首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure has been developed for the determination of iron(III) dimethyldithiocarbamate by converting it into the iron(II)-bathophenanthroline complex, which is then dissolved in acetone-water (1:1), and the absorbance is measured at 534 nm against a reagent blank. Beer's law is obeyed over the concentration range 0.5-20 microg x mL(-1) in the final solution. The method is sensitive and highly selective and is used for the direct determination of ferbam in a commercial sample and in mixtures with various dithiocarbamates (ziram, zineb, maneb, etc.) and from wheat grains.  相似文献   

2.
ABSTRACT

Contamination of ground water as a consequence of soil leaching processes is an issue of major concern. In this context, a simulation of the soil leaching process was designed. A sequential injection (SI) method to monitor the soil leaching of iron complexes with in-line rain simulation for leachate production is described. The developed methodology comprises the SI determination of both iron(III) and 3-hydroxy-4-pyridinones iron(III) complexes, coupled to a mini soil column (mSC) for displaying in-line rain simulations. The described SI method enabled iron(III) determination within the range 2.0–35 µmol L?1, with a detection limit of 0.42 µmol L?1, and determination of iron(III) complexes in the range 1.0–45 µmol L?1. It was successfully applied to leachates from laboratory scale soil columns (LSSC), with good precision for both iron(III) and iron complexes determinations: calculated relative standard deviation (RSD) of 5% and 6%, respectively. A step further in automation and miniaturization was attained with the incorporation of a mini soil column for the in-line leachate production. The system enabled the soil leachate production and assessment in less than 5 min, including determinations in triplicate.  相似文献   

3.
This study was performed to determine which oxidoreductive catalysts were most efficient in catalyzing the binding of 8-hydroxybentazon to soil humic substances. 8-Hydroxybentazon was completely transformed by an oxidoreductive enzyme, laccase of Myceliophthora thermophila, at pH 3.0-7.0 within 30 min. When abiotic catalysts, manganese(IV), iron(III), and aluminum oxides were used in the same pH range, 8-hydroxybentazon was completely transformed only by manganese(IV) oxide (delta-MnO2), but a relatively small amount of 8-hydroxybentazon was transformed by iron(III) oxide and aluminum oxide. The adsorption of 8-hydroxybentazon in the soil showed an H-type and coincided well with the Langmuir isotherm. To better understand the factors involved in the rapid and strong binding of 8-hydroxybentazon with soil humic substances, 8-hydroxybentazon transformation by oxidoreductive catalysts was studied in various soil conditions: air-dried, preincubated, sterilized, and iron(III) oxide and manganese(IV) oxide free. 8-Hydroxybentazon was completely transformed within 24 h in the decreasing order of preincubated, air-dried, and sterilized soils. However, little transformation was observed in the iron(III) oxide and manganese(IV) oxide free soils. These results suggest that the major catalyst responsible for the rapid and strong binding of 8-hydroxybentazon to soil humic substances is a metal oxide, manganese(IV) oxide, not a soil oxidoreductive enzyme.  相似文献   

4.
The sorption of N-[[(4,6-dimethoxypyrimidin-2-yl)amino]carbonyl]-1-methyl-4-(2-methyl-2H-tetrazole-5-yl)1H-pyrazole-5-sulfonamide (AZS) on an iron oxide, iron(III)-humate, and an Fe3+-saturated clay was studied using a batch equilibrium method. Generally, 20 mg of each colloid was equilibrated with 20 mL of AZS solution (1.5-12.7 microM). The sorption on iron-montmorillonite and iron oxide was rapid, and the equilibrium was attained within 1.5 and 5 h, respectively. In the case of Fe-saturated humic acid the equilibrium time was 20 h. After equilibration, the phases were centrifuged (19000g, 15 min) and the supernatant was sampled and analyzed by HPLC. The values of Freundlich constants indicate that iron oxide (Kads = 199.5) shows the highest sorptive capacity toward AZS, followed by iron(III)-clay (Kads = 146.6) and iron(III)-humate (Kads = 108.2). With elapsing time, AZS degradation was observed in all colloidal suspensions. Iron-humate (t(1/2) = 136 h) is most effective in promoting AZS degradation, followed by iron oxide (t(1/2) = 204 h) and iron-clay (t(1/2) = 385 h). The metabolites 2-amino-4,6-dimethoxypyrimidine and 1-methyl-4-(2-methyl-2H-tetrazole-5-yl)-1H-pyrazole-5-sulfonamide, arising from a hydrolytic cleavage of the sulfonylurea bridge, were the only byproducts observed. A Fourier transform infrared study suggests that the sorption of AZS on iron-clay involves the protonation of one of the two basic pyrimidine nitrogens induced by the acidic water surrounding the saturating Fe3+ ions. Instead, the formation of a six-membered chelated complex favors the sorption of AZS on iron oxide.  相似文献   

5.
Blodau  C.  Hoffmann  S.  Peine  A.  Peiffer  S. 《Water, air, and soil pollution》1998,108(3-4):249-270
A combination of rate measurements of iron(III)oxide and sulfate reduction, thermodynamic data, and pore-water and solid phase analyses was used to evaluate the relative significance of iron and sulfate reduction in the sediments of an acidic strip mining lake (Lake 116, Brandenburg, Germany). The rate of sulfate reduction was determined using a 35S-radiotracer method. Rates of iron turnover were quantified by mass balances based on pore-water concentration profiles. The differences in Gibbs free energy yield from reduction of iron and sulfate and from methanogenesis were calculated from individual redox couples and concentrations of reactants to account for the influence of high Fe2+ concentrations and differing mineral phases. Integrated (O-20 cm) mean rates of sulfate reduction were 1.2 (pelagial), respectively 5.2 (littoral) mmol (m2d)-1. Based on electron equivalents, the estimated iron reduction rates reached between about 50 % (pelagial) and 75 % (littoral) of the sulfate reduction rates. Compared to conditions usually assumed in the literature, in the sediments Gibbs free energy advantage of iron reduction over sulfate reduction was reduced frmm +11 KJeq-1 to a range of about +7 KJeq-1 (ferrihydrite, "reactive iron") to -6 KJeq-1 (goethite). This indicates that iron reduction was thermodynamically favored to sulfate reduction only if amorphous iron(III)oxides were available and is in accordance to the high competitiveness of sulfate reducers in the sediment. While total iron concentration in the sediments was high (up to 80% of the dryweight), reactive iron only accounted for 11-38% and was absolutely and relatively diminished in the zone of iron reduction. Pore-water concentration gradients and 137CS profiles indicated that little or no bioturbation occurred in the sediments, probably inhibiting the renewal of reactive iron. We further hypothesize that the reactivity of the iron oxide surfaces was reduced due to adsorption of DOM, suggested by IR spectra of the DOM and by a surface coverage estimate using literature data. Pelagial and littoral sediments displayed different dynamics. At the littoral relative iron reduction rate estimates were higher, iron sulfides were not accumulated and residence times of iron oxides were short compared to the pelagial. At the littoral site reoxidation of iron sulfides probably resulted in the renewal of reactive iron(III)oxides, possibly allowing for higher relative rates of iron reduction.  相似文献   

6.
Two methods for the determination of iron in olive oil by spectrophotometry and by adsorptive stripping square wave voltammetry (Ad-SSWV) have been developed. These two methods are based on the formation of a 5,5-dimethylcyclohexane-1,2,3-trione 1,2-dioxime 3-thiosemicarbazone (DCDT)-iron(II) complex in strongly acid media. In both, iron is extracted from the olive oil by using HCl. Spectrophotometric determination of iron with DCDT is based on the feature that the DCDT-Fe complex shows an absorbance maximum at 550 nm. A calibration graph has been constructed from 0 to 4000 ng mL(-)(1), and the detection limit was 115 ng mL(-)(1) (57 ng g(-)(1) in olive oil). On the other hand, the voltammetric determination of the metal is based on the appearance of a peak due to an adsorptive reductive process of the complex that it is observed when the Ad-SSWV technique is used. A calibration graph has been constructed from 0 to 30 ng mL(-)(1), and the detection limit was 0.55 ng mL(-)(1) (13.75 ng g(-)(1) in olive oil according to the proposed procedure).  相似文献   

7.
A simple and accurate spectrophotometric method has been developed for the determination of ascorbic acid in canned fruit juices, cordials, and soft drinks, based on the reduction of iron(III) by ascorbic acid to iron(II), which is then complexed with 1,10-phenanthroline. Background correction is necessary for most samples and can be achieved by copper(II)-catalyzed oxidation of the acid. The calibration graph was linear from 0 to 8 micrograms/mL of ascorbic acid with a slope of 0.12/ppm. The precision for the determination of ascorbic acid in a lemon drink containing 210 micrograms/mL of the acid was 0.9%. Many ingredients commonly found in fruit juices, cordials, and soft drinks do not interfere; however, tannic acid, pyrogallol, and sulfite interfere with the method. A wide range of samples was analyzed for ascorbic acid content by the proposed method. The samples included mango and lemon tea drinks and also grapefruit juices, for which no background correction is needed.  相似文献   

8.
Decomposition of iron(III)-citrate in a well-aerated, aqueous solution by soil bacteria The decomposition of iron(III)-citrate by soil bacteria in a well-aerated NH4-mineral salt solution at constant pH-values between 3.3 and 8.5 resulted in a yellow (at low pH) or brown precipitate, respectively. The iron(III)-precipitate is amorphous to X-rays, contains approximately 12% carbon and about 40% iron (Fe). The freeze-dried product is dissolved completely in an acid solution of ammonium oxalate. Bacteria, capable of decomposing ammonium iron(III)-citrate, were isolated by plate method and identified by morphological and physiological studies. They could be separated into two groups: The first group contained strains classified as Pseudomonas fluorescens, whereas members of the second group could be assigned to the new genus Acinetobacter.  相似文献   

9.
The objective of this study was to determine the ratio and amount of Fe II and Fe III iron in different parts of 20 and 40 day old bean plants grown in pots under normal and HCO-treatment. The Fe II and Fe III iron determination was carried out by a modification of a method described by Vogel (1969). The Fe II and Fe III concentrations in the plant varied according to its age, the plant part, the order of leaves and HCO-treatment. At the second sampling date, the lower total iron content in the lower leaf particularly under the HCO-treatment suggests that the supply of iron from the roots was restricted. The iron content of the different leaves was almost evenly divided into Fe II and Fe III at the first date. At the second date, most of the iron in the bud leaf was present as Fe II. Under HCO-treatment the Fe II content of the bud leaf and the flower was similar as in the corresponding parts of the normal green plants whereas the Fe III content was considerably lowered in these plant parts as result of the HCO-treatment. The results indicate a substantial retranslocation of iron from older to younger leaves and a higher Fe II/Fe III ratio in flowers and bud leaves particularly under HCO-induced chlorosis.  相似文献   

10.
Gleying and enhancement of hydromorphism in wetland soils due to Fe(III) reduction entail a series of degradation processes. The resistance of wetlands to degradation can be calculated from the content of potentially reducible iron, Fe(III)pr, which is found from the van Bodegom equation taking into account the contents of oxalate-soluble iron Feox and dithionite-soluble iron Fedit in the soil. In addition, this makes it possible to distinguish relict and actual gleysols. The van Bodegom equation is applicable to soils from which the oxalate solution extracts only amorphous and poorly crystallized iron compounds, which are quickly reduced by Fe-reducing bacteria. These soils have a low proportion of Fe(II) (no more that 15% of the total iron), as well as an accumulative profile distribution of Feox. The van Bodegom equation is unsuitable for calculating the Fe(III)pr content in soils with a high proportion of Fe(II) and a nonaccumulative profile distribution of Feox.  相似文献   

11.
The photochemical formation of Fe(II) and hydrogen peroxide (H 2O 2) coupled with humic acids (HA) was studied to understand the significance of iron cycling in the photodegradation of atrazine under simulated sunlight. The presence of HA significantly enhanced the formation of Fe(II) and H 2O 2, and their subsequent product, hydroxyl radical ( (*)OH), was the main oxidant responsible for the atrazine photodegradation. During 60 h of irradiation, the fraction of iron presented as Fe(II) (Fe(II)/Fe(t)) decreased from 20-32% in the presence of the Fe(III)-HA complex to 10-22% after adding atrazine. The rate of atrazine photodegradation in solutions containing Fe(III) increased with increasing HA concentration, suggesting that the complexation of Fe(III) with HA accelerated the Fe(III)/Fe(II) cycling. Using fluorescence spectrometry, the quenching constant and the percentage of fluorophores participating in the complexation of HA with Fe(III) were estimated by the modified Stern-Volmer equation. Fourier transform infrared spectroscopy (FTIR) offered the direct evidence that Fe(III)-carboxylate complex could be formed by ligand exchange of HA with Fe(III). Based on all the information, a possible reaction mechanism was proposed.  相似文献   

12.
Sodium iron(III) ethylenediaminetetraacetate (NaFeEDTA) has considerable promise as an iron fortificant because of its high bioavailability in foods containing iron absorption inhibitors. In this study, uptakes of iron from NaFeEDTA, FeSO4, and FeCl3 by Caco-2 cells were compared in the absence or presence of ascorbic acid (AA), an iron absorption enhancer; at selected pH levels; and in the absence or presence of an iron absorption inhibitor, bathophenanthroline disulfonic acid (BPDS). Ferritin formation in the cells was used as the indicator of iron uptake. Uptake from all three Fe sources was similar in the absence of AA. Adding AA at a 5:1 molar excess as compared to Fe increased uptake by 5.4-, 5.1-, and 2.8-fold for FeSO4, FeCl3, and NaFeEDTA, respectively. The smaller effect of AA on uptake from NaFeEDTA may be related to the higher solubility of NaFeEDTA and/or the strong binding affinity of EDTA for Fe3+, which may prevent AA and duodenal cytochrome b from effectively reducing EDTA-bound Fe. Uptake was inversely related to the pH of the media over a range of 5.8-7.2. Because uptake by DMT-1 is proton-coupled, the inverse relationship between pH and Fe uptake in all three iron sources suggests that they all follow the DMT-1 pathway into the cell. Adding BPDS to the media inhibited uptake from all three iron compounds equally. Because BPDS binds Fe2+ but not Fe3+ and because only Fe2+ is transported by DMT-1, the finding that BPDS inhibited uptake from NaFeEDTA suggests that at least some iron dissociates from EDTA and is reduced just as simple inorganic iron at the brush border membrane of the enterocyte. Taken together, these results suggest that uptake of iron from NaFeEDTA by intestinal enterocytes is regulated similarly to uptake from iron salts.  相似文献   

13.
Lactic acid (LA) has been proposed to be an enhancer for dietary iron absorption, but contradictory results have also been reported. In the present study, fully differentiated Caco-2 cell monolayers were used to evaluate the effects of LA (1-50 mmol/L) on the cellular retention and transepithelial transport of soluble non-heme iron (as ferric nitrilotriacetate). Our data revealed a linear decline in Fe(III) retention with respect to the concentration of LA added. In the presence of 50 mmol/L LA, retention of Fe(III) and Fe(II) decreased 57% and 58%, respectively. In contrast, transfer of Fe(III) across the cell monolayer was doubled, while Fe(II) transfer across the cell monolayer decreased 35%. We conclude that LA reduces cellular retention and transepithelial transport of Fe(II) by Caco-2 cells in a dose-dependent manner. However, while LA also reduces retention of Fe(III) by Caco-2 cells, the transfer of Fe(III) across cell monolayers is enhanced, possibly due to effects on paracellular transport.  相似文献   

14.
Water, soil and sediment contaminated with DDT poses a threat to the environment and human health. Previous studies have shown that zerovalent iron (ZVI) can effectively remediate water contaminated with pesticides like DDT, metolachlor, alachlor. Because the type of iron can significantly influence the efficiency and expense of ZVI technology, finding a cheaper and easily available iron source is one way of making this technology more affordable for field application. This study determined the effects of iron source, solution pH, and presence of Fe or Al salts on the destruction of DDT. Batch experiments demonstrated successful removal of DDT (>95% in 30 d) in aqueous solutions by three different iron sources with the following order of removal rates: untreated iron byproduct (1.524 d?1) > commercial ZVI (0.277 d?1) > surface-cleaned iron byproduct (0.157 d?1). DDT removal rate was greatest with the untreated iron byproduct because of its high carbon content resulted in high DDT adsorption. DDT destruction rate by surface-cleaned iron byproduct increased as the pH decreased from 9 to 3. Lowering solution pH removes Fe (III) passivating layers from the ZVI and makes it free for reductive transformations. By treating DDT aqueous solutions with surface-cleaned iron byproduct, the destruction kinetics of DDT were enhanced when Fe(II), Fe(III) or Al(III) salts were added, with the following order of destruction kinetics: Al(III) sulfate > Fe(III) sulfate > Fe(II) sulfate. Cost analysis showed that the cost for one kg of surface-cleaned iron byproduct was $12.33, which is less expensive than the commercial ZVI. Therefore, using surface-cleaned iron byproduct may be a viable alternative for remediating DDT-contaminated environments.  相似文献   

15.
The reduction of iron(III) by natural humic acid (NHA) was studied in aqueous solution as a function of pH, time and iron(III) concentration. The information gained from FTIR and ESR spectroscopies as well as potentiometric data suggests that redox reactions occur at a low pH due to the involvement of phenolic groups and radicals. At pH values higher than 3.5 the reaction is strongly inhibited by the formation of iron(III)–humate complexes.  相似文献   

16.
Iron (III) was extracted by EDTA and ammonium oxalate from a model substance consisting of amorphous iron oxide, goethite, and hematite precipitated in the presence of quartz sand. Even by varying the EDTA concentration between 0.02 and 0.1 M, pH between 4.40 and 6.00, the solid:solution ratio between I:25 and I:250, and using extraction times up to go days, it was found that EDTA was able to extract only a limited amount of iron. In contrast, 0.2 M ammonium oxalate at pH 3.0 is able to dissolve all the iron compounds if the extraction time is sufficient. Nevertheless, the amount of EDTA-extractable iron is equal to the amount of iron extracted after 4–5 hours with ammonium oxalateat pH 3.0. From X-ray analysis, DTA curves, a solubility product determination, and a kinetic investigation, it is concluded that the EDTA-extractable fraction consists of X-ray amorphous iron oxide, less soluble than polymeric iron hydroxide, and presumably only one compound. Therefore, it is concluded that it may be possible by means of EDTA to carry out a selective extraction of X-ray amorphous iron oxides mixed with goethite and hematite.  相似文献   

17.
Mössbauer and ESR spectroscopy have shown that the iron extracted from the Bh horizons of an iron humus podzol and an iron podzol by EDTA at pH 9.1 is predominantly in the form of complexes * 1 The use of the word ‘complex’ in this paper in the context of polymeric iron species and organic matter is not intended to imply any single specific type of complex, such as exists in Fe(II1) EDTA, for example, but to embrace many possible modes of association including salt formation, direct coordination, Van der Waal's adsorption, and electrostatic attraction.
of polymeric Fe(III) hydroxide and oxide with organic matter (O.M.). Small amounts of monomeric Fe(III)-O.M. and Fe(III)-EDTA complexes also occur. In contrast EDTA at pH 7 extracts iron from these podzols predominantly in the form of iron-EDTA complexes. Some monomeric Fe(III)-O.M. complex also occurs in a pH 9.1 NH4 OH extract of these horizons and in a pH 9.1 EDTA extract of the B3 horizon of a peaty podzol. Dialysis experiments show that the particle dimensions of the polymeric hydroxy Fe(III)-O.M. complex, which accounts for about 66% of the Fe extracted from the iron humus podzol and about 36% of that from the iron podzol, are greater than 2.4 nm. The thermal behaviour of the Mössbauer peaks indicated that the size of the iron cores was of the order of 5 nm, thus suggesting that the complex probably consists of hydroxyiron cores surrounded by large organic molecules. Results from XRD and IR suggest that these hydroxyiron cores may have structural organizations similar to those of goethite and ferrihydrite. The relationship between these forms of iron in the extracts and those in the soil is briefly discussed.  相似文献   

18.
It has previously been suggested that organic acids enhance iron absorption. We have studied the effect of nine organic acids on the absorption of Fe(II) and Fe(III) in the human epithelial cell line Caco-2. The effect obtained was dose-dependent, and the greatest increase (43-fold) was observed for tartaric acid (4 mmol/L) on Fe(III) (10 micromol/L). Tartaric, malic, succinic, and fumaric acids enhanced Fe(II) and Fe(III) uptake. Citric and oxalic acid, on the other hand, inhibited Fe(II) uptake but enhanced Fe(III) uptake. Propionic and acetic acid increased the Fe(II) uptake, but had no effect on Fe(III) uptake. Our results show a correlation between absorption pattern and chemical structure; e.g. hydroxyl groups, in addition to carboxyls, were connected with a positive influence. The results may be important for elucidating factors affecting iron bioavailability in the small intestine and for the development of foods with improved iron bioavailability.  相似文献   

19.
Fulvic acids have been isolated from a sandy loam (Countesswells series) and a clay soil (Tipperty series) and the products of their reaction with different amounts of iron over a range of pH from 0.5 to 11 analyzed by Mössbauer spectroscopy. Three distinct types of spectral component were detected at 77 K, a sextet from magnetically dilute Fe(III) and doublets from Fe(II) and Fe(III), the last arising from both organic complexes and poorly crystalline oxide species. In iron-fulvic acid mixtures the proportion of iron as Fe(II) increased as the pH was lowered from 5 to 1 by the addition of hydrochloric or nitric acid at all Fe to fulvic acid ratios (1:5 to 1:500). When the pH was lowered below 1 the amounts of Fe(II) decreased with the lower Fe to fulvic acid ratios, but increased with the higher ratios. The amounts of the Fe(III) component contributing to a doublet signal decreased with decreasing Fe:fulvic acid ratios. At low iron concentrations the iron appears to be strongly bound to the fulvic acid, but when the iron content is of the order of 1–2% uncomplexed Fe(III) species can be present. At pH > 2 these are hydrolysed ions which form poorly-crystalline oxides at higher pH. This was confirmed by analysis of spectra at 4.2 K. At pH < 2 free ions are present in solution. In solutions with high fulvic acid contents (greater than 100-fold excess) the reactions with iron are completely reversible, but in solutions with a lower proportion of fulvic acid to iron, where free ions are present, there is a lack of reversibility.  相似文献   

20.
Uptake of iron by rice plants was equally rapid when supplied as ionic iron(II) or iron(III) at pH 3 and 4. Iron(III) uptake was reduced at pH 5 and uptake of iron when supplied as FeEDTA was relatively low at all three pH levels.

At pH 4 in the presence of plant roots, reduction of iron(III) to iron(II) occurred as indicated by Fe2+ BPDS formation. BPDS in a 3:1 ratio to iron(III) suppressed iron uptake by about 70%. The reduction was observed to be located in the endodermis of young roots and exodermis of older roots.

A capacity to oxidize iron(II) at the root surface was also observed under local anaerobic and relatively high pH conditions.

The significance of these two counteracting processes in affecting the oxidation state of iron at the root surface is discussed.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号