER), feed conversion ratio and survival rate was obtained for the test diet with 354 g kg?1 crude protein and with 400 g kg?1 soybean meal inclusion level. However, no statistical significant difference was observed between the three soybean‐based diets, except for PER and survival rate. Soybean meal is an easily available, acceptable and cost‐effective protein source in formulated feeds for Indian major carps. The results of the present study indicate that a diet of 350 g kg?1 overall protein with soybean meal included at 400 g kg?1 can elicit good growth response and survival in mrigal.  相似文献   

7.
The influence of different lipid sources and n3:n6 ratios on reproductive performance of female channel catfish, Ictalurus punctatus was evaluated. A commercial catfish feed was top coated with 2% oil and offered to brood stock females fish during 70–85 days before spawning season. Four dietary treatments were formulated using the following top coating ratios: diet 1, soybean oil 9.5 g kg?1 and linseed oil 10.5 g kg?1; diet 2, soybean oil 17.5 g kg?1 and linseed oil 2.5 g kg?1; diet 3, 20.0 g kg?1 linseed oil, and diet 4, 10.0 g kg?1 menhaden fish oil, supplemented with 5.0 g kg?1 arachidonic acid (ARA), and 5.0 g kg?1 docosahexaenoic acid (DHA). Fatty acid composition of the eggs reflected the effect of dietary treatment offered during spring season. Supplementation of ARA, EPA and DHA in commercial catfish feed in the form of menhaden fish oil with purified liquid algae extracts of ARA and DHA produced from two to five times the number of fry per female body weight when compared to the effect of fed top coated with vegetable oils. Although, this effect was not statistically significant it may represent an economical improvement for the industry.  相似文献   

8.
A 3 × 3 factorial experiment was conducted to determine proper levels of dietary protein, lipid and dextrin for juvenile flounder. Nine experimental diets were formulated to contain three protein levels (410, 460 and 510 g kg?1) and three lipid levels (60, 130 and 190 g kg?1) with corresponding dextrin levels (250, 150 and 50 g kg?1). Triplicate groups of fish (8.9 ± 0.4 g) were hand‐fed the diets to apparent satiation for 7 weeks in flow‐through system. Specific growth rate was the highest in fish fed the 510 g kg?1 protein diet with 60 g kg?1 lipid, and was not significantly different from that of fish fed 460 g kg?1 protein diet with 60 g kg?1 lipid. Feed efficiency ratio tended to increase as dietary protein level increased. The feed efficiency ratio of fish fed the 510 g kg?1 protein diets with 60–190 g kg?1 lipid levels was not significantly different from that of fish fed 460 g kg?1 protein diet with 60 g kg?1 lipid. Daily feed intake tended to decrease with increasing dietary lipid level at each protein level. Daily protein intake increased with increasing dietary protein level at 60 g kg?1 lipid level. Hepatosomatic index and visceralsomatic index increased with increasing dietary lipid level at each protein level. The lipid contents of liver, viscera and whole body, and concentrations of plasma total cholesterol and triglyceride increased with increasing dietary lipid levels; however, no significant difference was observed in the contents of dorsal muscle lipid. The results of this study suggest that the diet containing 460–510 g kg?1 protein with low lipid level (60 g kg?1) is optimal for growth and efficient feed utilization of juvenile flounder.  相似文献   

9.
Five isonitrogenous diets formulated to contain 470 g kg?1 of crude protein, five different levels of crude lipids (190, 210, 230, 250 and 270 g kg?1), five different levels of carbohydrates (178, 155, 158, 125 and 110 g kg?1) and gross energy (21.2, 21.6, 22.4, 22.8 and 23.2 MJ kg?1) were used to investigate the effect of dietary lipid levels on performance and carcass composition of the surubim, Pseudoplatystoma coruscans (Agassiz). Triplicate groups of 11 fish with an average individual body weight of 5.1 ± 0.2 g were randomly assigned to 15 net cages and fed each test diet twice a day to apparent satiation for 64 days. At the end of the trial there were no significant differences in feed consumption or fish performance. No differences (P > 0.05) were observed in the lipid content of fish carcass and liver. On the contrary, visceral lipid increased (P < 0.05) with the increase in dietary lipid level. Protein and energy retention efficiencies were not significantly affected (P > 0.05) by the dietary lipid and carbohydrate levels. The results of this trial suggest that increasing dietary lipid levels from 190 to 270 g kg?1 did not improve growth performance or protein sparing and caused an undesirable increase in the visceral lipid content of surubim fingerlings.  相似文献   

10.
Fish are able to select a balanced diet according to their nutritional needs by choosing among incomplete feeds or even pure macronutrients. However, the relevance of both the organoleptic properties of diet and the postingestive signals that they produce remains unclear. Thus, sharpsnout seabream were allowed to select between diets containing different edible oils with their organoleptic properties masked by using gelatine capsules. Fish were fed capsules of two different colours so that they could associate the capsule colour with its corresponding postingestive effect. The longitudinal experiment included a first phase during which the fish were adapted to consuming the gelatine capsules. In a second phase, the fish were challenged with two different encapsulated diets: one comprising a complete diet containing fish oil and the other a fat‐free diet. Sharpsnout seabream showed a preference for the fish oil capsules (3.8 ± 1.1 g kg?1 body weight (BW), 66.8% of total intake) over the fat‐free capsules, showing that they were able to associate the colour of the capsule with their nutritional content through postingestive signals. After that, the fish were challenged to select between the capsules containing the fish oil diet and capsules containing a vegetable oil (linseed or soybean), in which case they showed no preference between diets (2.4 ± 0.3: 2.1 ± 0.5 g kg?1 BW of fish oil versus linseed oil capsules and 2.2 ± 0.2: 1.8 ± 0.6 g kg?1 BW of fish oil versus soybean oil capsules), indicating that the fatty acid composition of the different oils was not sufficient to affect dietary selection through postingestive signals. So, in conclusion, when orosensorial information from food is absent, the fish are able to select between diets at a macronutrient level by using postingestive information. However, this information is not sufficient for distinguishing between diets that differ in the type of oil used.  相似文献   

11.
An 8‐week growth trial was conducted to determine the dietary histidine requirement of the Indian major carp, Cirrhinus mrigala fingerling (length 4.22 ± 0.45 cm; weight 0.61 ± 0.08 g; n = 40). Isonitrogenous (400 g kg?1 crude protein) and isoenergetic (17.90 kJ g?1 gross energy) diets with graded levels of l ‐histidine (2.5, 5.0, 7.5, 10.0, 12.5 and 15.0 g kg?1 dry diet) were formulated using casein and gelatin as a source of intact protein, supplemented with l ‐crystalline amino acids. Twenty fish were randomly stocked in 70‐L indoor polyvinyl circular fish tank (water volume 55‐L, water exchange rate 1–1.5 L min?1) and fed experimental diets at the rate of 5% of their body weight/day divided over two feedings at 08:00 and 16:00 h. Maximum live weight gain (295%), best feed conversion ratio (FCR) (1.48) and protein efficiency ratio (PER) (1.69) occurred at 7.5 g kg?1 of dietary histidine level. When live weight gain, FCR and PER data were analysed using second‐degree polynomial regression, the break points indicated histidine requirements at 9.4, 8.6 and 8.5 g kg?1 of dry diet respectively. Significantly (P < 0.05) higher whole body protein and low moisture values were recorded at 7.5 g kg?1 histidine level. Body fat increased significantly (P < 0.05) with increasing histidine levels. However, at 7.5 and 10 g kg?1 histidine diets body fat did not differ (P > 0.05) to each other. Ash content of fish fed diets containing various levels of histidine did not differ except at 2.5 and 5.0 g kg?1 inclusion levels where significantly (P < 0.05) higher ash was recorded. Protein deposition was also found to be significantly (P < 0.05) higher in the 7.5 g kg?1 histidine diet. Based on the polynomial regression analysis of FCR and PER data, it is recommended that the diet for fingerling C. mrigala should contain histidine at 8.5 g kg?1 of dry diet, corresponding to 21.25 g kg?1 of dietary protein for optimum growth and efficient utilization of feed.  相似文献   

12.
An 8‐week feeding trial was conducted to investigate the optimum dietary protein and lipid levels for growth, feed utilization and body composition of Pseudobagrus ussuriensis fingerlings (initial weight: 3.40 ± 0.01 g). Twelve diets containing four protein levels (350, 400, 450 and 500 g kg?1 crude protein) and three lipid levels (50, 100 and 150 g kg?1 crude lipid) were formulated. Fish were randomly allotted to 36 aquaria (1.0 × 0.5 × 0.8 m) with 25 fish to each glass aquarium. Fish were fed twice daily (08:00 and 16:00) to apparent satiation. The results showed that weight gain and specific growth rate (SGR) decreased with increasing dietary lipid level from 50 to 150 g kg?1 at the same dietary protein level. Fish fed the diets containing 150 g kg?1 lipid exhibited higher feed conversion ratio (< 0.05), lower protein efficiency ratio (PER) and nitrogen retention efficiency (NRE) relative to fish fed the diet containing 50 and 100 g kg?1 lipid. Weight gain and SGR significantly increased with increasing dietary protein from 350 to 450 g kg?1 at the same dietary lipid level, and even a little decline in growth with the further increase in dietary protein to 500 g kg?1. Daily feed intake, NRE and PER were significantly affected by both dietary protein and lipid levels (P < 0.05) and tended to decrease with increasing dietary protein and lipid levels. Whole‐body protein content increased as protein levels increased and lipid levels decreased. Whole‐body lipid and muscle lipid content increased with increasing dietary lipid level, and decreased with increasing dietary protein at each lipid level. There was no significant difference in condition factor and viscerosomatic index among fish fed the diets. Hepatosomatic index was affected by dietary lipid level (P < 0.05), and increased with increasing dietary lipid level at the same protein level. These results suggest that the diet containing 450 g kg?1 protein and 50 g kg?1 lipid with a P/E ratio of 29.1 mg protein kJ?1 is optimal for growth and feed utilization of P. ussuriensis fingerlings under the experimental conditions used in the study.  相似文献   

13.
Female Catla catla brood fish were reared in 12 ponds (0.03–0.05 ha) and fed daily once in the morning at 30 g kg?1 body weight for 150 days with formulated feeds (six treatment feeds each with two replicates of pond) to study the breeding performances. The feed ingredients were rice polish (RP) and groundnut oil cake (GNOC) (1 : 1) for T1 (control); RP, GNOC and fish meal (FM) (3 : 4 : 3) for T2; RP, GNOC, FM and soybean meal (SM) (3 : 4 : 2 : 1) for T3; RP, GNOC, FM and SM (3 : 4 : 1: 2) for T4; RP, GNOC, FM and SM (3 : 4 : 1 : 2) with added vitamin–mineral (VM) premix for T5; RP, GNOC, FM and SM (3 : 4 : 1 : 2) with added VM and vegetable oil for T6. Results indicated that except the feed T6, all other feed (T2–T5) with 338–344 g crude protein (CP) kg?1 feed enhanced the breeding performances of the fish compared with control (262 g CP kg?1). The feed T3 showed the best performances in terms of matured female (%), fully bred female (%), relative fecundity, spawn production and profit. This suggests that a combination of RP, GNOC, FM and SM at definite proportion could supply the essential nutrients needed for higher breeding response.  相似文献   

14.
Four isonitrogenous (300 g kg?1 crude protein), isoenergetic (21 kJ g?1) experimental diets were formulated to contain fish oil (FO), soybean oil (SBO), crude palm oil (CPO) and linseed oil (LO), respectively, as the lipid sources, added at 120 g kg?1 of crude lipid each. The diets were fed by hand to triplicate groups of Pangasius nasutus (Bleeker, 1863) juveniles (mean weight 10.66 ± 0.04 g), to apparent satiation twice daily for 12 weeks. Fish survival rate was 100% among all the treatments. Growth performance (DGR) was similar among fish fed the SBO, CPO and LO diets, but was significantly (P < 0.05) higher in the CPO compared to fish fed the control (FO) diet. Fish fed SBO and CPO diets also recorded significantly (P < 0.05) higher intraperitoneal fat compared to fish fed the control, whereas fish fed the LO diet did not significantly differ from the other treatments. Muscle and liver fatty acid profile of fish from all the treatments generally mirrored the composition of the diets fed and the major fatty acids recorded were 18:3n‐3 and 18:2n‐6 in the tissues of fish fed the LO and SBO treatments, respectively. Results of this study suggests that P. nasutus fed diets containing vegetable oils (especially CPO and SBO) produce better growth performance, without compromising fish survival and feed efficiency compared with those fed a diet containing only FO.  相似文献   

15.
An 8‐week growth trial investigated the effect of dietary lipid level on growth performance of a carnivorous fish, Chinese longsnout catfish (Leiocassis longirostris Günther) and an omnivorous fish, gibel carp (Carassius auratus gibelio). For each species, seven isonitrogenous semi‐purified diets (455 g kg?1 crude protein for Chinese longsnout catfish and 385 g kg?1 crude protein for gibel carp) were formulated to contain 30, 60, 90, 120, 150, 180 or 210 g kg?1 lipid. For Chinese longsnout catfish, feed intake (FI) decreased with increasing dietary lipid and there was no significant difference in feed intake from 90 to 210 g kg?1 lipid. Specific growth rate (SGR) increased with dietary lipid level (P < 0.05) and the 150 and 180 g kg?1 groups were the best. Feed conversion efficiency (FCE), protein retention efficiency (PRE) and energy retention efficiency (ERE) were higher at 180 g kg?1 lipid. For gibel carp, FI decreased with increased dietary lipid and 180 and 210 g kg?1 lipid groups showed lower values. SGR increased with dietary lipid level and the 150 and 180 g kg?1 were the best. FCE was higher at 180 g kg?1 lipid level. PRE increased with dietary lipid level and there was no significant difference in groups from 120 to 210 g kg?1 dietary lipid. ERE increased with increasing dietary lipid level, and groups fed 120, 150 and 180 g kg?1 lipid showed the highest values. In Chinese longsnout catfish, increase in dietary lipid level, resulted in increased carcass dry matter, crude protein, crude lipid and gross energy. In gibel carp, dry matter, crude protein, and crude lipid increased with dietary lipid level. Based on regression between SGR and dietary lipid, dietary lipid requirements for Chinese longsnout catfish and gibel carp were 142.6 and 140.5 g kg?1, respectively.  相似文献   

16.
This study examined three potential oil resources, crude and refined canola oil and refined soybean oil as replacements for added dietary fish oil in diets for juvenile red seabream. These oil resources were evaluated for their potential to replace added fish oil (40 g kg?1) in fishmeal based (600 g kg?1) diets, with 100 g kg?1 of total lipids. Each of the three plant oils was used to replace 25%, 50%, 75% or 100% of the added dietary fish oil. Each of the three plant oils showed potential as a replacement for dietary fish oil, although a significant reduction in growth and feed utilisation was observed with the complete (100%) replacement of added fish oil by crude canola oil. No other significant effects of oil type or inclusion level on growth were apparent. A negative control (no added fish oil or plant oil, 60 g kg?1 of total lipid) yielded poorer growth than all treatments except the diet containing 40 g kg?1 of added crude canola oil (100% replacement). This observation confirmed that the added oils were utilized by the fish. A positive control diet containing 80 g kg?1 of added fish oil (140 g kg?1 total dietary lipid) sustained the best growth in the study, confirming that the 13 experimental diets were energy limiting as planned. Notably, few effects of the alternative oils were seen on the proximate composition of the fish. However, the influence of the alternative oils on the tissue fatty acid composition was considerable, irrespective of plant oil type or processing grade. Particularly notable was the overall increase in the level of polyunsaturated fatty acids in the tissues of the fish fed the plant oil diets, with these trends becoming more apparent with the greater levels of fish oil replacement. Minimal reductions in the levels of the long‐chain polyunsaturated fatty acids of eicosapentaenoic (20:5n‐3) and docosahexaenoic (22:6n‐3) acid were observed from any of the plant oil treatments. Sensory assessment, by an Australian taste panel, of the fish fed the fish oil reference, or the 100% replacement by refined canola or refined soybean diets showed a preference in order of canola oil > soybean oil > fish oil fed fish. Clearly, both canola and soybean oils have considerable potential as replacements of fish oils in diets for this species.  相似文献   

17.
An 8‐week feeding experiment was conducted to determine the effect of dietary arachidonic acid (ARA) levels on growth performance, hepatic intermediary metabolism and antioxidant responses for juvenile Synechogobius hasta. Five isonitrogenous and isolipidic diets were formulated with arachidonic oil (containing 400 g ARA kg?1) at inclusion levels of 0, 2, 4, 8 and 16 g kg?1 to replace corn oil. Dietary ARA levels were 0.6, 8.6, 16.7, 32.7 and 64.8 g kg?1 total fatty acids (FAs), respectively. Fish fed the 8.6–32.7 g ARA kg?1 total FAs showed the highest weight gain, specific growth rate (SGR) and feed intake. By contrast, feed conversion ratio was the lowest for fish fed the 8.6–32.7 g ARA kg?1 total FAs. Increasing ARA and total n‐6 fatty acid contents and declining linoleic acid content in liver were observed in fish fed the diet containing increasing dietary ARA levels. As a consequence, ∑n‐6/∑n‐3 ratios increased with increasing dietary ARA levels. Dietary ARA levels significantly influenced several enzymatic activities involved in hepatic intermediary metabolism, such as succinate dehydrogenase, lactate dehydrogenase, lipoprotein lipase and hepatic lipase. Superoxide dismutase activity increased with increasing dietary ARA levels. Glutathione peroxidase and catalase activities and malondialdehyde levels in liver tended to increase with increasing dietary ARA levels from 0.6 to 32.7 g ARA kg?1 total FAs then declined when dietary ARA levels further increased to 64.8 g ARA kg?1 total FAs. Broken‐line regression analysis of SGR against dietary ARA level indicated that optimal dietary ARA requirement for juvenile S. hasta was 10.74 g kg?1 total FAs.  相似文献   

18.
A 50‐day feeding trial was conducted to examine the effects of dietary protein and lipid levels on growth, feed utilization, body composition and swimming performance of giant croaker, Nibea japonica. Fish (initial body weight 44.6 g ind−1) were fed ten test diets which were formulated at 5 crude protein levels (360, 400, 440, 480 and 520 g kg−1) and 2 crude lipid levels (90 and 150 g kg−1). In addition, a raw fish diet (fillet of small yellow croaker) served as the reference. The weight gain (WG) increased, whereas the feed intake (FI) and feed conversion ratio (FCR) decreased, with increasing dietary protein level from 360 to 520 g kg−1. At the same dietary protein level, no significant difference was found in the WG between fish fed the diets containing 90 or 150 g kg−1 crude lipid. Fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid exhibited higher WG, nitrogen retention efficiency (NRE) and energy retention efficiency (ERE) but lower nitrogen wastes output (TNW). At the end of the feeding trial, the hepatosomatic index (HSI) and viscerosomatic index (VSI) decreased, whereas the body protein content increased, with increase in dietary protein level. The body lipid content was higher in fish fed at the 150 g kg−1 lipid level than in fish fed at the 90 g kg−1 lipid level. No significant difference was found in the maximum sustained swimming speed (MSS) between fish fed at different dietary protein and lipid levels. The WG, NRE, ERE and condition factor (CF) were higher, whereas the FI, FCR, HSI, VSI and TNW were lower, in fish fed the raw fish diet than in fish fed the diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. No significant difference was detected in the MSS between fish fed the raw fish diet and diet containing 480 g kg−1 crude protein and 90 g kg−1 crude lipid. The results of this study suggest that the suitable dietary crude protein and crude lipid levels are 480 g kg−1 and 90 g kg−1 for giant croaker reared in net pens.  相似文献   

19.
A study was undertaken to determine the dietary protein level for optimal growth performance and body composition of juvenile Senegalese sole. Five experimental extruded diets were formulated to contain increasing levels of protein [430, 480, 530, 570 and 600 g kg?1 dry matter (DM)] and a constant lipid level, ranging from 100 to 130 g kg?1 DM. Triplicate groups of 35 sole (initial body weight: 11.9 ± 0.5 g) were grown over 84 days in 60‐L tanks supplied with recirculated seawater. Fish were fed by means of automatic feeders in eight meals per day. At the start and end of the trial, whole‐body samples were withdrawn for proximate composition analysis. At the end of 84 days of experimental feeding, daily weight gain and specific growth rate in fish fed diets P43 and P48 were significantly lower than those found in fish fed higher protein level diets (P53, P57 and P59). Similarly, feed efficiency was also significantly lower in fish fed diet P43 than in fish fed all other dietary treatments. Sole juveniles fed lower protein level diets (P43 and P48) showed a significantly lower protein content than fish fed the higher dietary protein level treatments (P53, P57 and P60). Changes within the tested dietary protein levels did not affect significantly protein productive value or total nitrogen (N) losses in fish. However, daily N gain was significantly higher (P < 0.05) in fish fed diets P53 and P60 than in fish fed the lowest protein level diet (P43). Data from the present study indicate that diets for juvenile Senegalese sole should include at least 53% crude protein to maintain a good overall growth performance. Based on a second‐order polynomial regression model, the daily crude protein requirement for maximum whole‐body N gain as estimated here for Senegalese sole juveniles was 6.43 g kg?1 body weight day?1 which corresponds to a value of 1.03 g N intake kg?1 body weight day?1. If the present data are expressed on a dietary crude protein concentration basis, the allowance for maximum protein accretion (N gain) would be met by a diet containing a crude protein level of 600 g kg?1.  相似文献   

20.
A 12‐week feeding trial was conducted to elucidate the interactive effects of dietary fat, protein contents and oil source on growth, whole body proximate composition, protein productive value (PPV) and fatty acid (FA) composition of muscle and liver in Atlantic salmon (Salmo salar L.)` at low water temperatures (4.2 °C). Triplicate groups of Atlantic salmon (initial weight 1168 g) were fed six isoenergetic diets, formulated to provide either 390 g kg−1 protein and 320 g kg−1 fat (high‐protein diets) or 340 g kg−1 protein and 360 g kg−1 fat (low‐protein diets). Within each dietary protein/fat level, crude rapeseed oil (RO) comprised 0, 30 or 60% (R0, R30, R60, respectively) of the added oil. After 12 weeks, the overall growth and feed conversion ratio (FCR) were very good for all treatments [thermal growth coefficient (TGC): 4.76 (±0.23); FCR: 0.85 (±0.02)]. Significant effects were shown owing to the oil source on specific growth rate and TGC only. The liver and muscle FA compositions were highly affected by the graded inclusion of RO. The PPV was significantly affected by the dietary protein level. The results of this study suggest that more sustainable, lower protein diets with moderate RO inclusion can be used in Atlantic salmon culture at low water temperatures with no negative effects on growth and feed conversion, no major detrimental effects on lipid and FA metabolism and a positive effect on protein sparing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号