首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-seven seed samples belonging to the lettuce cultivars most frequently grown in Lombardy (northwestern Italy), in an area severely affected by Fusarium wilt of lettuce, were assayed for the presence ofFusarium oxysporum on a Fusarium-selective medium. Isolations were carried out on subsamples of seeds (500 to 1500) belonging to the same seed lots used for sowing, and either unwashed or disinfected in 1% sodium hypochloride. The pathogenicity of the isolates ofF. oxysporum obtained was tested in four trials carried out on lettuce cultivars of the butterhead type, very susceptible to Fusarium wilt. Nine of the 27 samples of seeds obtained from commercial seed lots used for sowing in fields affected by Fusarium wilt were contaminated byF. oxysporum. Among the 16 isolates ofF. oxysporum obtained, only one was isolated from disinfected seeds. Three of the isolates were pathogenic on the tested cultivars of lettuce, exhibiting a level of pathogenicity similar to that of the isolates ofF. oxysporum f.sp.lactucae obtained from infected wilted plants in Italy, USA and Taiwan, used as comparison. The results obtained indicate that lettuce seeds are a potential source of inoculum for Fusarium wilt of lettuce. The possibility of isolatingF. oxysporum f.sp.lactucae, although from a low percent of seeds, supports the hypothesis that the rapid spread of Fusarium wilt of lettuce observed recently in Italy is due to the use of infected propagation material. Measures for prevention and control of the disease are discussed. http://www.phytoparasitica.org posting Dec. 16, 2003.  相似文献   

2.
We selected a reduced-pathogenicity mutant of Fusarium oxysporum f. sp. lycopersici, a tomato wilt pathogen, from the transformants generated by restriction enzyme-mediated integration (REMI) transformation. The gene tagged with the plasmid in the mutant was predicted to encode a protein of 321 amino acids and was designated FPD1. Homology search showed its partial similarity to a chloride conductance regulatory protein of Xenopus, suggesting that FPD1 is a transmembrane protein. Although the function of FPD1 has not been identified, it does participate in the pathogenicity of F. oxysporum f. sp. lycopersici because FPD1-deficient mutants reproduced the reduced pathogenicity on tomato.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession number AB110097  相似文献   

3.
In a field experiment between 2004 and 2006, 14 winter wheat varieties were inoculated with either a mixture of three isolates of F. poae or a mixture of three isolates of F. avenaceum. In a subsequent climate chamber experiment, the wheat variety Apogee was inoculated with individual single conidium isolates derived from the original poly conidium isolates used in the field. Disease symptoms on wheat heads were visually assessed, and the yield as well as the fungal incidence on harvested grains (field only) was determined. Furthermore, grains were analysed using LC-MS/MS to determine the content of Fusarium mycotoxins. In samples from field and climate chamber experiments, 60 to 4,860 μg kg−1 nivalenol and 2,400 to 17,000 μg kg−1 moniliformin were detected in grains infected with F. poae and F. avenaceum, respectively. Overall, isolate mixtures and individual isolates of F. avenaceum proved to be more pathogenic than those of F. poae, leading to a higher disease level, yield reductions up to 25%, and greater toxin contamination. For F. poae, all variables except for yield were strongly influenced by variety (field) and by isolate (climate chamber). For F. avenaceum, variety had a strong effect on all variables, but isolate effects on visual disease were not reflected in toxin production. Correlations between visual symptoms, fungal incidence, and toxin accumulation in grains are discussed.  相似文献   

4.
The vascular wilt pathogen Fusarium oxysporum f. sp. melonis causes worldwide yield losses of muskmelon. In this study, we characterized a UV-induced non-pathogenic mutant (strain 4/4) of F. oxysporum f. sp. melonis, previously identified as a potential biological control agent. During comparative analysis of vegetative growth parameters using different carbon sources, mutant strain 4/4 showed a delay in development and secretion of extracellular enzymes, compared to the wild type strain. Amendments of the growth medium with yeast extract, adenine or hypoxanthine, but not guanine, complemented the growth defect of strain 4/4, as well as secretion and partial activity of cellulases and endopolygalacturonases, indicating that the strain is an adenine auxotroph. Incubation of strain 4/4 conidia in adenine solution, prior to inoculation of muskmelon plants, partially restored pathogenicity to the mutant strain.  相似文献   

5.
Bois noir (BN) is the most widespread European grapevine yellows disease caused by ‘Candidatus Phytoplasma solani’. Although our knowledge of the mechanisms of interactions of this pathogenic bacteria with host is largely unknown, the plant-pathogen system of BN is commonly used as a model system for studying grapevine yellows diseases. We applied here a conceptual model of general plant pathology – a disease triangle for describing interactions among the host plant, the pathogen and the environment. We generated a proof-of-concept statistical model for disease triangle using original experimental data and different statistical and data mining approaches for a selected system of ‘Ca. P. solani’ infection of cv. ‘Chardonnay’ grapevine plants. We monitored individual plants from a single vineyard over a period of six years. Phytoplasma content, the expression of 21 selected grapevine genes and environmental conditions were recorded and related to disease severity. Our model predicts that in described conditions BN is a function of the expression of grapevine gene VvDMR6, summer rainfall and abundance of ‘Ca. P. solani’. The greatest impact among elements of the disease triangle is attributed to the pathogen, and is independent of the pathogen titer. We showed that this first de facto representation of the disease triangle is useful for showing disease dynamics over several years and could be applied to other plant-pathogen systems. The overall results of this study will contribute to understanding of ‘Ca. P. solani’ biology and its interactions with grapevine host.  相似文献   

6.
A bacterial strain was isolated from the rhizosphere of healthy watermelon plants in a heavily wilt-diseased field. This isolate was tentatively identified as Paenibacillus polymyxa (SQR-21) based on biochemical tests and partial 16S rRNA sequence similarity. The purified antifungal compounds were members of the fusaricidin group of cyclic depsipeptides having molecular masses of 883, 897, 947, and 961 Da with an unusual 15-guanidino-3-hydroxypentadecanoic acid moiety, bound to a free amino group. The strain SQR-21 was not able to produce antifungal volatile compounds but was able to produce cellulase, mannase, pectinase, protease, β-1,3-glucanase and lipase enzymes. However, the strain did not show any chitinase activity. Biocontrol potential of this strain was evaluated against Fusarium oxysporum cause of Fusarium wilt disease of watermelon in a greenhouse experiment. This strain combined with organic fertiliser decreased the disease incidence by 70% and increased the dry plant weight by 113% over the control.  相似文献   

7.
Fusarium wilt, one of the destructive diseases of cucumber can be effectively controlled by using biocontrol agents such as Trichoderma harzianum. However, the mechanisms controlling T. harzianum-induced enhanced resistance remain largely unknown in cucumber plants. Here we screened the potent T. harzianum isolate TH58 that could effectively control F. oxysporum (FO). Glasshouse efficacy trials also showed that TH58 decreased disease incidence by 69.7 %. FO induced ROS over accumulation, while TH58 inoculation suppressed ROS over accumulation and improved root cell viability under F. oxysporum infection. TH58 inoculation could reverse the FO-induced cell division block and regulate the proportional distribution of nuclear DNA content through inducing 2C fraction. Moreover, the expression levels of cell cycle-related genes such as CDKA, CDKB, CycA, CycB, CycD3;1 and CycD3;2 in TH58 - pre-inoculated seedlings were up-regulated compared with those infected with FO alone. Taken together, these results suggest that T. harzianum improved plant resistance against Fusarium wilt disease via alterations in nuclear DNA content and cell cycle-related genes expression that might maintain a lower ROS accumulation and higher root cell viability in cucumber seedlings.  相似文献   

8.
Temporal variation in Fusarium oxysporum f. sp. vasinfectum (Fov) populations was determined by comparing the genetic diversity of pathogen isolates recovered from three consecutive cotton crops (2002, 2004 and 2006) in the Boggabilla area of New South Wales, Australia. A total of 288 isolates were collected, among which 25 distinct AFLP genotypes were identified. These genotypes were classified into two main groups corresponding to known vegetative compatibility groups (VCG)—01111 and 01112. The Fov populations were dominated by four genotypes (I-A, I-B, II-A, II-B) that accounted for 87.5% of the isolates. Significant temporal variation was observed in both sampled fields with 6.8% and 10.7% of total genetic variation being attributed to differences among collections in different years. Genetic diversity based on Nei’s gene diversity and the Shannon-Wiener index increased over time. Significant changes in the frequency of the dominant Fov genotypes were observed in one field, where genotype I-A declined from 84.8% to 40.0% over the study period (2002–2006), while genotype I-B increased from 7.6% to 35.4%. Strong inter-genotype competition was detected in glasshouse bioassays with 93.4% of symptomatic plants sampled from dual inoculation trials being infected by single genotypes. Competition was differentially mediated by cotton cultivars as the competitive ability of pathogen genotype I-B was enhanced on the resistant cultivar Sicot 189 relative to the susceptible cultivar Siokra 1–4. This suggests that host-mediated inter-genotype competition may play an important role in temporal variation in Fov populations in the field.  相似文献   

9.
Sorghum is an important drought tolerant crop cultivated for food and fodder purposes. Anthracnose disease caused by Colletotrichum graminicola is a major constraint in sorghum productivity in India. Certain antagonistic fungi, that were isolated in the previous study from the rhizosphere and rhizoplane of perennial grasses in India, were studied for their antagonism in vitro to C. graminicola, root colonization ability and rhizosphere competence. Out of 138 isolates tested, 89 were antagonistic. Fifteen fungal isolates with greater than 70 % in vitro inhibition zone to the pathogen tested positive for root and rhizosphere colonization abilities. Three isolates – Chaetomium globosum isolate 57, Trichoderma harzianum isolate 184 and Fusarium oxysporum (NSF isolate 9) with prominent biocontrol potentials were tested for the control of sorghum anthracnose in greenhouse and field. Chaetomium globosum, Trichoderma harzianum and Fusarium oxysporum isolates decreased seedling mortality, and incidence and severity of disease at different growing stages. They promoted plant growth (dry biomass- 45.3, 40.0 and 46.7 %) and increased yield (grain biomass- 33.3, 23.8 and 49.2 %) respectively, over control in field. The population of the above fungi in soil was moderately high at harvest stage. The present investigation revealed that fungal isolates from rhizosphere and rhizoplane of perennial grasses could be employed to manage anthracnose and enhance plant growth and yield potentialities in sorghum, at the same time.  相似文献   

10.
Infection by Pyrenophora teres f. teres (Ptt) or P. teres f. maculata (Ptm), the causal agents of the net and spot forms of net blotch of barley, respectively, can result in significant yield losses. The genetic structure of a collection of 128 Ptt and 92 Ptm isolates from the western Canadian provinces of Alberta (55 Ptt, 27 Ptm), Saskatchewan (58 Ptt, 46 Ptm) and Manitoba (15 Ptt, 19 Ptm) were analyzed by simple sequence repeat (SSR) marker analysis. Thirteen SSR loci were examined and found to be polymorphic within both Ptt and Ptm populations. In total, 110 distinct alleles were identified, with 19 of these shared between Ptt and Ptm, 75 specific to Ptt, and 16 specific to Ptm. Genotypic diversity was relatively high, with a clonal fraction of approximately 10 % within Ptt and Ptm populations. Significant genetic differentiation (PhiPT = 0.230, P = 0.001) was found among all populations; 77 % of genetic variation occurred within populations and 23 % between populations. Lower, but still significant genetic differentiation (PhiPT = 0.038, P = 0.001) was detected in Ptt, with 96 % of genetic variation occurring within populations. No significant genetic differentiation (PhiPT = 0.010, P = 0.177) was observed among Ptm populations. Isolates clustered in two distinct groups conforming to Ptt or Ptm, with no intermediate cluster. The high number of haplotypes observed, combined with an equal mating type ratio for both forms of the fungus, suggests that P. teres goes through regular cycles of sexual recombination in western Canada.  相似文献   

11.
Better soil disinfestation methods, such as biological soil disinfestation (BSD), that are environmentally safe are increasingly been developed and used because of rising concerns related to environmental risks. We evaluated the efficacy of soil disinfestation using ethanol to control the fungus Fusarium oxysporum f. sp. lycopersici, which causes fusarium wilt of tomato. Survival of bud cells and chlamydospores declined markedly in soil saturated with diluted ethanol solution in the laboratory. In field trials, artificially added nonpathogenic Fusarium oxysporum and indigenous F. oxysporum were both strongly suppressed in soil saturated with 1% ethanol solution; a wheat bran treatment was not as effective. The artificially added fungus was not detected in three of four sites treated with ethanol but was detected in three of four sites amended with wheat bran. Using ethanol in pre-autoclaved soil was not suppressive; thus native microorganisms are essential for the suppression. This ethanol-mediated biological soil disinfestation (Et-BSD) temporarily increased the number of anaerobic bacteria, but the number of fungi and aerobic bacteria was stable. Polymerase chain reaction–denaturing gradient gel electrophoresis (PCR–DGGE) analysis revealed slight but apparent differences in bacterial community structures in the soil treated with Et-BSD compared with the structure in soils after other treatments such as water irrigation and in the control soil, which received neither organic amendment nor irrigation after 15 days. Et-BSD is a potentially effective and easy soil disinfestation method, and its impact on native, beneficial microorganisms is moderate.  相似文献   

12.
Fusarium oxysporum f. sp. cubense is the causal agent of Panama disease of banana. A rapid and reliable diagnosis is the foundation of integrated disease management practices in commodity crops. For this diagnostic purpose, we have developed a reliable molecular method to detect Foc race 4 isolates in Taiwan. By PCR amplification, the primer set Foc-1/Foc-2 derived from the sequence of a random primer OP-A02 amplified fragment produced a 242 bp size DNA fragment which was specific to Foc race 4. With the optimized PCR parameters, the molecular method was sensitive and could detect small quantities of Foc DNA as low as 10 pg in 50 to 2,000 ng host genomic DNA with high efficiency. We also demonstrated that by using our PCR assay with Foc-1/Foc-2 primer set, Foc race 4 could be easily distinguished from other Foc races 1 and 2, and separated other formae speciales of F. oxysporum. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Bread wheat (BW) and durum wheat (DW) are both strongly affected by Septoria tritici blotch caused by the hemibiotrophic fungus Zymoseptoria tritici. However, only the BW-Z. tritici pathosystem has been well studied so far. Here, we compared compatible interactions between Z. tritici and both BW and DW species at the cytological, biochemical and molecular levels. Fungal infection process investigations showed close spore germination and leaf penetration features in both interactions, although differences in the patterns of these events were observed. During the necrotrophic phase, disease severity and sporulation levels were associated in both interactions with increases of the two cell-wall degrading enzyme activities endo-β-1,4-xylanase and endo-β-1,3-glucanase as well as protease. An analysis of plant defense responses during the first five days post inoculation revealed inductions of GLUC, Chi4, POX and PAL and a repression of LOX gene expressions in both wheat species, although differences in kinetics and levels of induction or repression were observed. In addition, peroxidase, catalase, glucanase, phenylalanine ammonia-lyase and lipoxygenase activities were induced in both wheat species, while only weak accumulations of hydrogen peroxide and polyphenols were detected at the fungal penetration sites. Our study revealed overall a similarity in Z. tritici infection process and triggered wheat defense pathways on both pathosystems.  相似文献   

14.
Fusarium oxysporum f. sp. cubense (Foc) is the causal pathogen of Fusarium wilt of banana. To understand infection of banana roots by Foc race 4, we developed a green fluorescent protein (GFP)-tagged transformant and studied pathogenesis using fluorescence microscopy and confocal laser scanning microscopy. The transformation was efficient, and GFP expression was stable for at least six subcultures with fluorescence clearly visible in both hyphae and spores. The transformed Foc isolate also retained its pathogenicity and growth pattern, which was similar to that of the wild type. The study showed that: (i) Foc race 4 was capable of invading the epidermal cells of banana roots directly; (ii) potential invasion sites include epidermal cells of root caps and elongation zone, and natural wounds in the lateral root base; (iii) in banana roots, fungal hyphae were able to penetrate cell walls directly to grow inside and outside cells; and (iv) fungal spores were produced in the root system and rhizome. To better understand the interaction between Foc race 4 and bananas, nine banana cultivars were inoculated with the GFP-transformed pathogen. Root exudates from these cultivars were collected and their effect on conidia of the GFP-tagged Foc race 4 was determined. Our results showed that roots of the Foc race 4-susceptible banana plants were well colonized with the pathogen, but not those of the Foc race 4-resistant cultivars. Root exudates from highly resistant cultivars inhibited the germination and growth of the Fusarium wilt pathogen; those of moderately resistant cultivars reduced spore germination and hyphal growth, whereas the susceptible cultivars did not affect fungal germination and growth. The results of this work demonstrated that GFP-tagged Foc race 4 isolates are an effective tool to study plant–fungus interactions that could potentially be used for evaluating resistance in banana to Foc race 4 by means of root colonization studies. Banana root exudates could potentially also be used to identify cultivars in the Chinese Banana Germplasm Collection with resistance to the Fusarium wilt pathogen.  相似文献   

15.
Seed treatments with essential oils (from savory and thyme) and biocontrol agents (Pseudomonas spp. and Fusarium oxysporum) have been evaluated in vivo after dry hot air treatments against Fusarium oxysporum f. sp. basilici on basil seeds. The savory and thyme essential oils showed a significant pathogen control activity because of their innate antifungal activity and because of the seed application method, but the dry hot pre-treatment did not show any obvious effect on the performance of the essential oil treatments. The dry heat treatment improved the Pseudomonas seed dressing effect against F.oxysporum f. sp. basilici, and showed important reductions in plant infection and the disease index on the treated seed plants, without any negative effect on seed germination. However, the pathogen control provided by the heat treatments combined with the application of the biocontrol agents never reached the same performance as the chemical treatments considered as the reference. Thus, short dry heat treatments on basil seeds have been shown to be a valid but complementary seed disinfection method against Fusarium wilt.  相似文献   

16.
Severe rot of leaves, peduncles and flowers caused by Gibberella zeae (anamorph: Fusarium graminearum) was found on potted plants of hyacinth (Hyacinthus orientalis), a liliaceous ornamental, in greenhouses in Kagawa Prefecture, Japan, in January 2001. This disease was named “Fusarium rot of hyacinth” as a new disease because only the anamorph, F. graminearum, was identified on the diseased host plant. The authors contributed equally to this work. The fungal isolate and its nucleotide sequence data obtained in this study were deposited in the Genebank, National Institute of Agrobiological Sciences and the DDBJ/EMBL/GenBank databases under the accession numbers MAFF239499 and AB366161, respectively.  相似文献   

17.
Yeast-like fungi were isolated from lesions on azuki bean (cv. Shin-Kyotodainagon) seeds that had been sucked by bean bugs in Kyoto Prefecture, Japan. On the basis of morphological and physiological characteristics and sequence data of the internal transcribed spacer (ITS) regions including the 5.8S rDNA, these yeasts were identified as Eremothecium coryli and E. ashbyi. Pathogenicity of those yeasts was confirmed by a reinoculation test. To our knowledge, this is the first report of the occurrence of yeast spot in azuki bean in Japan. The nucleotide sequence data reported are available in the GeneBank/EMBL/DDBJ database as accessions AB478291–AB478309 for E. coryli AZC1–19 and AB478310–AB478317 for E. ashbyi AZA1–8.  相似文献   

18.
Sclerotinia sclerotiorum is a worldwide ascomycete fungal plant pathogen, which causes enormous yield losses on major economic crops such as crucifers, grain legumes and several other plant families. The objective of this research was to isolate and characterise some bioactive products from cultures of fungi associated with the marine sponge Axinella sp. In total, nine fungal isolates were obtained from the marine sponge Axinella sp. collected from the South China Sea. A group of test strains, including two G+ strains (Bacillus subtilis and Staphylococcus aureus), two G strains (Escherichia coli and Pseudomonas aeruginosa) and three fungi including two plant pathogenic fungi Sclerotinia sclerotiorum and Magnaporthe grisea and Saccharomyces cerevisiae, were employed as the indicator organisms for bioactivity screening. Using antagonistic tests and bioactive screening of the ethyl acetate (EtOAc) extracts of the corresponding cultures, fungal isolate JS9 showed the stronger efficacy against the test indicator strains, especially the indicator fungal pathogens. Isolate JS9 was further identified as Myrothecium sp. by a combination of morphological features and 18S rDNA BLAST on GenBank. Two macrocyclic trichothecenes, roridin A (compound 1) and roridin D (compound 2) were purified by tracking the activity of the EtOAc extract fractions and characterised with spectral analyses including MS, 1H-NMR, 13C-NMR and disortionless enhancement by polarization transfer (DEPT). In vitro antifungal tests showed that the two macrocyclic trichothecenes were bioactive against S. cerevisiae, M. grisea and S. sclerotiorum with minimal inhibitory concentrations of 31.25, 125 and 31.25 μg ml−1 for roridin A, and 62.5, 250 and 31.25 μg ml−1 for roridin D, respectively. The present investigation demonstrated that two antifungal trichothecenes including roridin A and roridin D produced by the fungus Myrothecium sp. isolated from the marine sponge Axinella sp. could be potential inhibitors against the plant pathogen S. sclerotiorum. Lian Wu Xie and Shu Mei Jiang contributed equally to this work.  相似文献   

19.
From the genome of a Japanese field isolate of the rice blast fungus, Magnaporthe oryzae, we newly identified Inago1 and Inago2 LTR retrotransposons. Both elements were found to be Ty3/gypsy-like elements whose copies were dispersed within the genome of Magnaporthe spp. isolates infecting rice and other monocot plants. Southern hybridization patterns of nine re-isolates derived from conidia of the strain Ina168 produced after a methyl viologen treatment were not changed, indicating that the insertion pattern of Inago elements is relatively stable.  相似文献   

20.
Virus-like symptoms—red ringspots on stems and leaves, circular blotches or pale spots on fruit—were found on commercial highbush blueberry (Vaccinium corymbosum) cultivars Blueray, Weymouth, Duke and Sierra in Japan. In PCR testing, single DNA fragments were amplified from total nucleic acid samples of the diseased blueberry bushes using primers specific to Blueberry red ringspot virus (BRRV). Sequencing analysis of the amplified products revealed 95.7–97.7% nucleotide sequence identity with the BRRV genome. This paper is the first report of blueberry red ringspot disease caused by BRRV in Japan. The nucleotide sequence data reported in this paper are available in the GenBank/EMBL/DDBJ database as accessions AB469884 to AB469893 for BRRV isolates from Japan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号