首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Oxidation of methane in the rhizosphere of rice plants   总被引:14,自引:0,他引:14  
Oxidation of CH4 in the rhizosphere of rice plants was quantified using (1) methyl fluoride, a specific inhibitor of CH4 oxidation, and (2) measuring changes in plant-mediated CH4 emission after incubation under air, N2, or 40% O2. No significant rhizospheric CH4 oxidation was observed from rice plants in the ripening stage. CH4 emission from rice plants 1 week before panicle initiation increased by 40% if CH4 oxidation in the rhizosphere was blocked. The growth stage of the rice plant is an important factor determining the rhizospheric CH4 oxidation. Fluctuation of rhizospheric CH4 oxidation during the growing season may help to explain the observed seasonal CH4 emission patterns in field studies. Measurements from four rice varieties showed that one variety, Pokkali, had higher rhizospheric CH4 oxidation. This was probably because Pokkali was in an earlier growth stage than the other three varieties. Both in the early and in the late growth stages, incubation under N2 caused a much stronger CH4 flux than inhibition of CH4 oxidation alone. Apparently, N2 incubation not only blocked CH4 oxidation but also stimulated methanogenesis in the rhizosphere. Incubation under a higher O2 atmosphere (40% O2) than ambient air decreased the CH4 flux, suggesting that increasing the oxidation of the rice rhizosphere may help in reducing CH4 fluxes from rice agriculture. The O2 pressure in the rhizosphere is an important factor that reduces the plant-mediated CH4 flux. However, inhibition of methanogenesis in the rhizosphere may contribute more to CH4 flux reduction than rhizospheric CH4 oxidation.  相似文献   

2.
Oxygen profiles and methane turnover in a flooded rice microcosm   总被引:19,自引:0,他引:19  
Summary Dissolved O2 was depleted within the top 3.5-mm surface layer of flooded rice soil microcosms without plants. In planted microcosms, however, O2 was detectable down to at least 40 mm in depth. O2 concentrations in the uppermost soil layers of microcosms with rice plants were higher in the light than in the dark, indicating O2 production by photosynthesis. The CH4 emission rates were nearly identical for illuminated and for darkened microcosms, demonstrating that the photosynthetically produced O2 did not increase CH4 oxidation in the rhizosphere. In contrast, CH4 emission rates increased when the microcosms were incubated under an N2 atmosphere, indicating that transport of O2 from the atmosphere into the rhizosphere was important for CH4 oxidation. CH4 emission under air accounted for only 10%–20% of the cumulative CH4 production determined in cores taken from the microcosms. Apparently, 80%–90% of the CH4 produced was oxidized in the rhizosphere and thus was not emitted.  相似文献   

3.
Rice fields are an important source for atmospheric CH4, but the effects of fertilization are not well known. We studied the turnover of CH4 in rice soil microcosms without and with addition of potassium phosphate. Height and tiller number of rice plants were higher in the fertilized than in the unfertilized microcosms. Emission rates of CH4 were also higher, but porewater concentrations of CH4 were lower. The δ13C values of the emitted CH4 and of the CH4 in the porewater were both 2-6% higher in the fertilized microcosms than in the control. Potassium phosphate did not affect rate and isotopic signature of CH4 production in anoxic soil slurries. On the other hand, roots retrieved from fertilized microcosms at the end of incubation exhibited slightly higher CH4 production rates and slightly higher CH4-δ13C values compared to roots from unfertilized plants. Addition of potassium phosphate to excised rice roots generally inhibited CH4 production and resulted in increasingly lower δ13C values of the produced CH4. Fractionation of 13C during plant ventilation (i.e. δ13C in pore water CH4 versus CH4 emitted) was larger in the fertilized microcosms than in the control. Besides plant ventilation, this difference may also have been caused by CH4 oxidation in the rhizosphere. However, calculation from the isotopic data showed that less than 27% of the produced CH4 was oxidized. Collectively, our results indicate that potassium phosphate fertilization stimulated CH4 emission by enhancing root methanogenesis, plant ventilation and/or CH4 oxidation, resulting in residence times of CH4 in the porewater in the order of hours.  相似文献   

4.
水稻植株特性对稻田甲烷排放的影响及其机制的研究进展   总被引:6,自引:0,他引:6  
水稻是我国最主要的口粮作物,稻田是重要温室气体甲烷的主要排放源之一。水稻植株特性既是水稻产量形成的关键因子,也是稻田甲烷排放的主要影响因子。但是,至今关于水稻植株对稻田甲烷排放的调控效应及其机制仍存在许多不一致的认识。为此,本文从形态特征、生理生态特征、植株-环境互作等方面,对现有的相关研究进行了综合论述。水稻地上部形态特征如分蘖数、株高、叶面积等对稻田甲烷排放的影响的研究结果不尽相同,起关键作用的是地下系统。优化光合产物分配在持续淹水的情况下可以减少稻田甲烷排放。提高水稻生物量在低碳土壤增加稻田甲烷排放,但在高碳土壤下降低甲烷排放。本文还明确了相关研究现状和存在的问题。在此基础上,作者认为未来应加强水稻根系形态及其生理特征,以及水稻植株-土壤环境(尤其是水分管理和养分管理)互作对稻田甲烷产生、氧化和排放影响的研究,在方法上应加强微区试验和大田试验的结合,并开展植株和稻田的碳氮互作效应及其机制研究,为高产低碳排放的水稻品种选育和低碳稻作模式创新提供理论参考和技术指导。  相似文献   

5.
CH4 emission from irrigated rice field is one of the major sources in the global budget of atmoshperic CH4. Rates of CH4 emission depend on both CH4 production in anoxic parts of the soil and on CH4 oxidation at oxic-anoxic interfaces. In the present study we used planted and unplanted rice microcosms and characterized them by numbers of CH4-oxidizing bacteria (MOB), porewater CH4 and O2 concentrations and CH4 fluxes. Plant roots had a stimulating effect on both the number of total soil bacteria and CH4-oxidizing bacteria as determined by fluorescein isothiocyanate fluorescent staining and the most probable number technique, respectively. In the rhizosphere and on the root surface CH4-oxidizing bacteria were enriched during the growth period of tice, while their numbers remained constant in unplanted soils. In the presence of rice plants, the porewater CH4 concentration was significantly lower, with 0.1–0.4mM CH4, than in unplanted microcosms, with 0.5–0.7mM CH4. O2 was detected at depths of up to 16 mm in planted microcosms, whereas it had disappeared at a depth of 2 mm in the unplanted experiments. CH4 oxidation was determined as the difference between the CH4 emission rates under oxic (air) and anoxic (N2) headspace, and by inhibition experiments with C2H2. Flux measurements showed varying oxic emission rates of between 2.5 and 29.0 mmol CH4m-2 day-1. An average of 34% of the anoxically emitted CH4 was oxidized in the planted microcosms, which was surprisingly constant. The rice rhizosphere appeared to be an important oxic-anoxic interface, significantly reducing CH4 emission.  相似文献   

6.
Laboratory culture experiments were conducted with common reed (Phragmites australis) to elucidate the role of root exudates on CH4 production in wetland soils as well as the importance of different plant organs as routes of CH4 to the atmosphere. In the 50 d experiment period, root exudates ranged from 0.03 to 1.53 µmolg?1d?1, which increased with reed growth. CH4 production rate of soil was stimulated as root exudates collected was added. CH4 transport capacity rate also increased with plant growth and influenced by light intensity. Root tips were the most important part of controlling diffusion of CH4 into reed shoots, and leave transport accounted for 45.34% of total emissions into the atmosphere.  相似文献   

7.
Methane emission from flooded rice fields under irrigated conditions   总被引:11,自引:0,他引:11  
In a study on CH4 emission from flooded rice fields under irrigated conditions, fields planted with rice emitted more methane than unplanted fields. The CH4 efflux in planted plots varied with the rice variety and growth stage and ranged from 4 to 26 mg h-1m-2. During the reproductive stage of the rice plants, CH4 emission was high and the oxidation power of rice roots, in terms of -naphthylamine oxidation, was very low. The CH4 emission reached a maximum at midday and declined to minimum levels at midnight, irrespective of the rice variety. The peak CH4 emission at midday was associated with higher solar radiation and higher soil/water temperature.  相似文献   

8.
We compared the effects of adding different forms of nitrogenous fertilizers on the production of CH4 in soil and on CH4 emission from rice plants, Urea and diammonium phosphate gave the highest rates of CH4 production from the soil and emission through rice plants, followed by (NH4)2SO4. NaNO3 was the least effective. The effects of micronutrients like Mo, Ni, or B were more prominent than those of Fe, Mn, Zn, V, or Co. It is concluded that CH4 emission from rice paddies is influenced by both macro- and micronutrients, through effects on both microbial methanogenesis in soil and elimination through rice plants as a consequence of the effects on plant growth.  相似文献   

9.
Nitrous oxide and methane transport through rice plants   总被引:8,自引:0,他引:8  
The separate closed chamber technique was used to study the potential of rice plants for transporting N2O and CH4 produced in soil to the atmosphere. The results indicate that N2O produced in soil can be conducted to the atmosphere via rice plants similarly to CH4 transport. More than 80% of both N2O and CH4 was emitted through rice plants. The rest was emitted through the soil/water/atmosphere interface by ebullition and diffusion. Nitrate addition increased the total N2O emission rate substantially but decreased the total CH4 emission. Nitrate addition did not change the CH4 emission ratio through rice plants, but lowered the percentage of N2O emission through rice plants. The results suggest that rice plants serve not only as a conduit for most of the CH4 leaving the soil but also for the N2O produced in the soil. Received: 31 January 1996  相似文献   

10.
中国自然湿地甲烷排放: 1995-2004年研究总结   总被引:2,自引:0,他引:2  
From studies undertaken during 1995-2004, annual budgets of CH4 emissions from natural wetlands and its temporal and spatial variations were examined throughout China, and various factors influencing CH4 emissions were also evaluated. The seasonal variation in CH4 emissions that increased with increasing plant growth reached its peak in August;decrease in the emissions was found in freshwater marshes but not in peatlands. Emissions were mainly controlled by temperature and depth of standing water. Low CH4 emissions at the early plant growing stages were not because of deficiency of organic C for CH4 production but because of low temperatures. Low temperatures not only reduced CH4 production but also stimulated CH4 oxidation by lowering the activity of other aerobic microbes which left more O2 in the rhizosphere for methanotrophs. Low summer temperatures (below 20 ℃) in the Qinghai-Tibetan Plateau lowered CH4 production and CH4 emission resulting in little or no seasonal variation of emissions. Diel and spatial variation in CH4 emissions depended on plant species. For plants that transport CH4 using the pressure-driven convective through-flow mechanism, diel variation in CH4 emissions was governed by diel variation of solar energy load (that produces temperature and vapor pressure differences within various plant tissues) and stomatal conductance. For plants that transport gases using the molecular diffusion mechanism only, the diel variation of CH4 emissions was because of differences in the magnitude of O2 produced through photosynthesis and then delivered into the rhizomes and/or rhizosphere for CH4 oxidation. Emergent plants could transport more CH4 than submerged plants because the former transport CH4 directly into the atmosphere rather than into water as do submerged plants where CH4 can be further be oxidized during its diffusion from water to the atmosphere. Emergent plants with high gas transport capacity could not only transport more CH4 into the atmosphere but also live in deeper water, which in turn would inundate more plant litter, resulting in increased availability of C for CH4 production. Annual CH4 emission from natural wetlands in China was estimated to be 1.76 Tg, up to 1.17 Tg of which was emitted from freshwater marshes. CH4 emission from freshwater marshes mainly occurred during the growing season and less than 8% was released during the freeze-thawing period despite the fact that thawing efficiently released CH4 fixed in ice column into the atmosphere.  相似文献   

11.
Rice fields are intensively managed, unique agroecosystems, where soil flooding is general performance for rice cultivation. Flooding the field results in reductive soil conditions, under which decomposition of organic materials proceeds during the period of rice cultivation. A large variety of organic materials are incorporated into rice soils according to field management. In this review, the kind and abundance of organic materials entering carbon cycling in the rice field ecosystem are evaluated first. Then, decomposition of plant residues and soil organic matter in rice fields is reviewed quantitatively. Decomposition of plant residues is shown to be the active process in carbon cycling in rice fields. Rice releases photosynthates into the rhizosphere (rhizodeposition), and they follow a different avenue of decomposition in soil from that of plant residues. Incorporation of rhizodeposition into microbial biomass and soil organic matter during the period of rice cultivation, and their fates after harvesting are evaluated quantitatively from 13C pulse labeled experiments. Percolating water transports inorganic and organic carbon from the plow layer to the subsoil layer. The amounts of their transport and accumulation in the subsoil layer are evaluated in relation to the amounts of soil organic C in the plow layer. Not only CO2 but also CH4 are produced in the decomposition process of organic materials in flooded rice fields. CH4 evolution from rice fields is of global concern from the viewpoint of global warming. Origins of CH4 evolved from rice fields are estimated first, followed by the fates of CH4 in rice field ecosystems. Rhizodeposition is shown to be the main origin of CH4 evolved from rice fields. Evolution to the atmosphere is not the sole pathway of CH4 produced in rice fields. The amounts of CH4 retained in soil, percolated to the subsoil layer and decomposed in soil are evaluated in the context of the amounts of CH4 efflux. Thus, this review focuses on carbon cycling in the rice field ecosystem from the viewpoints of input, decomposition, and translocation of organic materials and the fates of their end products (CO2 and CH4).  相似文献   

12.
Major rice growth characteristics and grain yield were compared between inside and outside of a chamber coverage area after a seasonal CH4 and N2O flux measurement using a closed chamber technique. Results show that only grain yield was significantly (P<0.01) reduced by chamber enclosure. There was no significant difference (P>0.05) in plant height, total straw weight, spike length, and average grain weight. Temperature increase during the gas flux measurement was likely the major cause for the observed grain yield decrease by sterilizing rice reproductive organs. Methane flux rates from rice fields were likely overestimated by using closed chamber technique because decreasing grain yield by chamber enclosure may result in more plant photosynthesis products released into soils to enhance CH4 production. Analyzing CH4 and CO2 emission ratio from the rice field, after cutting the above-water part of rice plants, indicated that CH4–C emission accounted for approximately 13% of the total CO2 and CH4–C emission during the major rice growing season.  相似文献   

13.
To elucidate effect of the CH4 transport capacity of plants on CH4 production and CH4 emission, we measured CH4 emission and the CH4 transport capacity of plants as well as CH4 and dissolved organic carbon (DOC) concentrations in porewater and redox potential in the freshwater marsh vegetated with Carex lasiocarpa, Carex meyeriana and Deyeuxia angustifolia. Although only 31% of CH4 emitted was released via Deyeuxia angustifolia into the atmosphere compared to 72–86% via Carex plants and the CH4 transport capacity of per stem of Deyeuxia angustifolia was only 8.0 g CH4 stem–1 h–1 being equal to half for Carex plants, the flux of CH4 emission from the Deyeuxia angustifolia marsh was just lower by 17–28% than those from the Carex marshes as the standing water depth decreased significantly from 15–20 to 5 cm, indicating that despite the poor CH4 transport capability of Deyeuxia angustifolia partly reduced CH4 emission via plants, however CH4 emission was not greatly reduced as expected. This is because although the poor gas transport capability of Deyeuxia angustifolia lowered CH4 emission to some extent, however it also decreased the input of O2 into the rhizosphere via plants; the latter not only reduced CH4 oxidation in the rhizosphere and/or rhizome but also lowered redox potential in the vertical profile resulting in an increase in CH4 production potential and CH4 concentration especially at 5 cm depth, which in turn facilitated CH4 emission through diffusion in the Deyeuxia angustifolia marsh. This study suggests that the sharp decrease in the CH4 transport capacity of plants did not necessary result in an expected lowering of CH4 emission in the freshwater marsh.  相似文献   

14.
The interaction of Pb-Cd can be observed not only in the uptake process of elements by plants and in their influence on the growth,but also in rhizosphere.The changes in extractable Cd and Pb concentrations in the rhizosphere soil of rice plants ,root exudates from wheat and wheat plant and their complexing capacity,with Pa and Cd were investigated under different Pb and Cd treatments.Results showed that the concentration of extractable Cd in the rhizosphere of rice in red soil was markedly increased by Pb-Cd interaction,It increased by 56% in the treatment with Pb and Cd added against that in the treatment with only Cd added in soil . The considerable differences in both composition and amount of root exudate from wheat and rice were found among different treatments.Pb and Cd might be complexed by root exudates ,The concentrations of free Pb and Cd in the solution were increased markedly by adding root exudate from wheat and decreased by that from rice due to Pd-Cd interaction.The distribution patterns of Pb and Cd in roots were affected by Pb-Cd interaction,which accelerated transport of Pb into internal tissue and retarded accumulation of Cd in external tissue.  相似文献   

15.
ABSTRACT

Root exudate is derived from plant metabolites and its composition is affected by plant nutrient status. A deficiency of mineral nutrients, such as nitrogen (N) and phosphorus (P), strongly affects the type and amount of plant metabolites. We applied a metabolite profiling technique to investigate root exudates of rice plants under N and P deficiency. Oryza sativa was grown in culture solution containing two N levels (0 and 60 mg N L?1) or two P levels (0 and 8 mg P L?1). Shoot extracts, root extracts, and root exudates were obtained from the rice plants 5 and 15 days after transplanting and their metabolites were determined by capillary electrophoresis/time-of-flight mass spectrometry. Shoot N concentration and dry weight of rice plants grown at ?N level were lower than those of plants grown at +N level. Shoot P concentration and dry weight of rice plants grown at ?P level were lower than those of plants grown at +P level. One hundred and thirty-two, 127, and 98 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two N levels. One hundred and thirty-two, 128, and 99 metabolites were identified in shoot extracts, root extracts, and root exudates, respectively, at the two P levels. Seventy-seven percent of the metabolites were exuded to the rhizosphere. The concentrations of betaine, gamma-aminobutyric acid, and glutarate in root exudates were higher at both ?N and ?P levels than at their respective high levels. The concentration of spermidine in root exudates was lower at both ?N and ?P levels than at their respective high levels. The concentrations of the other metabolites in root exudates were affected differently by plant N or P status. These results suggest that rice roots actively release many metabolites in response to N and P deficiency.  相似文献   

16.
The presence of plants induces strong accelerations in soil organic matter (SOM) mineralization by stimulating soil microbial activity – a phenomenon known as the rhizosphere priming effect (RPE). The RPE could be induced by several mechanisms including root exudates, arbuscular mycorrhizal fungi (AMF) and root litter. However the contribution of each of these to rhizosphere priming is unknown due to the complexity involved in studying rhizospheric processes. In order to determine the role of each of these mechanisms, we incubated soils enclosed in nylon meshes that were permeable to exudates, or exudates & AMF or exudates, AMF and roots under three grassland plant species grown on sand. Plants were continuously labeled with 13C depleted CO2 that allowed distinguishing plant-derived CO2 from soil-derived CO2. We show that root exudation was the main way by which plants induced RPE (58–96% of total RPE) followed by root litter. AMF did not contribute to rhizosphere priming under the two species that were significantly colonized by them i.e. Poa trivialis and Trifolium repens. Root exudates and root litter differed with respect to their mechanism of inducing RPE. Exudates induced RPE without increasing microbial biomass whereas root litter increased microbial biomass and raised the RPE mediating saprophytic fungi. The RPE efficiency (RPE/unit plant-C assimilated into microbes) was 3–7 times higher for exudates than for root litter. This efficiency of exudates is explained by a microbial allocation of fresh carbon to mineralization activity rather than to growth. These results suggest that root exudation is the main way by which plants stimulated mineralization of soil organic matter. Moreover, the plants through their exudates not only provide energy to soil microorganisms but also seem to control the way the energy is used in order to maximize soil organic matter mineralization and drive their own nutrient supply.  相似文献   

17.
Root-induced changes in the rhizosphere may affect mineral nutrition of plants in various ways. Examples for this are changes in rhizosphere pH in response to the source of nitrogen (NH4-N versus NO3-N), and iron and phosphorus deficiency. These pH changes can readily be demonstrated by infiltration of the soil with agar containing a pH indicator. The rhizosphere pH may be as much as 2 units higher or lower than the pH of the bulk soil. Also along the roots distinct differences in rhizosphere pH exist. In response to iron deficiency most plant species in their apical root zones increase the rate of H+ net excretion (acidification), the reducing capacity, the rate of FeIII reduction and iron uptake. Also manganese reduction and uptake is increased several-fold, leading to high manganese concentrations in iron deficient plants. Low-molecular-weight root exudates may enhance mobilization of mineral nutrients in the rhizosphere. In response to iron deficiency, roots of grass species release non-proteinogenic amino acids (?phytosiderophores”?) which dissolve inorganic iron compounds by chelation of FeIII and also mediate the plasma membrane transport of this chelated iron into the roots. A particular mechanism of mobilization of phosphorus in the rhizosphere exists in white lupin (Lupinus albus L.). In this species, phosphorus deficiency induces the formation of so-called proteoid roots. In these root zones sparingly soluble iron and aluminium phosphates are mobilized by the exudation of chelating substances (probably citrate), net excretion of H+ and increase in the reducing capacity. In mixed culture with white lupin, phosphorus uptake per unit root length of wheat (Triticum aestivum L.) plants from a soil low in available P is increased, indicating that wheat can take up phosphorus mobilized in the proteoid root zones of lupin. At the rhizoplane and in the root (root homogenates) of several plant species grown in different soils, of the total number of bacteria less than 1 % are N2-fixing (diazotrophe) bacteria, mainly Enterobacter and Klebsiella. The proportion of the diazotroph bacteria is higher in the rhizosphere soil. This discrimination of diazotroph bacteria in the rhizosphere is increased with foliar application of combined nitrogen. Inoculation with the diazotroph bacteria Azospirillum increases root length and enhances formation of lateral roots and root hairs similarly as does application of auxin (IAA). Thus rhizosphere bacteria such as Azospirillum may affect mineral nutrition and plant growth indirectly rather than by supply of nitrogen.  相似文献   

18.
Summary The CH4 flux from intact soil cores of a flooded rice field in Italy was measured under aerobic and anaerobic incubation conditions. The difference between the anaerobic and aerobic CH4 fluxes was apparently due to CH4 oxidation in the oxic soil surface layer. This conclusion was supported by measurements of the vertical CH4 profile in the upper 2-cm layer, and of the V max of CH4 oxidation in slurried samples of the soil surface layer. About 80% of the CH4 was oxidized during its passage through the soil surface layer. CH4 oxidation was apparently limited by the concentration of CH4 and/or O2 in the active surface layer. The addition of ammonium to the water layer on top of the soil core reversibly increased the aerobic CH4 fluxes due to inhibition of CH4 oxidation in the soil surface layer.  相似文献   

19.
根系分泌物是植物保持根际微生态系统活力的关键因素,也是根际物质循环的重要组成部分,对根际土壤生态环境中的物质循环具有重要的驱动作用。根系分泌物可以刺激微生物生长,增强其活性,加速根际养分循环,增加土壤养分利用率,并在小规模空间引起温室气体通量的变化。此外,它也是植物参与竞争的重要策略,植物通过根分泌物以获取种间长期生存的养分,甚至分泌对自身有害的化感物质来排挤其他植物,实现自我生存,即使存在自毒作用或引起连作障碍等。植物的健康生长依赖于自身与土壤微生物复杂动态群落的相互作用,但是根际微生物群落结构和组成却又受植物物种、植物生长期、土壤性质、功能基因等因素影响,这些因素的动态变化可能导致根系分泌物的多样化,从而形成复杂多变的根系分泌物与植物的关系,进而影响植物的健康生长。目前,对植物根系分泌物的研究是土壤生态学、植物营养与代谢等领域的研究热点,且随着分析技术手段的快速发展,根系分泌物相关研究也逐渐深入,进一步揭示植物与微生物间的协同作用机理对农、林等行业生产具有重要的指导意义。  相似文献   

20.
The composition of root‐derived substances is of great importance for the understanding of processes in the rhizosphere. Therefore, methods allowing a comprehensive collection and chemical analysis of the organic root exudates are necessary. In this study, we compare different methods with regard to their suitability to collect and characterize root exudates. Because the percolation or water logging method failed to quantitatively extract root exudates, a dipping method was developed which allowed an almost complete sampling of coldwater‐soluble root exudates. By 14CO2 labeling of the shoots the composition of root exudates was found to be influenced by plant species and growth stage. In comparison to pea plants maize plants had a higher share of carboxylic acids and a lower share of sugars. Younger maize plants exuded considerably higher amounts of 14C labeled organic substances per g root dry matter than older ones. During plant development the relative amount of sugars decreased at the expense of carboxylic acids. The described methods are well suited for the elucidation of the influence of growth factors on root exudation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号