首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rate at which available nitrogen (N) is released from organic materials in soil is often measured by applying 15N and following its recovery by the growing crop. However, the turnover of labelled N in soil modifies the ratio of labelled to unlabelled available N and thereby affects the uptake of 15N by plants. The recovery of labelled N by maize was measured in a field experiment under three management systems, with one 15N‐labelled input in each: (1) conventional, with fertilizer side dressing, (2) low input, with vetch as a cover crop and fertilizer side dressing, and (3) organic, with vetch and composted manure. The NCSOIL model, which simulates C and N turnover in soil, was modified to include relevant processes related to the maize crop, and used to estimate the decomposition rate constant of vetch in the field by optimizing the simulated dynamics of labelled N uptake by maize against the measured results. A large input of C from mineralizable soil organic matter and root deposition was necessary to account for the recovery of fertilizer N by maize. Optimization of labelled N recovery in the low input system resulted in two optional rate constants for the decomposition of vetch: rapid decomposition (0.4 day?1) of a labile vetch pool (49% of total vetch N), or slow decomposition (0.008 day?1) of a single vetch pool. In the simulated organic system, where manure and vetch were incorporated at the same time, only a rapid decomposition of the labile component of vetch accounted well for the recovery of vetch N by maize. The prolonged recycling of N mineralized from the vetch, and its mixing with fertilizer side dressing in the low input system, reduced the recovery of vetch N even though it was mineralized rapidly. This demonstrates the difficulty in assessing the availability of N from organic materials.  相似文献   

2.
Gaseous N loss, through denitrification and NH3volatilization, was monitored throughout the growing season after spring application of 15N labelled urea fertilizer to peaty gley soils supporting N-deficient Sitka spruce. From the 15N data, it was calculated that only about 0.28% of applied N was lost through NH3-volatilization, almost all within the first few days after fertilizer application. Approximately 0.05% of applied N was calculated to be lost through denitrification. Denitrification decreased slowly over a 4-month period after fertilizer application. Rates of NH3-volatilization correlated with available NH4+ in the litter layer, while for the early part of the study when N-losses were highest, denitrification rates correlated with available NO3 in the litter layer. Observations of gaseous N-loss are also discussed in relation to data from lysimetry, changes in soil pH, and the soil moisture regime.  相似文献   

3.
Labelled urea was applied to monolith lysimeters in the 1st year of a 2-year experiment at Onne in south-east Nigeria. On eight lysimeters maize and rice were grown in each of the 2 years. Four lysimeters were similarly cropped in the 2nd year after being uncropped in the 1st year. Measurements were made over the 2-year period of labelled and unlabelled mineral nitrogen in the drainage water, and labelled and unlabelled nitrogen in the crops. At the end of the experiment, weeds and the soil were also analysed for labelled and unlabelled nitrogen.
The total recovery of 15N in crop, soil and leachate varied between 70 and 93%. It was lowest when applied to the second season rice crop, which recovered only 15%, and highest when it was leached in the 1st year or was taken up by the maize crop. The highest crop uptake was 31%. The results indicate that, depending on the treatment, between 10 and 30% of the 15N was immobilized in the soil, lysimeters cropped in the 1st year lost between 22 and 29% of the 15N in drainage water, and between 7 and 30% was lost by denitrification. The accuracy of these figures is discussed.  相似文献   

4.
15N-labelled poultry excrement was obtained by feeding chickens with 15N-labelled barley grain. The excrement produced was tested for uniformity of 15N-labelling; only small variations in the 15N content were found, indicating uniform labelling. The excrement was mixed with straw to produce manures which were used in a pot experiment measuring uptake of labelled and unlabelled N by ryegrass from the mixture in both a fresh form and after a period of composting. Interactions of N pools differed between the two materials. Addition of composted manure to soil caused a larger uptake of unlabelled N by ryegrass, whereas fresh manure caused a smaller plant uptake of unlabelled N. The proportion of plant N coming from labelled N from fresh manure was 25.7% and from composted manure 3.8%. However, the contributions of the two manures to plant uptake of total N were 15.5% and 13.8%, respectively. The fresh manure, being a mixture of excrement and straw, is considered as a two-component material, whereas composted manure is considered as a single component. It was concluded that the increase or decrease in the quantity of unlabelled, soil-derived N in plants after manure addition was related to the amount of energy available in the different manures.  相似文献   

5.
15N-labelled ammonium nitrate solution was applied in late April to circular, enclosed micro-plots prepared by pressing open-ended polypropylene cylinders into an established sward of perennial ryegrass. Cylinders were removed from the ground at intervals between 2 and 370 days after the application and assessments made of the distribution of 15N in plant and soil components. Of the added labelled N, 54.7% was recovered in the herbage which was cut four times during the growing season and again at the final sampling date. After two days, 37% of the labelled N was recovered in the soil microbial biomass. Large fluctuations occurred in the amount of 15N recovered in the soil microbial biomass over the next 14 days suggesting that rapid cycling of 15N occurred between this fraction and the mineral N fraction. After the first cut in late May, translocation of15N occurred more slowly from the roots into the stubble than from stubble into new herbage, so that the amount in the stubble declined more rapidly than did that in the roots. During the winter, there was no net transfer of N from the roots to above-ground components of the sward. By the end of the growing season, half the 15N remaining in the sward was immobilized in the humified fraction of the soil organic matter; some of this was mineralized in the following spring.  相似文献   

6.
7.
We studied the fate of 222 kg N ha?1 applied in spring as K15NO3 to winter wheat test crops which followed either continuous arable cropping (Arable) or a rotation in which a 3-year grass/clover ley preceded the wheat (Ley). Denitrification losses (measured by an acetylene-inhibition method) of over 1 kg N ha?1 d?1 were measured for short periods following heavy rain in mid-May. However the generally dry and cool weather resulted in accumulated losses by denitrification between fertilizer application and anthesis equivalent to only 5.3% and 3.6% (±2%) of the applied N for the arable and ley treatments respectively. The smaller loss from the ley was despite this treatment containing more inorganic N and available carbon. 15N balance indicated that, at anthesis, 1.5% and 11.5% (± 7%) of the labelled N was lost from the arable and ley treatments respectively. Given the precision of the 15N and the acetylene-inhibition methods, the results are not significantly different. However, the larger difference between methods for losses from the ley treatment may be an underestimate because 15N balance does not measure losses of unlabelled N. These were probably very small on the arable treatment but could have increased total N loss by 25% to c. 32 kg ha?1 on the ley treatment compared with the 8 kg ha-1 measured as denitrified. Such a large difference is unlikely to be an error but was probably due to ammonia volatilization from this crop which was severely infected by mildew. The results were thus a poor test of the acetylene-inhibition method, but revealed another loss process which could be significant in some situations.  相似文献   

8.
Yield responses of irrigated, field‐grown cotton to phosphorus fertilizer application in Australia have been variable. In an attempt to understand better this variability, the distribution of fertilizer P within soil P fractions was identified using 32P and 33P radioisotopes. The soil chosen, an alkaline, grey, cracking clay (Vertosol), was representative of those used for growing cotton in Australia. Chang and Jackson fractionation of soil P from samples collected within 1 h of application indicated that 49, 7 and 13% of the P fertilizer was present as 0.5 m NH4F, 0.1 m NaOH and 1 m H2SO4 extractable P, respectively. Over 89% of the P fertilizer was recovered as Colwell extractable P in these samples, suggesting that the majority of these reaction products was in a highly plant‐available form. Fertilizer‐P remained in an available form within the band 51 days after application, and 68% of the applied fertilizer‐P was recovered as Colwell‐P (1071 mg kg?1). The Colwell‐P concentration in the band was 35 times that in the unfertilized soil. Thus, the variability in crop response to P fertilizer application in these soils is not a consequence of fertilizer‐P becoming unavailable to plants. These results confirm the suitability of the Colwell (1963) sodium bicarbonate extraction method for measuring available P in these soils.  相似文献   

9.
When incorporated in soil, plant residues and their decomposition products are in close contact with mineral particles with which they can be bound to form aggregates. We measured the incorporation of carbon (C) and nitrogen (N) derived from crop residues in water-stable aggregate fractions of a silty soil in a field experiment in Northern France using 13C15N-labelled wheat straw (Triticum aestivum L.). Soil samples were taken seven times for 18 months and separated into slaking-resistant aggregate size fractions which were analysed for total C and N contents, and 13C and 15N enrichments. During the early stages of decomposition (approximately 200 days), the enrichment of 13C increased rapidly in the macro aggregates (> 250 pm) but decreased thereafter. The macro aggregates represented only < 20% of the soil mass and at any one time, they accounted for <25% of the residual 13C in the soil. The proportion of 13C recovered in the <50-μm and 50–250-μm fractions increased during decomposition of the residues; at day 574, the 50–250-μm fraction accounted for close to 50% of the residual 13C. A greater proportion of 15N than 13C was recovered in the <50-μm fraction. The results indicate that during decomposition in soil, C and N from crop residues become rapidly associated with stable aggregates. In this silty soil the 50–250-μm stable aggregates appear to be involved in the storage and stabilization of C from residues.  相似文献   

10.
Abstract. Field peas (Pisum sativum L.) were grown in sequence with winter wheat (Triticum aestivum L.) or spring barley (Hordeum vulgare L.) in large outdoor lysimeters. The pea crop was harvested either in a green immature state or at physiological maturity and residues returned to the lysimeters after pea harvest. After harvest of the pea crop in 1993, pea crop residues (pods and straw) were replaced with corresponding amounts of 15N‐labelled pea residues grown in an adjacent field plot. Reference lysimeters grew sequences of cereals (spring barley/spring barley and spring barley/winter wheat) with the straw removed. Leaching and crop offtake of 15N and total N were measured for the following two years. These treatments were tested on two soils: a coarse sand and a sandy loam. Nitrate concentrations were greatest in percolate from lysimeters with immature peas. Peas harvested at maturity also raised the nitrate concentrations above those recorded for continuous cereal growing. The cumulative nitrate loss was 9–12 g NO3‐N m–2 after immature peas and 5–7 g NO3‐N m–2 after mature peas. Autumn sown winter wheat did not significantly reduce leaching losses after field peas compared with spring sown barley. 15N derived from above‐ground pea residues accounted for 18–25% of the total nitrate leaching losses after immature peas and 12–17% after mature peas. When compared with leaching losses from the cereals, the extra leaching loss of N from roots and rhizodeposits of mature peas were estimated to be similar to losses of 15N from the above‐ground pea residues. Only winter wheat yield on the coarse sand was increased by a previous crop of peas compared to wheat following barley. Differences between barley grown after peas and after barley were not statistically significant. 15N lost by leaching in the first winter after incorporation accounted for 11–19% of 15N applied in immature pea residues and 10–15% of 15N in mature residues. Another 2–5% were lost in the second winter. The 15N recovery in the two crops succeeding the peas was 3–6% in the first crop and 1–3% in the second crop. The winter wheat did not significantly improve the utilization of 15N from the pea residues compared with spring barley.  相似文献   

11.
The decomposition of 15N-labelled catch-crop materials (rape, radish and rye), obtained from field experiments, was studied in a chalky Champagne soil during a 60-week incubation at 28°C. Mineralized N was assumed to come from either labile or recalcitrant fractions of plant residues. The labile fraction represented about one-third of the catch-crop N; its mineralization rate constant varied from 0.06 to 0.12 d?1. The decomposition rate of the recalcitrant N fraction ranged from 0.03 × 10?2 to 0.06 × 10?2 d?1. Catch-crop species and rate of incorporation had no effect on N residue mineralized at the end of incubation. The decomposition of labelled rye was monitored in the same soil during a 5-month pot experiment to determine the N availability to an Italian ryegrass crop and the effect of plants on the decomposition processes. The 15N-rye decomposed rapidly both in the presence or absence of Italian ryegrass, but the amounts of N mineralized were influenced by the presence of living roots: 42% of the 15N in labelled rye was present as inorganic N in the pots without plants after 5 months, compared with only 32% in the ryegrass crop. Comparison of microbial-biomass dynamics in both treatments suggested that there had been preferential utilization by soil micro-organisms of materials released from the living roots than the labelled plant residues.  相似文献   

12.
The 15N-labelled fertilizer dilution technique provides a method of obtaining estimates of biological N2-fixation in the field over the growing season. Field estimates of fixation obtained using peas, french beans, field beans and clover depended on the non-fixing control used. Differences in the N uptake patterns of the legume and control combinations, together with a decrease in the enrichment of plant available soil N with time, were major factors causing this dependency. A simple model of plant N accumulation at decreasing soil enrichment is presented, which explains these errors and allows a more rational choice of non-fixing control. The use of gypsum pelleted 15N fertilizer, or any other treatment which leads to a more stable soil enrichment, reduces errors caused by mismatched N uptake patterns in the two crops.  相似文献   

13.
Solutions labelled with 15N were applied as (15NH4)2SO4 or K15NO3 to isolated microplots in the floor of mountain beech forest (Nothofagus solandri var. cliffortioides) and incubated for 135 days under field conditions of moisture and temperature. Solid state 15N CPMAS NMR spectra of the forest litter layer showed that more than 80% of the total signal intensity was attributable to the secondary amide-peptide peak. The degree of 15N enrichment or form of N did not alter the relative intensity of signals attributable to 15N in peptides, nucleic acids and aliphatic amine groups (amino sugars and free NH2 on amino acids). Combinations of 13C and 15N-NMR spectra, edited by a process that exploited differences in proton spin properties between distinct categories of organic matter, indicated incorporation of 15N in humified organic matter rather than partly degraded plant material. This application demonstrated that solid state 15N CPMAS NMR has potential for use in studies of N immobilization under field conditions and with materials containing little N and small 15N enrichment.  相似文献   

14.
The uptake of labelled and unlabelled N by wheat was measured in pot and field experiments with 15N-labelled fertilizer. Soils from two sites on the same series were used in the pot experiment; one had been bare-fallowed for 22 years and contained 1.6% organic C, the other had been under grass for many years and contained 3.8% organic C. Fertilizer N increased the uptake of unlabelled soil N in both soils, i.e. there was a positive ‘added nitrogen interaction’ (ANI). There was no ANI in the field experiment. A simulation model is used to show how positive ANIs can arise as a result of ‘pool substitution’—labelled inorganic fertilizer N standing proxy for unlabelled inorganic soil N that would otherwise have been immobilized. In the low-organic fallow soil, pool substitution accounted for the whole of the observed ANI and fertilizer N did not enhance either gross or net mineralization of soil N. Pool substitution also operated in the high organic grassland soil, but here net mineralization of soil N increased with increasing additions of fertilizer, giving rise to a ‘real’ ANI in addition to the larger ‘apparent’ ANI caused by pool substitution. This increase in net mineralization is probably caused by a decrease in immobilization of N as fertilizer N additions increase, not by an increase in gross mineralization of soil N. For pool substitution to operate, fertilizer N and soil inorganic N must occupy the same pool. This occurred in the pot experiment but not in the field experiment, where fertilizer and soil inorganic N remained separate and there was no ANI. When pool substitution occurs, fertilizer use efficiency is predictably lower as measured by the isotopic method than as measured by the conventional non-isotopic procedure.  相似文献   

15.
Investigating the biogeochemistry of plant material decomposition in soil has been restricted by difficulties extracting and identifying organic compounds. In this study the decomposition of 13C- and 15N-labelled Lolium perenne leaves mixed with mineral soil has been investigated over 224 days of incubation under laboratory conditions. Decomposition was followed using short-term rates of CO2 evolution, the amounts of 13C and 15N remaining were determined by mass spectrometry, and 13C and 15N solid-state nuclear magnetic resonance (NMR) spectroscopy was used to characterize chemically the plant material as it decomposed. After 224 days 48% of the added 13C had been lost with a rapid period of C02 evolution over the first 56 days. The fraction of cross-polarization magic angle spinning (CP MAS) 13C NMR spectra represented by O-alkyl-C signal probably in carbohydrates (chemical shift, 60–90 p.p.m.) declined from 60 to 20% of the spectrum (chemical shift, 0–200 p.p.m.) over 224 days. The rate of decline of the total 13C exceeded that of the 60–90 p.p.m. signal during the first 56 days and was similar thereafter. The fraction of the CP MAS 13C NMR spectra represented by the alkyl- and methyl-C (chemical shift, 10–45 p.p.m.) signal increased from 5 to 14% over the first 14 days and was 19% after 224 days. CP MAS 13C NMR of 13C- and 15N-L. perenne contained in 100-μm aperture mesh bags incubated in the soil for 56 days indicated that the remaining material was mainly carbohydrate but there was an increase in the alkyl- and methyl-C associated with the bag's contents. After 224 days incubation of the labelled 13C- and 15N-L. perenne mixed with the soil, 40% of the added N had been lost. Throughout the incubation there was only one signal centred around 100 p.p.m. detectable in the CP MAS 15N NMR spectra. This signal corresponded to amide 15N in peptides and may have been of plant or microbial origin or both. Although there had been substantial interaction between the added 15N and the soil microorganisms, the associated redistribution of 15N from plant to microbial tissues occurred within the amide region. The feasibility of following some of the component processes of plant material decomposition in soil using NMR has been demonstrated in this study and evidence that microbial synthesis contributes to the increase in alkyl- and methyl-C content of soil during decomposition has been represented.  相似文献   

16.
The effects of incubation time, vegetation type (represented by a pine plantation, a protected and a periodically burnt eucalypt forest), lime and finely ground pine needles on the transformation of (15NH4)2SO4 and K15NO3 were studied in incubation experiments with a sandy lateritic podzolic soil from south-east Queensland. Microorganisms were counted so as to relate N transformations to particular groups of microorganisms.The heterotrophic miroflora utilized NH+4 as a source of N in preference to NO?3, and autotrophic nitrifiers seemed to be weak competitors for NH+4. Lime caused a slight loss of NO?3 and this was accompanied by an increase in the population of denitrifying bacteria.Lime promoted immobilization of NH+4 by heterotrophic bacteria and subsequent mineralization by nitrifying bacteria, but when pine needles were also added the nitrifiers were suppressed and immobilization by heterotrophic bacteria dominated. Pine needles alone stimulated fungi to immobilize NH+4.While reforestation with exotic pines caused a loss of total-N there was evidence of increased turnover, i.e. more rapid immobilization and nitrification, in pine plantation soils. Prescribed burning also promoted nitrification while reducing total-N.  相似文献   

17.
To obtain detailed information on the quantities and characteristics of nitrogen derived from mineralizing dead microbial biomass in soil, 14C- and 15N-labelled microorganisms, i.e. three eukaryotic (fungal) species, two prokaryotic species or their mixture (eukaryotic to prokaryotic cells = 8:2), were grown in vitro, dried, ground and added to parabrown earth and chernozem soils, respectively. The mean percent of 14C decomposition of labelled microorganisms obtained after 10 days was 43 ± 6.3% for parabrown earth and 34 ± 4.0% for chernozem soil. About 50% of the C in the dead microorganisms was mineralized during the first 28 days of incubation. About 76% of the flush of soil organic N mineralization within 28 days, which was caused by the drying-rewetting treatment, was derived from dead microbial biomass in soil. About 33% of the added dead microbial-15N was mineralized in parabrown earth soil during 28 days of incubation and about 37% of newly immobilized 15N during the decomposition of added microorganisms was mineralized during the 28 days following a dryingrewetting treatment.  相似文献   

18.
In order to evaluate the climatic and soil variables which control the denitrification processes in the field, measurements of N2O-losses using the C2H2 inhibition technique were carried out in an Inceptisol cropped with spring wheat. The silty sand was amended with mineral fertilizer (120 kg N ha?1) or additionally with sewage sludge (620 kg total N ha?1). Soil temperature, moisture, nitrate and available carbon, the release of nitrous oxide (N2O) from the soil surface as well as the N2O concentrations along the soil profile were measured from March until November 1985 The N2O surface fluxes from the inorganically fertilized field were well correlated with those from the sewage sludge amended plots (r = 0.76). Multivariate correlation analyses show that particularly soil moisture and nitrate content had a significant effect on the nitrate respiration. The correlation with the soil water content was more clearly expressed by the N2O surface fluxes than by the N2O concentrations of the soil air. The N2O surface fluxes during 1985 totalled about 3 kg N ha?1 in the minerally fertilized field. Sewage sludge amendments increased the N2O evolution by 5 times. Spatial variability was high and the N2O surface fluxes were not well correlated (r = 0.4) with the N2O concentrations in the soil atmosphere. These experiments provide the background data for a denitrification model and better knowledge about the variables which have to be considered for its validation.  相似文献   

19.
固态13C和15N核磁共振法研究15N标记土壤的腐殖质组分   总被引:1,自引:0,他引:1  
Five humic fractions were obtained from a uniformly ^15N-labelled soil by extraction with 0.1 mol L^-1 Na4P2O7,0.1mol L^-1 NaOH ,and HF/HCl-0.1 mol L^-1 NaOH,consecutively,and analyzed by ^13C and ^15N CPMAS NMR (cross polarization and magic angle spinning nuclear magnetic resonace).Compared with those of native soils humic fractions studied as a whole contained more alkyls ,methoxyls and O-alkyls,being 27%-36%,17%-21%and 36%-40%,respectively,but fewer aromatics and carboxyls(bein 14%-20% and 13%-90%,respectively),Among those humic fractions ,the humic acid(HA)and fulvic acid(FA) extracted by 0.1 mol L^-1 Na4P2O7 contained slightly more carboxyls than corresponding humic fractions extracted by 0.1 mol L^-1 NaOH ,and the HA extacted by 0.1 mol L^-1 NaOH after treatment with HF/HCl contained the least aromatics and carboxyls.The distribution of nitrogen functional groups of soil humic fractions studied was quite similar to each other and also quite similar to that of humic fraction from native soils.More than 75% of total N in each fraction was in amide from,with 9%-13% present as aromatic and /or aliphatic amines and the remainder as heerocyclic N.  相似文献   

20.
Both P and Al MAS NMR spectra of samples of excessively fertilized sandy soil provided information about the P and Al speciation. Peak deconvolution was used to interpret reliably and quantitatively the 31P NMR spectra recorded. Most of the P was found to be associated with Al. Part of the P exhibited a chemical shift that could be attributed to octocalcium phosphate, amorphous calcium phosphate or apatite. Apatite has, however, never been reported to occur in sandy soils of temperate climates. A dithionite extraction used to remove interfering Fe from the samples also removed most of the octahedral Al-P phase. After oxalate extraction more than 99% of the original P signal disappeared. About 7.5 to 11 % of the total oxalate extractable P of the excessively fertilized soil was present as a Ca-P phase, even though these soils are slightly acid to acid. The estimated size of the Ca-P phase roughly corresponds to the size of the labile P pool of these soils, as assessed in long-term batch desorption experiments. It still remains unclear whether the labile P pool should be attributed solely to such a Ca-P phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号