共查询到17条相似文献,搜索用时 78 毫秒
1.
基于无人机数码影像的冬小麦氮含量反演 总被引:2,自引:7,他引:2
准确、快速地获取关键生育期冬小麦氮素含量,对农业管理者进行田间氮素施肥有重要的决策作用。利用无人机(unmannedaerialvehicle,UAV)搭载数码相机,可以短时间内获取冬小麦长势信息,实现对冬小麦氮素含量动态监测。该研究利用2015年北京市小汤山冬小麦无人机数码影像,采用3种阈值分割方法,将田间植株作物与土壤背景分离。对比影像分割方法的时效性与准确性,最终确定可见光波段差异植被指数VDVI(visible-band difference vegetation index)提取植被信息。按照试验方案要求,在不同的氮肥与水分胁迫管理下,将冬小麦3次重复试验分成48个试验小区,依据小区边界提取小区的红、绿和蓝通道的平均DN(digitalnumber)值,选取25个植被指数,同时与各个试验小区冬小麦不同器官氮含量进行相关性分析,筛选数码影像变量。由于植被指数之间耦合度较高,因此采用主成分分析对原始数据进行成分提取,提取特征向量参与建模,最后利用多元线性回归分析建立氮素反演模型,通过决定系数(R2)、均方根误差(RMSE)和归一化的均方根误差(nRMSE)3个指标筛选出最佳模型,探究各器官氮素含量与数码变量的相关性。结果表明,实验室实测氮素含量与UAV数码影像氮素反演结果及基本一致。在反演模型构建精度方面,3种数据处理结果整体部分植被指数,反演效果叶氮植株氮茎氮。以冬小麦挑旗期为例,叶片氮含量整体信息提取验证模型的R2、RMSE和nRMSE分别为0.85、0.235和6.10%,比部分信息提取验证模型的R2高0.14,RMSE和nRMSE分别降低0.068和1.77个百分点;比植被指数信息提取验证模型的R2高0.43,RMSE和nRMSE分别降低0.141和3.67个百分点。研究表明,基于UAV数码影像利用多元线性回归构建冬小麦氮素含量反演模型,对试验小区整体提取作物信息的方式反演冬小麦叶氮含量效果最好,相比传统反演方法,模型稳定性更高,可为冬小麦田间水肥决策管理提供参考。 相似文献
2.
基于高光谱的寒地水稻叶片氮素含量预测 总被引:2,自引:2,他引:2
为快速、无损和准确地诊断水稻营养状况,开展了基于高光谱成像技术的寒地水稻叶片氮素含量预测研究。以不同施氮水平下的水稻叶片为研究对象,利用高光谱成像技术,分析拔节期水稻叶片光谱,采用全波段高光谱数据、连续投影算法及分段主成分分析(segmented principal components analysis,SPCA)与相关分析(correlation analysis,CA)相结合的方法建立多种回归分析模型,并对模型进行检验和筛选。结果表明:随着施氮水平提高,水稻叶片反射率在可见光区域降低,在近红外区域升高。在校正集决定系数上,基于多元逐步回归分析的全波段模型较好,校正集决定系数为0.821,校正集均方根误差RMSEC=0.079;在预测集决定系数上,基于SPCA-CA结合多元回归分析的多变量单波段指数、差值指数、双差值指数模型较好,预测集决定系数为0.869,预测集均方根误差RMSEP=0.085。该研究结果为快速检测水稻叶片氮素含量及水稻生长期间精确施肥管理提供了参考。 相似文献
3.
水稻叶片氮素及籽粒蛋白质含量的高光谱估测模型 总被引:4,自引:0,他引:4
研究水稻叶片氮素和籽粒蛋白质含量的高光谱快速、无损监测方法,对于水稻营养诊断、籽粒品质监测及氮肥高效利用具有重要意义。本文通过水稻盆栽试验,测定水稻叶片氮素、籽粒蛋白质含量和冠层光谱,采用不同的光谱建模方法来提高氮素、籽粒蛋白质含量的估测精度。先用主成分分析(PCA)方法进行特征波段的提取,再用多元线性回归(MLR)、人工神经网络(ANN)和偏最小二乘回归(PLSR)进行建模。结果表明,水稻叶片氮素和籽粒蛋白质含量与特征光谱存在很好的模型关系,3种模型预测的决定系数(R2p)均在0.847以上,并以PLSR模型的预测效果为最好,可以实现水稻氮素营养和籽粒品质的高光谱估测。 相似文献
4.
基于反射光谱预处理的苹果叶片叶绿素含量预测 总被引:1,自引:8,他引:1
以苹果叶片叶绿素含量为研究对象,定量研究了光谱数据预处理方法对光谱特征提取及叶绿素含量预测模型的影响。首先,比较了苹果叶片原始反射率光谱、小波包去噪反射率光谱、反射率一阶差分光谱、先小波包去噪后一阶差分光谱、先一阶差分后小波包去噪光谱这5种光谱的波段间相关系数以及光谱与叶绿素含量间的相关系数,建立了叶绿素含量预测逐步回归模型并对建模结果进行了比较分析。结果表明单纯3层sym8小波包去噪可使光谱曲线平滑,但不会明显提高模型精度;一阶差分虽然放大了局部噪声,但是消除了基线漂移影响,可提高模型精度;先差分后小波包去噪比先小波包去噪后差分具有更高的峰值信号噪声比,更低的均方误差与最大误差,建模结果也显示出同样的结果。因此,先差分后小波包去噪算法可认为是一种有效的苹果叶片叶绿素含量预测光谱预处理方法。利用这一方法建立了苹果叶片叶绿素含量预测模型,获得了较高的预测精度。该研究可用于对苹果树营养状态的评价并指导按需施肥。 相似文献
5.
基于近红外光谱分析的土壤分层氮素含量预测 总被引:4,自引:7,他引:4
准确、快速地估测土壤中的氮素含量是推动配方施肥顺利开展的保障。该研究在不同区域随机选取了30个点位,每个点位分别取其表土层(0~30 cm)、心土层(30~48 cm)以及底土层(48~60 cm)3个部位进行取样,利用傅里叶型光谱分析仪MATRIX_I测量了土壤样本在近红外区域的吸收光谱,并使用实验室手段测量了土壤样本的水分及氮素含量。分析了不同层次土壤样本的吸收光谱特性,以及土壤水分、氮素不同层次的变化规律。同时对原始光谱吸收率进行一阶微分处理,而后利用微分光谱与土壤全氮含量进行相关性分析,选取反应土壤全氮含量的敏感波段1 387、1 496、1 738、1 876、2 120以及2 316 nm。利用所得敏感波段与土壤氮素含量分别建立多元线性回归模型,BP神经网络预测模型以及基于遗传算法优化的BP神经网络建模。结果显示,基于遗传算法优化的BP神经网络建模,其决定系数为0.883,均方根误差为0.0278 mg/kg。表土层土壤的预测验证结果决定系数为0.716,均方根误差为0.031 mg/kg;心土层土壤的预测验证结果决定系数为0.801,均方根误差为0.030 mg/kg;底土层土壤的预测验证结果决定系数为0.667,均方根误差为0.033 mg/kg。无论是建模精度还是模型在土壤各个层次的预测精度相比于多元线性回归模型和BP神经网络模型相比都有了显著的提高,说明该方法在土壤全氮含量预测过程中具有明显的优势,可应用于实际生产。 相似文献
6.
[目的]建立土壤氯离子与高光谱波段的多元线性回归模型,获取盐渍化信息,为盐分的高精度提取提供更有效的方法,为农业生态环境重建工作提供科学依据。[方法]以山东省垦利县作为研究区,于2014年10月5—7日野外采集93个土壤样本,利用ASD高光谱仪野外采集土样高光谱数据并进行预处理,然后采用多元回归和主成分分析方法建立估测氯离子含量的高光谱模型,以快速估测氯离子含量。[结果]氯离子在近红外749,830,987,1301,1 432,1 486nm较为敏感,在土壤光谱分析的基础上,得到室内风干土壤氯离子含量预测最优模型,模型均通过T检验和F检验,能较好地预测土壤氯离子含量。[结论]研究区土壤各组分盐离子中,阳离子以钠离子为主,阴离子以氯离子为主,该模型使间接得到土壤盐分含量具有较好可行性。 相似文献
7.
基于高光谱的柑橘叶片氮素含量多元回归分析 总被引:2,自引:6,他引:2
快捷、准确、无损地检测柑橘叶片氮(N)素含量,对柑橘树N肥施用的精准动态管理有重大现实意义。以117株园栽罗岗橙为试验研究对象,在不同生长期用ASD公司的FieldSpec3采集柑橘树健康叶片的高光谱反射值,以高光谱反射数据或其变换形式作为柑橘树样本多元矢量描述;用凯氏定氮法同期检测出柑橘树叶的真实N素含量值;在用PCA对高维光谱矢量降维的基础上,利用支持矢量回归算法(SVR)建立高光谱多元表达和N素含量间的映射关系,以实现任意柑橘树N素含量的预测分析。试验结果表明,测试集上预测值和真实值间的平方决定系数R2为0.9730,平均相对误差为0.9033%,均方误差MSE为0.090343,证明了该方法的有效性,为利用高光谱技术进行柑橘树N素含量的无损检测提供了参考。 相似文献
8.
基于光谱特征参量的核桃叶片氮素含量估测模型 总被引:2,自引:0,他引:2
建立基于光谱特征参量的新温185号(Juglans regia‘Xinwen185’)核桃叶片氮素含量估测模型,旨在为快速监测新温185号核桃叶片N素营养状况提供技术途径。基于肥料效应田间试验,测定N肥不同施用量水平下新温185号核桃果实坐果期、速生生长期、脂化期和近成熟期的叶片光谱反射率和N素含量,采用Pearson相关分析方法筛选与叶片N素含量呈极显著相关的光谱特征参量,并应用回归分析方法建立叶片N素含量光谱特征参量估测模型。结果表明:与叶片N素含量呈极显著相关(P0.01)的光谱特征参量在果实坐果期有绿峰反射率和红色比值指数,在果实速生生长期有黄边位置、红谷反射率和绿色比值指数、红色比值指数、绿色归一化差值指数、红色归一化差值指数,在果实脂化期有绿峰反射率和红色比值指数,在果实近成熟期有绿峰反射率、黄边幅值和红边面积。分别以绿峰反射率、黄边位置、红色比值指数和黄边幅值为自变量采用三次函数建立的果实坐果期、速生生长期、脂化期和近成熟期叶片N素含量回归估测模型的拟合度R2均在0.99以上,且模型具有很好的稳定性和很高的估测精度。表明可采用三次函数建立果实不同生育时期叶片N素含量光谱特征参量估测模型对新温185号核桃树体N素营养水平进行监测。光谱技术在核桃树体N素营养信息探测方面有较大的应用潜力。 相似文献
9.
基于高光谱图像光谱与纹理信息的生菜氮素含量检测 总被引:3,自引:10,他引:3
高光谱图像包含丰富的光谱与图像信息,该文基于此试图构建生菜氮素检测模型。利用高光谱图像采集系统获取可见-近红外(390~1 050 nm)范围内的生菜叶片高光谱图像,同时利用凯氏定氮法获取对应叶片的氮素值。将光谱反射值较大波长图像与反射值较小波长图像相除并用阈值化法构建掩膜图像,获取感兴趣区域(ROI,region of interest)。由于高光谱数据量大、且数据间冗余性强,因此如何有效的提取一些特征波长十分重要。该文采用主成分分析(PCA,principal component analysis)对原始高光谱图像进行处理,根据前3个主成分图像(PC1、PC2、PC3)在全波长下的权重系数分布图选出662.9、711.7、735.0、934.6 nm 4个特征波长及对应的光谱特征,并且分别提取4个特征波长图像、主成分图像PC1、PC2、PC3在ROI下的基于灰度共生矩阵的纹理特征,最后利用支持向量机回归(SVR,support vector machine regression)分别建立生菜叶片基于特征波长光谱特征、特征波长图像与主成分图像的纹理特征及光谱纹理融合特征与对应氮素值之间的关系模型。结果表明,在校正性能指标决定系数R2C上,基于光谱特征+特征波长图像纹理特征的模型较好,R2C=0.996,校正集均方根误差RMSEC为0.034;在预测性能指标决定系数R2P上,基于光谱特征的模型较好,R2P=0.86,预测集均方根误差RMSEP为0.22。该研究结果可为农作物氮素的快速、无损检测提供一定的参考价值。 相似文献
10.
柑橘叶片叶绿素含量高光谱无损检测模型 总被引:13,自引:5,他引:13
针对柑橘叶片叶绿素含量的传统化学检测,不仅耗时长且损伤柑橘叶片,还依赖检测者实操技术,无法集成于精细农业中变量喷施农机具的诸多弊端,该文探讨快速无损检测柑橘叶片叶绿素含量方法。以117棵园栽萝岗甜橙树为研究对象,选用ASD Field Spec 3光谱仪对萌芽期、稳果期、壮果促梢期、采果期共4个生长时期的柑橘叶片进行高光谱反射率采集,并同步采用分光光度法测得叶片的叶绿素含量;以原始光谱及其变换形式作为模型输入矢量,分别在主成分分析(principle component analysis,PCA)降维的基础上利用支持向量机回归(support vector regression,SVR)算法和在小波去噪的基础上利用偏最小二乘回归(partial least square regression,PLSR)算法对柑橘叶片叶绿素含量进行建模预测,全生长期整体建模的校正集和验证集最佳模型决定系数R2分别为0.8713和0.8670,均方根误差RMSE(root-mean-square error)分别为0.1517和0.1544,试验结果表明,高光谱可快速无损地对柑橘叶片叶绿素含量进行精确的定量检测,为柑橘不同生长期的营养监测提供理论依据。 相似文献
11.
基于光谱特征分析的苹果树叶片营养素预测模型构建 总被引:2,自引:3,他引:2
该文旨在利用光谱分析技术建立高精度苹果叶片营养素预测模型,为苹果树的精细管理提供技术支持。在苹果树年度生长周期的坐果期、生理落果期和果实成熟期等重要物候期,采集了180个果树叶片样本并测量了果树叶片在可见光和近红外波段的反射光谱,同时在实验室采用化学方法获取了果树叶片的氮素以及叶绿素含量。对于聚类后样本,分别分析了果树叶片反射光谱以及经小波滤波后的反射光谱与叶绿素以及氮素之间的相关关系,而后利用偏最小二乘和支持向量机(SVM,support vector machine)方法分别建立了果树叶片叶绿素和氮素含量的回归模型。研究发现,随着生长阶段的推进,在可见光处的反射率逐渐升高,在近红外处的反射率逐渐降低,且基于小波滤波反射光谱的营养素SVM回归模型精度最高:建立的叶绿素回归模型,其测定系数R2达到0.9920,均方根误差 RMSE为0.0039,验证精度R2达到0.9036,RMSE为0.1979;建立的氮素回归模型,其测定R2和验证R2也达到0.74以上,模型的回归RMSE为0.0554,验证RMSE为0.1215。结果表明,采用支持向量机回归模型可以精确估计果树叶片叶绿素含量,对氮素含量的估计精度也达到了实用化水平。 相似文献
12.
最优权重组合模型和高光谱估算苹果叶片全磷含量 总被引:3,自引:5,他引:3
为了估算苹果叶片全磷含量,该文使用2012年和2013年在山东省肥城市潮泉镇下寨村的2个苹果示范园获取的整个生育期苹果叶片全磷含量和对应的叶片光谱数据,建立了预测苹果叶片全磷含量的最优权重组合模型。首先分析了苹果叶片全磷含量和原始光谱的相关关系,确定了以553和722 nm为苹果叶片全磷含量的诊断波段;根据叶片全磷含量与400~2 500 nm范围两两组合的决定系数等值线图,确立了对苹果叶片全磷含量敏感的546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数;最后以553和722 nm的反射率以及546和521 nm、553和518 nm组合的归一化差值指数和543和525 nm、1 394和718 nm组合的比值指数为自变量,构建了基于苹果叶片全磷含量的最优权重组合模型,实现了对苹果叶片全磷含量的高光谱估算。结果表明,最优权重组合模型无论是建模集还是验证集,其预测能力(R2=0.94)要优于该文中的6种统计方法(平均R2=0.82),研究结果为快速无损诊断苹果叶片的磷素状况提供新的技术途径。 相似文献
13.
苹果树体氮含量与氮累积量的年周期变化 总被引:7,自引:1,他引:7
以"富士"苹果树为试材,对树体生物量及不同器官氮含量和氮累积量的变化规律进行了研究。结果表明,3月26日至4月30日,树体和树冠的生物量变化较小,4月30日以后迅速增加;3月26日至7月30日,根系生物量几乎没有变化,7月30日以后快速增加。果树新生器官(果实、叶片和新梢)中氮含量均表现为物候期前期较高,中后期较低;成龄器官(枝、干、根系)中氮含量呈"V"字变化。3月26日到4月30日,器官建造时树体氮累积量逐渐增加;4月30日到7月30日,树体氮累积量稳定变化;7月30日至1月15日,树体氮累积量明显增加。年周期内不同时期各器官中氮累积量差异较大,树冠氮累积量始终高于根系。 相似文献
14.
高光谱遥感可以实现水稻土排水期有机碳含量的快速预测,但土壤反射率受多种噪声的影响,有机碳光谱信号探测受阻,预测模型性能低下,如何在去除噪声的同时最大限度地保持有机碳光谱信号十分重要。以原状新鲜水稻土为研究对象,采用Bior1.3小波系对反射光谱进行1~7层小波包变换,通过相关分析确定最大分解层;将原始反射率至最大分解层以内的各层光谱相关系数组成相关系数集,采用局部最相关算法(local correlation maximization,LCM)构造土壤有机碳最优光谱;最后基于最优光谱建立有机碳含量偏最小二乘预测模型并进行分析。结果显示:1)随着小波包分解层数的增加,土壤反射率与有机碳含量的相关性不断增强,到第6层达到最高,确定为小波包最大分解层;2)基于LCM构造的最优光谱比未去噪光谱平滑,比小波包去噪光谱保留了更多光谱细节;3)未去噪光谱、小波包去噪光谱和LCM最优光谱有机碳预测模型的验证决定系数分别为0.693、0.727和0.781,均方根误差为1.952、1.840和1.679 g/kg,残留预测偏差为1.85、1.97和2.17。小波包-局部最相关算法在去噪同时有效保持了土壤有机碳光谱信号,可提高水稻土有机碳含量高光谱预测精度。 相似文献
15.
基于小波去噪与SVR的小麦冠层含氮率高光谱测定 总被引:3,自引:1,他引:3
为改进小麦冠层含氮率的高光谱测定模型,以正交试验筛选出小波去噪的最优参数组合(小波类型取haar,分解层数为5,阈值方案选择Fixed form threshold,噪声结构定为Unscaled white noise),并利用去噪后的小麦冠层光谱建立偏最小二乘回归(PLS)模型,对不同预处理方法进行比较分析。发现采用小波去噪结合一阶导数能最有效消除原始光谱的背景信息,此时PLS模型校正集均方根误差(RMSEC)为0.260,预测集均方根误差(RMSEP)为0.288。对经一阶导数结合小波去噪后的光谱用主成分分析(PCA)进行降维,以前6个主成份为输入变量,建立最小二乘支撑向量机回归模型(LS-SVR),其RMSEC与RMSEP分别为0.154与0.259,具有比PLS模型更高的精度。结果表明:以小波去噪结合一阶导数去除小麦冠层反射光谱中的土壤背景信息以提高模型的精度是可行的,且LS-SVR是建模的优选方法。 相似文献
16.
基于自然光照反射光谱的温室黄瓜叶片含氮量预测 总被引:6,自引:3,他引:6
利用便携式光谱辐射仪测量了自然光照条件下温室黄瓜叶片的光谱反射率,并计算了反射率光谱的一次微分光谱。反射率光谱以及一次微分光谱与叶片含氮量的相关分析表明,温室内光谱特性与叶片含氮量相关性最大的敏感波段分别是505~664 nm和685~722 nm。当利用原始光谱进行分析时,通过变量筛选得到了4个敏感波长,分别是568、596、640和664 nm。偏最小二乘回归分析(PLSR)以及归一化颜色指数(NDCI)分析都表明,建模时的相关系数RC>0.800,模型验证时的相关系数RV>0.700。对微分光谱进行的相关分析结果表明,利用单一敏感波长520 nm就可获得理想模型,建模时的相关系数为0.880,模型验证时的相关系数为0.787。对比原始光谱的PLSR模型与一阶微分光谱的一元线性回归模型可以得知,原始光谱以及一阶微分光谱都可用于温室内叶片含氮量的预测,而且一阶微分光谱在一些特殊的波长处具有更高的预测能力,这些模型将成为开发便携式作物长势诊断仪器的技术基础。 相似文献
17.
基于冠层光谱特性的水稻叶片含水率模型 总被引:1,自引:1,他引:1
基于水稻叶片含水状况与冠层光谱反射率存在关联,尝试构建水稻叶片含水率模型。在水稻生长的孕穗期,同时测量室外水稻冠层光谱反射率和叶片含水率,依据水稻叶片含水率与各光谱波段反射率之间的相关性系数,选取高相关性系数对应的光谱特征波段。采用遗传算法对BP神经网络的初始权值进行优化处理。分别应用BP神经网络和GA-BP-Network、传统多元线性回归方法建立预测模型。试验表明,GA-BP-Network模型的预测含水率值与真实值平均误差率为3.9%,最大误差率为6.1%,均比BP神经网络、传统多元线性回归预测模型有了很大的改善,提高了预测水稻叶片含水率的准确性。 相似文献