首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
根际微生态系统中的碳循环   总被引:18,自引:1,他引:18  
本文综述了根际微生态系统中碳素循环的研究动态。着重讨论了碳在根际微生态系统中的分配和去向 ,分析了根际沉积及其影响因素与根际微生态系统中碳素平衡之间的关系 ,并提出了今后有关研究的若干重点  相似文献   

2.
根际微生物研究进展   总被引:82,自引:4,他引:78       下载免费PDF全文
陆雅海  张福锁 《土壤》2006,38(2):113-121
根际是土壤-植物生态系统物质交换的活跃界面。植物作为第一生产者同化大气CO2,将部分光合产物转运至地下,激发土壤微生物的生长和新陈代谢;土壤微生物则将有机态养分转化成无机形态,利于植物吸收利用。这个植物-微生物的互作关系维系和主宰着陆地生态系统的功能。自从100年前德国科学家LorenzHiltner提出根际概念以来,根际研究方兴未艾,研究内容不断得以丰富和发展。近年来,随着分子生物技术在土壤环境领域的应用,根际微生物研究出现快速发展的趋势。本文根据2004年在慕尼黑召开的第一届国际根际大会交流内容、结合近年来国际上报道的研究动向,对根际微生物研究方法、根际微生物生物多样性和生态功能、转基因生物的环境安全和根际微生物生物修复技术等内容作一综述。期望我国的根际微生物研究能在基础和应用领域得到快速发展。  相似文献   

3.
根际微生物对药材道地性的影响   总被引:8,自引:1,他引:7  
江曙  段金廒  钱大玮  严辉  于光 《土壤》2009,41(3):344-349
在植物、土壤与微生物所构成的根际微生态系统中,微生物对于土壤肥力的形成、养分的转化吸收、植物生长发育以及植物病虫害的生物防治具有重要的作用.通过对影响根际微生物种群结构因素分析以及根际微生物影响土壤养分释放和植物生长等功能的初步探讨,以期为药材道地性的研究提供新的思路和方法,指导道地药材的生产和实践.  相似文献   

4.
植物根际沉积与土壤微生物关系研究进展   总被引:2,自引:1,他引:1  
【目的】活跃的根际微生物被喻为植物的第二套基因组,在植物的生长发育过程中发挥着关键作用。植物通过根际碳沉积影响根际土壤微生物群落的结构和功能;作为根际微生态系统中的物质流、能量流和信息流,根际碳沉积是连接大气、植物和土壤系统物质循环的重要纽带;因此,理解根际碳沉积在根际微生态中的作用对于提高植物抗逆性,增加作物产量,调控根际养分循环等方面具有重大的理论意义。【主要进展】本文就近年来关于根际微生物领域的研究成果,重点综述了根际微生物多样性和组学研究;根际碳沉积的组成和产生机理;根际微生物群落结构的形成机制;根际微生物在促进作物养分吸收、提高作物抗逆性等方面的生态功能;以及气候变化和长期施肥对植物-微生物互作关系的影响。在此基础上我们提出了未来可能的研究重点和发展方向:1)植物根际沉积物原位收集方法和检测技术的改进和发展;2)稳定同位素探针与分子生态学技术的结合,将植物、土壤和微生物三者有机地联系起来,综合分析根际界面中微生物的活性与功能;3)高通量测序、组学技术和生物信息学等新技术的引入势必使根际微生物学研究发生革命性的变化;4)随着全球气候变化和土壤肥力改变,例如全球变暖、CO2浓度升高和长期施用化肥,根际沉积物在植物-土壤-微生物中的分配与调节机制,以及这种环境选择压力下植物如何诱导根际促生菌发挥更大作用。希望通过平衡作物与微生物之间的相互关系来实现作物的高产高效,促进农田的可持续利用。  相似文献   

5.
从抑病土壤到根际免疫:概念提出与发展思考   总被引:4,自引:0,他引:4  
作物土传病害已经成为集约化农业可持续发展中的瓶颈,在粮食安全、资源高效和生态健康多目标协同发展的指导思想下,系统的绿色防控理论和技术体系构建是破解该难题的重要前提。作为植物-土壤互作的热点区域,根际栖息着较土体土壤更丰富的微生物群落,是土传病原物入侵作物根系的必经之路。根际微生态系统中的植物、土壤、微生物组和病原物之间的交互作用必然影响着植物健康。笔者将根际微生态系统抵御土传病原物入侵的现象和能力,称之为"根际免疫"。本文重点梳理根际免疫概念形成的4个重要阶段:(1)抑病土壤概念的提出与发展;(2)抑病微生物筛选与作用机制;(3)抑病土壤核心微生物组及互作机制;(4)根际免疫概念的形成与发展思考。最后从关注根际微生态、注重学科交叉和系统揭示根际免疫机制三方面进行展望,以期为提升土壤-植物系统健康和实现农业可持续发展提供理论依据和技术支撑。  相似文献   

6.
通过根际袋土培试验,研究了磺胺间甲氧嘧啶(SMM)对玉米根际与非根际土壤酶活性和土壤呼吸强度的影响。结果表明,无论是否有根系作用,过氧化氢酶对磺胺间甲氧嘧啶胁迫的反应均不敏感。但在高浓度磺胺间甲氧嘧啶(50 mg.kg-1)作用下,试验初期对脲酶有明显的抑制作用,而在试验后期则表现出一定的促进作用,且在SMM胁迫下根际效应表现得更为明显。SMM胁迫下对根际与非根际土壤呼吸均有抑制作用,随浓度的增大,抑制作用越明显。且由于玉米根际作用,一定程度上缓解了SMM污染对根际微生物的毒害。一般情况下,根际土壤脲酶和过氧化氢酶活性及土壤呼吸强度均要大于非根际土壤,根际效应明显。  相似文献   

7.
不同施肥处理对黑土土壤呼吸的影响   总被引:23,自引:0,他引:23  
基于中国科学院海伦生态实验站的长期定位试验,采用静态箱式法研究了玉米生长期间不同施肥处理对黑土土壤呼吸的影响。结果表明,在玉米生长期间,土壤呼吸速率表现出明显的季节性变化,分别在出苗后23、37、50、63、87、110 d出现峰值,其中最大峰值出现在出苗后第87天,其后土壤呼吸速率呈下降趋势,直到玉米收获,而根际呼吸速率的季节性变化规律与土壤呼吸相似,土体呼吸速率则主要受气温变化影响;玉米生长显著影响土壤呼吸,土壤呼吸速率的变化基本与玉米生长规律相一致,随生长而增加,随衰老而减小;施肥对土壤呼吸速率、根际呼吸速率有明显的影响,但对土体呼吸速率影响较小,从整个玉米生长期来看,NPKOM处理的土壤呼吸速率和根际呼吸速率最高,其中NPKOM处理土壤呼吸速率为C 27.5~474 mg m-2h-1,NPK处理和NP处理变化范围相近,分别为C 25.9~339 mg m-2h-1和C 29.5~358 mg m-2h-1,NK处理与CK处理变化范围分别为C 28.4~208 mg m-2h-1和C 22.1~184 mg m-2h-1;施肥对土壤呼吸量和根际呼吸量有显著的影响,表现为NPKOM>NPK>NP>CK>NK;在整个玉米生育期中,土壤呼吸累积量在拔节孕穗期和乳熟期出现两个峰值,表现为双峰曲线的变化规律,而土体呼吸累积量只在拔节孕穗期出现峰值,呈抛物线型,根际呼吸量在苗期最低,乳熟期最高,乳熟期后,根际呼吸量下降。  相似文献   

8.
我国喀斯特区域面积分布较广,而喀斯特生态系统的退化已成为当前西南地区面临的严重的生态问题。本研究选取贵州中部两种不同植被类型的生态系统—乔木林和灌木林,以乔木林中的白栎、园果化香和灌木林中的火棘、竹叶椒等主要优势树种为对象,研究不同的植物树种对根际土壤微生物生物量及其细菌群落结构的影响。结果显示:乔木林系统中根际土壤微生物生物量碳、氮显著性高于灌木林,植物的根际效应在乔木林中表现更为显著;同时乔木林中的优势树种通过根系分泌物的作用显著提高根际土壤细菌多样性指数,而灌木林中优势树种的根际土壤微生物量及多样性均未表现出明显的根际效应。因此,植被的演替通过改变土壤微生物的特性影响植物-微生物-土壤之间的物质和能量循环,进一步影响喀斯特生态系统的稳定和健康功能。  相似文献   

9.
南亚热带不同植被根际微生物数量与根际土壤养分状况   总被引:28,自引:0,他引:28  
研究了包括尾叶桉、广东凤丫蕨、柳叶竹、大叶相思、青皮、木荷、湿地松在内的7种南亚热带不同植物植被下土壤根际微生物与根际养分状况及其相关关系。结果表明,根际环境对细菌有明显的正效应,对放线菌和真菌有正、负两方面的影响,但对根际微生物总量具有根际效应明显;在南亚热带森林生态系统中,在植物的某些生长季节,微生物的根际效应与土壤养分的根际效应一致。  相似文献   

10.
根际微生物是土壤-微生物-植物系统中连接土壤-植物的重要枢纽,不仅影响着植物地上部分的生长发育,而且对植物地下部分的代谢活动也有着重要的影响。为了全面了解根际土壤微生物研究现状,客观反映研究趋势,采用CiteSpace软件和文献计量学方法,以Web of Science数据库核心集合和中国知网(CNKI)为数据源,以“Rhizosphere microbes”、“Rhizosphere microorganism”和 “根际微生物”为  相似文献   

11.
Accurately partitioning soil respiration into autotrophic and heterotrophic components is important for understanding how ecosystem carbon budgets will respond to climate change. Usually, heterotrophic respiration can be estimated by a linear relationship between soil respiration and root biomass. In this study, however, we found that an exponential relationship was more appropriate than a linear relationship for relating soil respiration to root biomass in a temperate desert steppe in Inner Mongolia, China.  相似文献   

12.
The timing and magnitude of rainfall events in arid and semiarid regions are expected to change dramatically in future decades, which will likely greatly affect regional carbon cycles. To understand how increases in rainfall affect the diurnal patterns and temperature sensitivities (Q10) of soil respiration (RS) and its key components (i.e. heterotrophic respiration (RH) and autotrophic respiration (RA)), we conducted a manipulative field experiment in a desert ecosystem of Northwest China. We simulated five different scenarios of future rain regimes (0%, 25%, 50%, 75% and 100% increase over local annual mean precipitation) each month from May to September in 2009. We measured RS and RH every three hours on 6 and 16 days after the rain addition, and estimated RA by calculating the difference between RS and RH. We found that rain addition significantly increased the daily mean RS and its components on the two measurement days during the growing season. However, the diurnal pattern was different between the two respiration components. Rain addition significantly increased the daily Q10 value of RH but suppressed that of RA on Day 6. Rain addition had no influence on daily Q10 value of both respiration components on Day 16 when soil moisture was lower. In addition, we observed significantly higher daily Q10 of RH than RA under all five rain addition treatments, indicating that microbial respiration is more temperature sensitive than root respiration in a short-time scale in this desert ecosystem. Thus, partitioning soil respiration into its two components, and analyzing the differential responses of RH and RA to future climate changes should be considered for more accurate predictions of soil respiration and regional carbon cycle in these arid and semiarid regions.  相似文献   

13.
Although the importance of understory plants for ecosystem function and processes has been increasingly recognized, the contribution of understory root respiration to soil respiration in forest ecosystems has seldom been studied. In this experiment, we quantified understory root respiration in two subtropical Eucalyptus plantations (2-year-old and 24-year-old). When Eucalyptus was not girdled, understory root respiration accounted for 16% and 36% of total soil respiration in the young and old plantation, respectively. However, the percentages of understory root respiration to total soil respiration were 30% and 11% in the young and old plantation when Eucalyptus was girdled, respectively. We propose that understory root respiration can be substantial in subtropical forests and should be considered in ecosystem carbon budget.  相似文献   

14.
孟磊  丁维新  何秋香  蔡祖聪 《土壤》2008,40(5):725-731
为阐明施肥对农田土壤呼吸的影响,于2002年6月至2003年6月在河南封丘潮土上进行的长期试验地上测定了玉米/冬小麦轮作系统下的土壤呼吸,分析了土壤呼吸与土壤水分和温度的关系,并利用统计分析方法研究了土壤呼吸各组分的贡献。土壤呼吸变化与作物生长发育规律一致,施肥通过影响作物的生长发育而对土壤呼吸产生影响。不同作物生长期,根际呼吸、土壤原有机质以及前作根茬和有机肥中碳对土壤呼吸的贡献不同。玉米期土壤有机质、根际呼吸、前作根茬和有机肥中的碳对土壤呼吸的平均贡献率分别为70.19%、19.43%和10.37%;而小麦生长期则分别为23.75%、62.26%和14.11%。由于不同施肥处理的作物生长量、土壤有机质含量以及前作根茬和有机肥施入而进入的有机碳量不同,造成土壤呼吸个体上存在着较大差异。土壤有机质的消耗主要发生在玉米生长阶段。  相似文献   

15.
Partitioning the root‐derived CO2 efflux from soil (frequently termed rhizosphere respiration) into actual root respiration (RR, respiration by autotrophs) and rhizomicrobial respiration (RMR, respiration by heterotrophs) is crucial in determining the carbon (C) and energy balance of plants and soils. It is also essential in quantifying C sources for rhizosphere microorganisms and in estimation of the C contributing to turnover of soil organic matter (SOM), as well as in linking net ecosystem production (NEP) and net ecosystem exchange (NEE). Artificial‐environment studies such as hydroponics or sterile soils yield unrealistic C‐partitioning values and are unsuitable for predicting C flows under natural conditions. To date, several methods have been suggested to separate RR and RMR in nonsterile soils: 1) component integration, 2) substrate‐induced respiration, 3) respiration by excised roots, 4) comparison of root‐derived 14CO2 with rhizomicrobial 14CO2 after continuous labeling, 5) isotope dilution, 6) model‐rhizodeposition technique, 7) modeling of 14CO2 efflux dynamics, 8) exudate elution, and 9) δ13C of CO2 and microbial biomass. This review describes the basic principles and assumptions of these methods and compares the results obtained in the original papers and in studies designed to compare the methods. The component‐integration method leads to strong disturbance and non‐proportional increase of CO2 efflux from different sources. Four of the methods (5 to 8) are based on the pulse labeling of shoots in a 14CO2 atmosphere and subsequent monitoring of 14CO2 efflux from the soil. The model‐rhizodeposition technique and exudate‐elution procedure strongly overestimate RR and underestimate RMR. Despite alternative assumptions, isotope dilution and modeling of 14CO2‐efflux dynamics yield similar results. In crops and grasses (wheat, ryegrass, barley, buckwheat, maize, meadow fescue, prairie grasses), RR amounts on average to 48±5% and RMR to 52±5% of root‐derived CO2. The method based on the 13C isotopic signature of CO2 and microbial biomass is the most promising approach, especially when the plants are continuously labeled in 13CO2 or 14CO2 atmosphere. The “difference” methods, i.e., trenching, tree girdling, root‐exclusion techniques, etc., are not suitable for separating the respiration by autotrophic and heterotrophic organisms because the difference methods neglect the importance of microbial respiration of rhizodeposits.  相似文献   

16.
Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m−2 y−1) significantly increased soil CO2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m−2 y−1) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q10) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.  相似文献   

17.
长期施肥下红壤旱地土壤CO2排放及碳平衡特征   总被引:2,自引:0,他引:2  
在国家肥力网红壤旱地长期定位试验地上,采用静态箱/气相色谱法测定土壤CO2排放速率,同时利用根去除法区分根系对土壤呼吸的贡献,通过计算净生态系统生产力(NEP),判断长期不同施肥下红壤旱地农田碳汇强度。结果表明,小麦、玉米生长季各处理的土壤和土体呼吸速率随着作物生长、温度升高均呈现明显的季节变化规律;玉米生长季土壤和土体累积呼吸量大于小麦生长季,小麦、玉米生长季均以NPKM处理土壤和土体呼吸累积呼吸量最大,且显著高于其它处理(P0.05),NP和NPK处理次之,CK和NK处理最小(P0.05);小麦、玉米生长季各处理根际呼吸占土壤呼吸的比例分别为7.6 %~17.4 %、4.7%~16.6 %,均以NPKM处理根际呼吸贡献率最大;小麦季NPKM处理、玉米季CK和NPKM处理的NEP值为负,是大气CO2的汇,且NPKM处理的净初级生产力与土壤呼吸的比值(NPP/Rs)最大,其它处理NEP值均为正,是大气CO2的源。有机无机肥配施(NPKM)相比其它处理具有较强的碳汇功能,是红壤旱地比较合理的施肥措施。  相似文献   

18.
森林生态系统土壤呼吸研究进展   总被引:17,自引:1,他引:17  
森林土壤碳是全球碳库的重要组成部分,在全球碳循环方面发挥着重要作用。土壤呼吸是当前碳循环研究领域中的一个热点问题,而且目前土壤呼吸已经成为陆地生态系统中向大气释放CO2最大的源。把土壤呼吸量与植物群落生长之间的关系进行分析比较,是理解森林生态系统碳素平衡的核心。在综合介绍国内外有关土壤呼吸的各种测定方法的基础上,对国内外有关森林土壤呼吸的已有研究成果进行了述评,指出了森林土壤呼吸研究工作今后的努力方向。  相似文献   

19.
Soil respiration is a vital process in all terrestrial ecosystems, through which the soil releases carbon dioxide (CO2) into the atmosphere at an estimated annual rate of 68-101 Pg carbon, making it the second highest terrestrial contributor to carbon fluxes. Since soil respiration consists of autotrophic and heterotrophic constituents, methods for accurately determining the contribution of each constituent to the total soil respiration are critical for understanding their differential responses to environmental factors and aiding the reduction of CO2 emissions. Owing to its low cost and simplicity, the root exclusion (RE) technique, combined with manual chamber measurements, is frequently used in field studies of soil respiration partitioning. Nevertheless, RE treatments alter the soil environment, leading to potential bias in respiration measurements. This review aims to elucidate the current understanding of RE, i.e., trenching (Tr) and deep collar (DC) insertion techniques, by examining soil respiration partitioning studies performed in several ecosystems. Additionally, we discuss methodological considerations when using RE and the combinations of RE with stable isotopic and modeling approaches. Finally, future research directions for improving the Tr and DC insertion methods in RE are suggested.  相似文献   

20.
To investigate the climate impacts on the different components of ecosystem respiration, we combined soil efflux data from a tree-girdling experiment with eddy covariance CO2 fluxes in a Mediterranean maritime pine (Pinus pinaster) forest in Central Italy. 73 trees were stem girdled to stop the flux of photosynthates from the canopy to the roots, and weekly soil respiration surveys were carried out for one year. Heterotrophic respiration (RH) was estimated from the soil CO2 flux measured in girdled plots, and rhizosphere respiration (RAb) was calculated as the difference between respiration from controls (RS) and girdled plots (RH).Results show that the RS dynamics were clearly driven by RH (average RH/RS ratio 0.74). RH predictably responded to environmental variables, being predominantly controlled by soil water availability during the hot and dry growing season (May–October) and by soil temperature during the wetter and colder months (November–March). High RS and RH peaks were recorded after rain pulses greater than 10 mm on dry soil, indicating that large soil carbon emissions were driven by the rapid microbial oxidation of labile carbon compounds. We also observed a time-lag of one week between water pulses and RAb peaks, which might be due to the delay in the translocation of recently assimilated photosynthates from the canopy to the root system. At the ecosystem scale, total autotrophic respiration (RAt, i.e. the sum of carbon respired by the rhizosphere and aboveground biomass) amounted to 60% of ecosystem respiration. RAt was predominantly controlled by photosynthesis, and showed high temperature sensitivity (Q10) only during the wet periods. Despite the fact that the study coincided with an anomalous dry year and results might therefore not represent a general pattern, these data highlight the complex climatic control of the respiratory processes responsible for ecosystem CO2 emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号