首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The individual evolution of phenolic compounds has been studied during the natural fermentation of black olives for the first time. Cyanidin 3-rutinoside and cyanidin 3-glucoside were the main anthocyanins identified in fresh olives, and they were not detected after 1 month of storage either in brine or in olive. The fruit colors were different when aerobic or anaerobic conditions were used and as a consequence of the different anthocyanin polymerizations that took place. At time zero, the polyphenols observed in the olive juice were hydroxytyrosol-4-beta-glucoside, oleuropein, hydroxytyrosol, tyrosol, salidroside, and verbascoside and, after 12 months, the main phenol was hydroxytyrosol. The polyphenol content in the oil phase of olives was also analyzed. The dialdehydic form of elenolic acid linked to hydroxytyrosol and tyrosol, oleuropein aglycon, and ligstroside aglycon were the main compounds found at the beginning of fermentation but were not detected after 3 months. In contrast, hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and tyrosol acetate were the main polyphenols detected in the oil phase of the final product. The acid hydrolysis of the initial glucosides (in olive juice) and the aglycons (in oil phase) was, therefore, the main reaction that took place during fermentation.  相似文献   

2.
This study reports the first application of the hyphenated LC-SPE-NMR technique using postcolumn solid-phase extraction to the direct analysis of phenolic compounds in the polar part of olive oil. Apart from the identification and structure elucidation of simple phenols (hydroxytyrosol, tyrosol, vanillic acid, vanillin, p-coumaric acid, hydroxytyrosol, and tyrosol acetates), lignans (pinoresinol and 1-acetoxypinoresinol), flavonoids (apigenin and luteolin), and a large number of secoiridoid derivatives, this technique enables the identification of several new phenolic components, which had not been reported previously as constituents in the polar part of olive oil.  相似文献   

3.
This study reports the HPLC profiles of phenolic compounds of virgin olive oils obtained from young olive trees (Olea europaea L. cv. Arbequina) and how the application of a linear irrigation strategy affected these. Hydroxytyrosol, tyrosol, vanillic acid, vanillin, 4-(acetoxyethyl)-1,2-dihydroxybenzene, p-coumaric acid, the dialdehydic form of elenolic acid linked to hydroxytyrosol and to tyrosol, lignans, and the oleuropein aglycon were found in all the oils. Hydroxytyrosol, tyrosol, vanillic acid, and p-coumaric acid contents in the oils were unaffected by linear irrigation. The concentration of lignans was lower in the oils from the least irrigated treatment and the concentration of vanillin increased as the amount of irrigation water applied to olive trees increased. However, 4-(acetoxyethyl)-1,2-dihydroxybenzene, the dialdehydic form of elenolic acid linked to hydroxytyrosol and to tyrosol, and the oleuropein aglycon, all of them hydroxyphenyl derivatives, decreased as the level of irrigation water increased. The latter three compounds represented the most considerable part of the phenolic fraction of the oils and they were shown to be correlated to the oxidative stability, the bitter index (K(225)), and the bitter, pungent, and sweet sensory attributes. Linear irrigation strategy changed the profile of the oil phenolic compounds and, therefore, changed both the organoleptic properties and the antioxidant capacity of the product.  相似文献   

4.
Phenolic compounds in Spanish virgin olive oils were characterized by HPLC. Simple phenols such as hydroxytyrosol, tyrosol, vanillic acid, p-coumaric acid, ferulic acid, and vanillin were found in most of the oils. The flavonoids apigenin and luteolin were also found in most of the oils. The dialdehydic form of elenolic acid linked to tyrosol and hydroxytyrosol was also detected, as were oleuropein and ligstroside aglycons. The structure of a new compound was elucidated by MS and NMR as being that of 4-(acetoxyethyl)-1,2-dihydroxybenzene. Changes of phenolic compounds in virgin olive oils with maturation of fruits were also studied. Hydroxytyrosol, tyrosol, and luteolin increased their concentration in oils with maturation of fruits. On the contrary, glucoside aglycons diminished their concentration with maturation. No clear tendency was observed for the rest of the phenolic compounds identified.  相似文献   

5.
Capillary electrophoresis (CE) can be effectively used as a fast screening tool to obtain qualitative and semiquantitative information about simple and complex phenolic compounds of extra virgin olive oil. Three simple phenols (tyrosol, hydroxytyrosol, and vanillic acid), a secoiridoid derivative (deacetoxy oleuropein aglycon), and two lignans (pinoresinol and acetoxypinoresinol) were detected as the main compounds in extra virgin olive oils by high-performance liquid chromatography (HPLC) and capillary zone electrophoresis (CZE). Spectrophotometric indices, radical scavenging activity, and oxidative stability of extra virgin olive oil samples obtained from olives hand-picked at different ripening degrees were statistically correlated with the CZE and HPLC quantification. The concentration of phenols in extra virgin olive oil decreased with ripeness of olive fruits. The high correlations found between CZE and the other analytical results indicate that CE can be applied as a rapid and reliable tool to routinely determine phenolic compounds in extra virgin olive oils.  相似文献   

6.
The present study was designed to assess the agreement between analytical methodologies based on 1H and 31P NMR spectroscopy and conventional analytical methods (titration, gas chromatography, and high performance liquid chromatography) for measuring certain minor and major constituents (free acidity, fatty acids, iodine value, and phenolic compounds) of olive oil. The standard deviations of the NMR method were comparable to those of the conventional methods, except perhaps those of the total hydroxytyrosol and total tyrosol. Linear regression analyses showed strong correlations between NMR and conventional methods for free acidity, total hydroxytyrosol, total tyrosol, total diacylglycerols, (+)-pinoresinol, (+)-1-acetoxypinoresinol, and apigenin; good correlations for linoleic acid, free hydroxytyrosol, and free tyrosol; and weak correlations for oleic acid, linolenic acid, saturated fatty acids, and luteolin. Furthermore, a method comparison study was conducted and the agreement between NMR and conventional methods was evaluated by using the Bland and Altman statistical analysis. The distribution of the data points in the bias plot showed that 96.4% and 100% of the measurements of free acidity and iodine value, respectively, were within the limits of agreement of the two methods. For the remaining constituents of olive oil, the percentage of measurements, located within the limits of agreement, ranged from 94% to 98.5%.  相似文献   

7.
A novel gas chromatography-tandem mass spectrometry (GC-MS/MS) method was developed, using an ion trap mass spectrometer, for the simultaneous determination of olive oil bioactive components, elenolic acid, hydroxytyrosol, and tyrosol, in rat urine. Samples were analyzed by GC-MS/MS prior to and after enzymatic treatment. A solid phase extraction sample pretreatment step with greater than 80% analytical recoveries for all compounds was performed followed by a derivatization reaction prior to GC-MS/MS analysis. The calibration curves were linear for all compounds studied for a dynamic range between 1 and 500 ng. The limit of detection was in the mid picogram level for tyrosol and elenolic acid (300 pg) and in the low picogram level for hydroxytyrosol (2.5 pg). The method was applied to the analysis of rat urine samples after sustained oral intake of oleuropein or extra virgin olive oil as a diet supplement.  相似文献   

8.
Polyphenols were determined by HPLC in the juice and oil of packed table olives. The phenolic compositions of the two phases were very different, hydroxytyrosol and tyrosol being the main polyphenols in olive juice and tyrosol acetate, hydroxtyrosol acetate, hydroxytyrosol, tyrosol, and lignans (1-acetoxypinoresinol and pinoresinol) in oil. The type of processing had a marked influence on the concentration of polyphenols in olive juice and little on the content in oil. The analyses carried out on 48 samples showed that turning color olives in brine had the highest concentration in polyphenols ( approximately 1200 mg/kg), whereas oxidized olives had the lowest ( approximately 200 mg/kg). Among olive cultivars, Manzanilla had a higher concentration than Hojiblanca and Gordal. The type of olive presentation also influenced the concentration of polyphenols in olives, decreasing in the order plain > pitted > stuffed. The results obtained in this work indicate that table olives can be considered a good source of phenolic antioxidants, although their concentration depends on olive cultivar and processing method.  相似文献   

9.
The most abundant phenolic compounds in olive oils are the phenethyl alcohols hydroxytyrosol and tyrosol. An optimized method to quantify the total concentration of these substances in olive oils has been described. It consists of the acid hydrolysis of the aglycons and the extraction of phenethyl alcohols with a 2 M HCl solution. Recovery of the phenethyl alcohols from oils was very high (<1% remained in the extracted oils), and the limits of quantification (LOQ) were 0.8 and 1.4 mg/kg for hydroxytyrosol and tyrosol, respectively. Precision values, both intraday and interday, remained below 3% for both compounds. The final optimized method allowed for the analysis of several types of commercial olive oils to evaluate their hydroxytyrosol and tyrosol contents. The results show that this method is simple, robust, and reliable for a routine analysis of the total concentration of these substances in olive oils.  相似文献   

10.
Phenolic compounds in extra virgin olive oil (EVOO) have been associated with beneficial effects for health. Indeed, these compounds exert strong antiproliferative effects on many pathological processes, which has stimulated chemical characterization of the large quantities of wastes generated during olive oil production. In this investigation, the potential of byproducts generated during storage of EVOO as a natural source of antioxidant compounds has been evaluated using solid-liquid and liquid-liquid extraction processes followed by rapid resolution liquid chromatography (RRLC) coupled to electrospray time-of-flight and ion trap mass spectrometry (TOF/IT-MS). These wastes contain polyphenols belonging to different classes such as phenolic acids and alcohols, secoiridoids, lignans, and flavones. The relationship between phenolic and derived compounds has been tentatively established on the basis of proposed degradation pathways. Finally, qualitative and quantitative characterizations of solid and aqueous wastes suggest that these byproducts can be considered an important natural source of phenolic compounds, mainly hydroxytyrosol, tyrosol, decarboxymethyl oleuropein aglycone, and luteolin, which, after suitable purification, could be used as food antioxidants or as ingredients in nutraceutical products due to their interesting technological and pharmaceutical properties.  相似文献   

11.
The effect of acidity, squalene, hydroxytyrosol, aldehydic form of oleuropein aglycon, hydroxytyrosyl acetate, tyrosol, homovanillic acid, luteolin, apigenin, alpha-tocopherol, and the mixtures hydroxytyrosol/hydroxytyrosyl acetate, hydroxytyrosol/tyrosol, and hydroxytyrosol/alpha-tocopherol on the oxidative stability of an olive oil matrix was evaluated. A purified olive oil was spiked with several concentrations of these compounds and, then, subjected to an accelerated oxidation in a Rancimat apparatus at 100 degrees C. Acidity, squalene, homovanillic acid, and apigenin showed negligible effect. At the same millimolar concentrations, the different o-diphenolic compounds yielded similar and significant increases of the induction time, alpha-tocopherol a lesser increase, and tyrosol a scarce one. At low concentrations of o-diphenols and alpha-tocopherol, a linear relationship between induction time and concentration was found, but at high concentrations the induction time tended toward constant values. To explain this behavior, a kinetic model was applied. The effect of the mixtures hydroxytyrosol/hydroxytyrosyl acetate was similar to that of a single o-diphenol at millimolar concentration equal to the sum of millimolar concentrations of both compounds. Concentrations of tyrosol >0.3 mmol/kg increase the induction time by 3 h. The mixtures hydroxytyrosol/alpha-tocopherol showed opposite effects depending on the relative concentrations of both antioxidants; so, at hydroxytyrosol concentrations <0.2 mmol/kg, the addition of alpha-tocopherol increased the induction time, whereas at higher hydroxytyrosol concentrations, the alpha-tocopherol diminished the stability.  相似文献   

12.
To study the potential hepatic metabolism of olive oil phenols, human hepatoma HepG2 cells were incubated for 2 and 18 h with hydroxytyrosol, tyrosol, and hydroxytyrosyl acetate, three phenolic constituents of olive oil. After incubation, culture media and cell lysates were hydrolyzed with beta-glucuronidase and sulfatase and analyzed by LC-MS. In vitro methylation, glucuronidation, and sulfation of pure phenols were also performed. Methylated and glucuronidated forms of hydroxytyrosol were detected at 18 h of incubation, together with methylglucuronidated metabolites. Hydroxytyrosyl acetate was largely converted into free hydroxytyrosol and subsequently metabolized, yet small amounts of glucuronidated hydroxytyrosyl acetate were detected. Tyrosol was poorly metabolized, with <10% of the phenol glucuronidated after 18 h. Minor amounts of free or conjugated phenols were detected in cell lysates. No sulfated metabolites were found. In conclusion, olive oil phenols can be metabolized by the liver as suggested by the results obtained using HepG2 cells as a hepatic model system.  相似文献   

13.
The total content of phenolic compounds (TAP) in 29 different monocultivar olive oil samples from France (Aglandau and Tanche) and Spain (Cornicabra, Picual, and Verdial) was assessed by the colorimetric Folin-Ciocalteu method. Also, individual phenolic compounds were determined and quantified by liquid chromatography coupled to mass spectrometry (LC-MS). The French olive oil samples had a lower TAP compared to Spanish samples. The quantity of individual phenolics was similar except for pinoresinol, which was lower in the French olive oil samples. TAP moderately correlated to the sum of quantified compounds (r = 0.64 and p < 0.01) Partial least-squares (PLS) regression analysis emphasized the importance of hydroxytyrosol and the total amount of quantified phenolic compounds by LC-MS in the prediction of the total amount of phenolic compounds as determined by the Folin-Ciocalteu method. The amount of alpha-tocopherol was generally different among the cultivars (Tanche > Picual > Verdial > Aglandau > Cornicabra). Of all quantified phenolic compounds in French olive oil samples, only luteolin correlated well to the altitude of the olive orchards (r = 0.76, p < 0.01).  相似文献   

14.
This study was conducted to determine whether the daily consumption for 84 days of tyrosol and hydroxytyrosol, the main olive oil phenolic compounds, and olive oil mill wastewater (OMWW), a byproduct of olive oil production, rich in micronutrients, may improve bone loss in ovariectomized rats (an experimental model of postmenopausal osteoporosis) and in ovariectomized rats with granulomatosis inflammation (a model set up for senile osteoporosis). As expected, an induced chronic inflammation provoked further bone loss at total, metaphyseal, and diaphyseal sites in ovariectomized rats. Tyrosol and hydroxytyrosol prevented this osteopenia by increasing bone formation ( p < 0.05), probably because of their antioxidant properties. The two doses of OMWW extracts had the same protective effect on bone ( p < 0.05), whereas OMWW did not reverse established osteopenia. In conclusion, polyphenol consumption seems to be an interesting way to prevent bone loss.  相似文献   

15.
The phenolic composition of "lampante olive oil", "crude olive pomace oil", and "second centrifugation olive oil" was characterized by high-performance liquid chromatography with UV, fluorescence, and mass spectrometry detection. The phenolic profile of these olive oils intended for refining was rather similar to that previously reported for virgin olive oil. However, a new compound was found in these oils, which is mainly responsible of their foul odor. It was identified as 4-ethylphenol by comparison of its UV and mass spectra with those of a commercial standard. Although 4-ethylphenol was discovered in all oils intended for refining, its presence was particularly significant in "second centrifugation olive oils", its concentration increasing with time of olive paste storage. Similar trends were observed for hydroxytyrosol, hydroxytyrosol acetate, tyrosol, and catechol, the concentration of these substances reaching values of up to 600 mg/kg of oil, which makes their recovery for food, cosmetic, or pharmaceutical purposes attractive.  相似文献   

16.
The Mediterranean diet appears to be associated with a reduced risk of several chronic diseases including cancer and cardiovascular and Alzheimer's diseases. Olive products (mainly olive oil and table olives) are important components of the Mediterranean diet. Olives contain a range of phenolic compounds; these natural antioxidants may contribute to the prevention of these chronic conditions. Consequently, the consumption of table olives and olive oil continues to increase worldwide by health-conscious consumers. There are numerous factors that can affect the phenolics in table olives including the cultivar, degree of ripening, and, importantly, the methods used for curing and processing table olives. The predominant phenolic compound found in fresh olive is the bitter secoiridoid oleuropein. Table olive processing decreases levels of oleuropein with concomitant increases in the hydrolysis products hydroxytyrosol and tyrosol. Many of the health benefits reported for olives are thought to be associated with the levels of hydroxytyrosol. Herein the pre- and post-harvest factors influencing the phenolics in olives, debittering methods, and health benefits of phenolics in table olives are reviewed.  相似文献   

17.
The main change found in the phenolic composition of virgin olive oils of Arbequina, Hojiblanca, and Picual varieties during storage in darkness at 30 degrees C was the hydrolysis of the secoiridoid aglycons. This reaction gave rise to an increase in the free phenolics hydroxytyrosol and tyrosol in the oil. Filtration of oil and acidity influenced the hydrolysis to a large extent. Thus, the addition of commercial oleic acid to Hojiblanca and Picual oils increased the hydrolysis rate of the secoiridoid aglycons. In contrast, the concentration of lignans 1-acetoxypinoresinol and pinoresinol remained constant during storage. It must also be stressed that the total molar concentration of the phenolic compounds analyzed in the oils changed slightly (<20% reduction) after one year of storage, which is important from a nutritional point of view. However, the transformation of the secoiridoid aglycons into free phenolics may have consequences on oil taste and antioxidant capacity.  相似文献   

18.
Epidemiological studies have linked the Mediterranean diet with a low incidence of cardiovascular diseases. Olive oil, the major fat component of this diet, is characterized by antioxidant properties related to their content in catecholic components, particularly oleuropein aglycon. Therefore quantification of these components in edible oils may be important in determining the quality, and consequently its commercial value. The present method allows us to obtain the profile of the phenolic components of the oil from the methanolic extracts of the crude olive oil. In particular tyrosol, hydroxytyrosol, elenolic acid, deacetoxyligstroside and deacetoxyoleuropein aglycons, ligstroside and oleuropein aglycons, and 10-hydroxy-oleuropein are clearly identified by atmospheric pressure chemical ionization-mass spectrometry (APCI-MS). Moreover, oleuropein and its isomers present in the oil are quantified by APCI-MS/MS analysis of the extracts without preliminary separation from other phenolic compounds.  相似文献   

19.
The concentration of hydroxytyrosol (3,4-DHPEA) and its secoiridoid derivatives (3,4-DHPEA-EDA and 3,4-DHPEA-EA) in virgin olive oil decreased rapidly when the oil was repeatedly used for preparing french fries in deep-fat frying operations. At the end of the first frying process (10 min at 180 degrees C), the concentration of the dihydroxyphenol components was reduced to 50-60% of the original value, and after six frying operations only about 10% of the initial components remained. However, tyrosol (p-HPEA) and its derivatives (p-HPEA-EDA and p-HPEA-EA) in the oil were much more stable during 12 frying operations. The reduction in their original concentration was much smaller than that for hydroxytyrosol and its derivatives and showed a roughly linear relationship with the number of frying operations. The antioxidant activity of the phenolic extract measured using the DPPH test rapidly diminished during the first six frying processes, from a total antioxidant activity higher than 740 micromol of Trolox/kg down to less than 250 micromol/kg. On the other hand, the concentration of polar compounds, oxidized triacylglycerol monomers (oxTGs), dimeric TGs, and polymerized TGs rapidly increased from the sixth frying operation onward, when the antioxidant activity of the phenolic extract was very low, and as a consequence the oil was much more susceptible to oxidation. The loss of antioxidant activity in the phenolic fraction due to deep-fat frying was confirmed by the storage oil and oil-in-water emulsions containing added extracts from olive oil used for 12 frying operations.  相似文献   

20.
The antimicrobial activity of different edible vegetable oils was studied. In vitro results revealed that the oils from olive fruits had a strong bactericidal action against a broad spectrum of microorganisms, this effect being higher in general against Gram-positive than Gram-negative bacteria. Thus, olive oils showed bactericidal activity not only against harmful bacteria of the intestinal microbiota (Clostridium perfringens and Escherichia coli) also against beneficial microorganisms such as Lactobacillus acidophilus and Bifidobacterium bifidum. Otherwise, most of the foodborne pathogens tested (Listeria monocytogenes, Staphylococcus aureus, Salmonella enterica, Yersinia sp., and Shigella sonnei) did not survive after 1 h of contact with olive oils. The dialdehydic form of decarboxymethyl oleuropein and ligstroside aglycons, hydroxytyrosol and tyrosol, were the phenolic compounds that statistically correlated with bacterial survival. These findings were confirmed by testing each individual phenolic compound, isolated by HPLC, against L. monocytogenes. In particular, the dialdehydic form of decarboxymethyl ligstroside aglycon showed a potent antimicrobial activity. These results indicate that not all oils classified as "olive oil" had similar bactericidal effects and that this bioactivity depended on their content of certain phenolic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号