首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Pharmacokinetics and bioavailability of enrofloxacin were determined after single intravenous (IV) and intramuscular (IM) administrations of 5 mg/kg body weight (BW) to 5 healthy adult Angora goats. Plasma enrofloxacin concentrations were measured by high performance liquid chromatography. Pharmacokinetics were best described by a 2-compartment open model. The elimination half-life and volume of distribution after IV and IM administrations were similar (t1/2beta, 4.0 to 4.7 h and Vd(ss),1.2 to 1.5 L/kg, respectively). Enrofloxacin was rapidly (t1/2a, 0.25 h) and almost completely absorbed (F, 90%) after IM administration. Mean plasma concentrations of enrofloxacin at 24 h after IV and IM administration (0.07 and 0.09 microg/mL, respectively) were higher than the minimal inhibitory concentration (MIC) values for most pathogens. In conclusion, once-daily IV and IM administration of enrofloxacin (5 mg/kg BW) in Angora goats may be useful in treatment of infectious diseases caused by sensitive pathogens.  相似文献   

2.
The comparative pharmacokinetics of enrofloxacin and its metabolite ciprofloxacin were investigated in lactating cows and beef steers. The plasma elimination half-life of either enrofloxacin or ciprofloxacin was shorter in cows than in steers. The overall production of ciprofloxacin was slightly higher in steers than in cows (metabolite ratio: 64% and 59%, respectively). There was no significant difference in plasma protein binding of enrofloxacin between cows (percent bound: 59.4%) and steers (percent bound: 60.8%). Ciprofloxacin was more extensively bound to plasma proteins in steers (percent bound: 49.6%) than in cows (percent bound: 33.8%). The steady state volume of distribution of enrofloxacin is comparable in cows (1.55 L/kg) and steers (1.59 L/kg). Within either bovine class, plasma elimination half-life of enrofloxacin and ciprofloxacin are comparable, while plasma protein binding was higher for enrofloxacin than for ciprofloxacin. Ciprofloxacin was more concentrated in milk than enrofloxacin.  相似文献   

3.
The purpose of this study was to determine the pharmacokinetics and possible interactions of enrofloxacin (ENR) and flunixin meglumine (FM) in healthy rabbits and in rabbits where endotoxaemia had been induced by administering Escherichia coli lipopolysaccharide (LPS). Six male adult New Zealand White rabbits were used for the study. In Phase I, FM (2.2 mg/kg) and ENR (5 mg/kg) were given simultaneously as a bolus intravenous (IV) injection to each healthy rabbit. After a washout period, Phase II consisted of purified LPS administered as an IV bolus injection, then FM and ENR. LPS produced statistically significant increases in some serum biochemical concentrations. After the drugs were co-administered, the kinetic parameters of FM were not significantly different in healthy compared to endotoxaemic rabbits. It is concluded that ENR and FM could be co-administered to rabbits to treat endotoxaemia as no negative interaction was observed between the pharmacokinetics of both drugs.  相似文献   

4.
Pharmacokinetics of enrofloxacin in lactating sheep   总被引:4,自引:0,他引:4  
The pharmacokinetics of enrofloxacin (ENR) was investigated after its intravenous (iv) and intramuscular (im) administration in six healthy lactating sheep. After iv ENR injection (as a bolus), the elimination half-life (t(1/2beta)), the volume of distribution (Vd(area)), and the area under the concentration vs. time curve (AUC) were 3.30 (0.36)h, 2.91 (0.17)l/kg and 4.19 (0.18) microg h/ml, respectively. The maximum milk concentrations of ENR (C(max)), the area under the milk concentration vs. time curve (AUC(milk)) and the ratio AUC(milk)/AUC(serum) were 2.38 (0.14)microg/ml, 23.76 (2.21) microg h/ml and 5.62 (0.30), respectively. After im administration of ENR the t(1/2beta), C(max), time of C(max) (t(max)) and absolute bioavailability (F(abs)) were 3.87 (0.10)h, 0.74 (0.07) microg/ml, 0.83 (0.12)h and 75.35%, respectively. The C(max), AUC(milk) and the ratio AUC(milk)/AUC(serum) were 1.94 (0.13) microg/ml, 24.81 (2.25) microg h/ml and 8.15 (0.96), respectively.  相似文献   

5.
The disposition kinetics of norfloxacin, after intravenous, intramuscular and subcutaneous administration was determined in rabbits at a single dose of 10 mg/kg. Six New Zealand white rabbits of both sexes were treated with aqueous solution of norfloxacin (2%). A cross‐over design was used in three phases (2 × 2 × 2), with two washout periods of 15 days. Plasma samples were collected up to 72 hr after treatment, snap‐frozen at ?45°C and analysed for norfloxacin concentrations using high‐performance liquid chromatography. The terminal half‐life for i.v., i.m. and s.c. routes was 3.18, 4.90 and 4.16 hr, respectively. Clearance value after i.v. dosing was 0.80 L/h·kg. After i.m. administration, the absolute bioavailability was (mean ± SD ) 108.25 ± 12.98% and the Cmax was 3.68 mg/L. After s.c. administration, the absolute bioavailability was (mean ± SD ) 84.08 ± 10.36% and the Cmax was 4.28 mg/L. As general adverse reactions were not observed in any rabbit and favourable pharmacokinetics were found, norfloxacin at 10 mg/kg after i.m. and s.c. dose could be effective in rabbits against micro‐organisms with MIC ≤0.14 or 0.11 μg/mL , respectively.  相似文献   

6.
The pharmacokinetic behaviour of enrofloxacin (ENR) and its active metabolite ciprofloxacin (CIP) were determined in six greater rheas following a single intravenous (i.v.) dose of 15 mg/kg bw. Plasma concentrations of ENR and CIP were simultaneously determined by a HPLC/u.v. method. Following i.v. administration, the plasma drug concentrations were best fitted by an open two-compartment model with a rapid distribution phase. The high volume of distribution (V(ss)=5.01 L/Kg) suggests good tissue penetration. ENR presents a high clearance (3.95 L/kg h) explaining the low AUC values (3.57 mg h/L) and a short permanence (t(1/2beta)=2.66 h and MRT=1.23 h). Ciprofloxacin comprised 14% of the total fluoroquinolone (ENR+CIP).  相似文献   

7.
The pharmacokinetics of enrofloxacin (EFL) and its active metabolite ciprofloxacin (CIP) was investigated in 7-8 month old turkeys (6 birds per sex). EFL was administered intravenously (i.v.) and orally (p.o.) at a dose 10 mg kg(-1) body weight. Blood was taken prior to and at 0.17, 0.33, 0.5, 1, 2, 3, 4, 6, 8, 10 and 24 h following drug administration. The concentrations of EFL and CIP in blood serum were determined by high-performance liquid chromatography (HPLC). Serum concentrations versus time were analysed by a noncompartmental analysis. The elimination half-live and the mean residence time of EFL after i.v. injection for the serum were after oral administration 6.64+/-0.90 h, 8.96+/-1.18 h and 6.92+/-0.97 h, 11.91+/-1.87 h, respectively. After single p.o. administration, EFL was absorbed slowly (MAT=2.76+/-0.48 h) with time to reach maximum serum concentrations of 6.33+/-2.54 h. Maximum serum concentrations was 1.23+/-0.30 microg mL(-1). Oral bioavailability for for EFL after oral administration was found to be 69.20+/-1.49%. The ratios C(max)/MIC and AUC(0 --> 24)/MIC were respectively from 161.23+/-5.9 h to 12.90+/-0.5 h for the pharmacodynamic predictor C(max)/MIC, and from 2153.44+/-66.6 h to 137.82+/-4.27 h for AUC(0 --> 24)/MIC, for the different clinically significant microorganisms, whose values for MIC varies from 0.008 microg L(-1) to 0.125 microg mL(-1).  相似文献   

8.
The pharmacokinetics and bioavailability of enrofloxacin were determined after IV and IM administration of 5 mg/kg of body weight to 6 healthy adult rabbits. Using nonlinear least-squares regression methods, data obtained were best described by a 2-compartment open model. After IV administration, a rapid distribution phase was followed by a slower elimination phase, with a half-life of 131.5 +/- 17.6 minutes. The mean body clearance rate was 22.8 +/- 6.8 ml/min/kg, and the mean volume of distribution was 3.4 +/- 0.9 L/kg. This large volume of distribution and the K12/K21 ratio close to 1, indicated that enrofloxacin was widely distributed in the body, but not retained in tissues. After a brief lag period (6.2 +/- 2.86 min), IM absorption was rapid (4.1 +/- 1.3 min) and almost complete. The mean extent of IM absorption was 92 +/- 11%, and maximal plasma concentration of 3.04 +/- 0.34 micrograms/ml was detected approximately 10 minutes after administration.  相似文献   

9.
10.
The pharmacokinetics of diclofenac was investigated in sheep given diclofenac alone (1mgkg(-1), i.v. or i.m.) and in combination with enrofloxacin (5mgkg(-1), i.v.). The plasma concentration-time data following i.v. administration of diclofenac was best described by a two compartment open pharmacokinetic model. The elimination half-life (t(1/2beta)), area under concentration-time-curve (AUC), volume of distribution (Vd(area)), mean residence time (MRT) and total body clearance (Cl(B)) were 1.03+/-0.18h, 12.17+/-1.98microg h ml(-1), 0.14+/-0.02Lkg(-1), 1.36+/-0.16h and 0.10+/-0.02Lkg(-1)h(-1), respectively. Following i.m. administration of diclofenac alone and in conjunction with enrofloxacin, the plasma concentration-time data best fitted to a one compartment open model. The t(1/2beta), AUC, Vd(area), MRT and Cl(B) were 1.33+/-0.10h, 7.32+/-1.01microg h mL(-1), 0.13+/-0.01Lkg(-1) and 0.07+/-0.01Lkg(-1)h(-1), respectively. Co-administration of enrofloxacin did not affect Vd(area) and MRT but absorption rate constant (K(a)), beta, t1/2Ka, t1/2beta, AUC, AUMC, Cl(B) and bioavailability (F) were significantly increased. This may be due to direct inhibition of cytochrome P(450) isozymes by enrofloxacin. A dose of 1.4mgkg(-1) of diclofenac administered every 6h may be appropriate for use in sheep.  相似文献   

11.
The objective of this study was to determine the pharmacokinetics of tildipirosin in rabbits after a single intravenous (i.v.) and intramuscular (i.m.) injection at a dose of 4 mg/kg. Twelve white New Zealand rabbits were assigned to a randomized, parallel trial design. Blood samples were collected prior to administration and up to 14 days postadministration. Plasma concentrations of tildipirosin were quantified using a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The pharmacokinetic parameters were calculated using a noncompartmental model in WinNonlin 5.2 software. Following i.v. and i.m. administration, the elimination half-life (T1/2λ) was 81.17 ± 9.28 and 96.68 ± 15.37 hr, respectively, and the mean residence time (MRTlast) was 65.44 ± 10.89 and 67.06 ± 10.49 hr, respectively. After i.v. injection, the plasma clearance rate (Cl) and volume of distribution at steady state (Vdss) were 0.28 ± 0.10 L kg-1 h−1 and 17.78 ± 5.15 L/kg, respectively. The maximum plasma concentration (Cmax) and time to reach maximum plasma concentration (Tmax) after i.m. administration were 836.2 ± 117.9 ng/ml and 0.33 ± 0.17 hr, respectively. The absolute bioavailability of i.m. administration was 105.4%. Tildipirosin shows favorable pharmacokinetic characteristics in rabbits, with fast absorption, extensive distribution, and high bioavailability. These findings suggest that tildipirosin might be a potential drug for the prevention and treatment of respiratory diseases in rabbits.  相似文献   

12.
13.
The pharmacokinetics of marbofloxacin was investigated after intravenous (IV) and intramuscular (IM) administration, both at a dose rate of 5 mg/kg BW, in six clinically healthy domestic ostriches. Plasma concentrations of marbofloxacin was determined by a HPLC/UV method. The high volume of distribution (3.22+/-0.98 L/kg) suggests good tissue penetration. Marbofloxacin presented a high clearance value (2.19+/-0.27 L/kgh), explaining the low AUC values (2.32+/-0.30 microgh/mL and 2.25+/-0.70 microgh/mL, after IV and IM administration, respectively) and a short half life and mean residence time (t(1/2 beta)=1.47+/-0.31 h and 1.96+/-0.35 h; MRT=1.46+/-0.02 h and 2.11+/-0.30 h, IV and IM, respectively). The absorption of marbofloxacin after IM administration was rapid and complete (C(max)=1.13+/-0.29 microg/mL; T(max)=0.36+/-0.071 h; MAT=0.66+/-0.22 h and F (%)=95.03+/-16.89).  相似文献   

14.
The disposition kinetics of difloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration were determined in sheep at a single dose of 5mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental pharmacokinetics method (after IV, IM and SC administration). Plasma concentrations of difloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (V(ss)) and clearance (Cl) of difloxacin after IV administration were 1.68+/-0.21L/kg and 0.21+/-0.03L/hkg, respectively. Following IM and SC administration difloxacin achieved maximum plasma concentration of 1.89+/-0.55 and 1.39+/-0.14mg/L at 2.42+/-1.28 and 5.33+/-1.03h, respectively. The absolute bioavailabilities after IM and SC routes were 99.92+/-26.50 and 82.35+/-25.65%, respectively. Based on these kinetic parameters, difloxacin is likely to be effective in sheep.  相似文献   

15.
The disposition kinetics of moxifloxacin, a fluoroquinolone antibiotic, after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration was determined in sheep at a single dose of 5 mg/kg. The concentration-time data were analysed by compartmental (after IV dose) and non-compartmental (after IV, IM and SC administration) pharmacokinetic methods. Plasma concentrations of moxifloxacin were determined by high performance liquid chromatography with fluorescence detection. Steady-state volume of distribution (Vss) and clearance (Cl) of moxifloxacin after IV administration were 2.03 ± 0.36 L/kg and 0.39 ± 0.04 L/h kg, respectively. Following IM and SC administration, moxifloxacin achieved maximum plasma concentration of 1.66 ± 0.62 mg/L and 0.90 ± 0.19 mg/L at 2.25 ± 0.88 h and 3.25 ± 1.17 h, respectively. The absolute bioavailabilities after IM and SC routes were 96.12 ± 32.70% and 102.20 ± 23.76%, respectively. From these data (kinetic parameters and absence of adverse reactions) moxifloxacin may be a potentially useful antibiotic in sheep.  相似文献   

16.
17.
OBJECTIVES: The aim of this work was to examine the pharmacokinetics of diclofenac (DCLF) in sheep after intravenous (IV) and intramuscular (IM) dosing. ANIMALS: Healthy male Najdi sheep. MATERIALS AND METHODS: Diclofenac (1 mg kg(-1)) was administered to ten clinically healthy-male Najdi sheep IV or IM (n = 5 each). Blood samples (5 mL) were collected and serum was separated for drug analysis by high-performance liquid chromatography with UV detection. Diclofenac pharmacokinetic parameters were determined by noncompartmental analysis. RESULTS: Diclofenac is quickly eliminated from sheep with a terminal T(1/2lambda) of 2-3 hours for both routes of administration. Total DCLF clearance after IV and IM administration was 87.86 +/- 24.10 and 85.69 +/- 40.76 mL kg(-1) hour(-1) respectively. The absolute bioavailability of IM DCLF appears to be approximately 100%. CONCLUSIONS AND CLINICAL RELEVANCE: The drug should be administered two to three times daily in sheep by IM or IV injection to maintain therapeutic concentrations. Additional studies are needed to evaluate the route of elimination of DCLF in sheep including metabolites formation and the significance of enterohepatic circulation.  相似文献   

18.
AIMS: To determine the pharmacokinetics, and anaesthetic and sedative effects of alfaxalone after I/V and I/M administration to cats.

METHODS: Six European shorthair cats, three males and three females, with a mean weight of 4.21 (SD 0.53) kg and aged 3.8 (SD 0.9) years were enrolled in this crossover, two–treatment, two-period study. Alfaxalone at a dose of 5?mg/kg was administered either I/V or I/M. Blood samples were collected between 2–480 minutes after drug administration and analysed for concentrations of alfaxalone by HPLC. The plasma concentration-time curves were analysed by non-compartmental analysis. Sedation scores were evaluated between 5–120 minutes after drug administration using a numerical rating scale (from 0–18). Intervals from drug administration to sit, sternal and lateral recumbency during the induction phase, and to head-lift, sternal recumbency and standing position during recovery were recorded.

RESULTS: The mean half-life and mean residence time of alfaxalone were longer after I/M (1.28 (SD 0.21) and 2.09 (SD 0.36) hours, respectively) than after I/V (0.49 (SD 0.07) and 0.66 (SD 0.16) hours, respectively) administration (p<0.05). Bioavailability after I/M injection of alfaxalone was 94.7 (SD 19.8)%. The mean intervals to sternal and lateral recumbency were longer in the I/M (3.73 (SD 1.99) and 6.12 (SD 0.90) minutes, respectively) compared to I/V (0 minutes for all animals) treated cats (p<0.01). Sedation scores indicative of general anaesthesia (scores >15) were recorded from 5–15 minutes after I/V administration and deep sedation (scores 11–15) at 20 and 30 minutes. Deep sedation was observed from 10–45 minutes after I/M administration. One cat from each group showed hyperkinesia during recovery, and the remainder had an uneventful recovery.

CONCLUSIONS AND CLINICAL RELEVANCE: Alfaxalone administered I/V in cats provides rapid and smooth induction of anaesthesia. After I/M administration, a longer exposure to the drug and an extended half life were obtained compared to I/V administration. Therefore I/M administration of alfaxalone could be a reliable, suitable and easy route in cats, taking into account that alfaxalone has a slower onset of sedation than when given I/V and achieves deep sedation rather than general anaesthesia.  相似文献   

19.
The pharmacokinetics of azithromycin after intravenous and intramuscular injection at a single dose rate of 10mg/kg bodyweight were investigated in rabbits by using a modified agar diffusion bioassay for determining plasma concentrations. The plasma creatine kinase activity was determined after i.m. administration for the evaluation of the tissue tolerance. The elimination half-lives of azithromycin after intravenous and intramuscular administration were 24.1 and 25.1h, respectively. After intramuscular administration mean peak plasma concentration was 0.26+/-0.01 mg/L and bioavailability was 97.7%. Plasma CK activity rose sharply within 8h after i.m. injection of azithromycin; activity returned to pre-treatment level by 48-72 h post-treatment. The transient rise in serum CK activity indicates some degree of muscle tissue damage at the injection site.  相似文献   

20.
The pharmacokinetics of a 2:1 ampicillin-sulbactam combination after intravenous (i.v.) and intramuscular (i.m.) injection at a single dose rate of 20 mg/kg bodyweight (13.33 mg/kg of sodium ampicillin and 6.67 mg/kg of sodium sulbactam) were studied in 10-day-old neonatal calves (n = 10). The plasma concentration-time data of both antibiotics were best fitted to an open two-compartment model after i.v. administration. After i.m. administration, an open two-compartment model demonstrated first order absorption. The apparent volumes of distribution of ampicillin and sulbactam, calculated by the area method, were 0.20+/-0.01 and 0.18+/-0.01 L/kg, respectively, and the total body clearances were 0.51+/-0.03 and 0.21+/-0.01 L/kg h. The elimination half-lives of ampicillin after i.v. and i.m. administration were 0.99+/-0.03 and 1.01+/-0.02 h, respectively, whereas for sulbactam the half-lives were 2.24+/-0.02 and 3.44+/-0.94 h. The bioavailability after i.m. injection was high and similar for both drugs (70.31+/-0.2% for ampicillin and 68.62+/-4.44% for sulbactam). The mean peak plasma concentrations of ampicillin and sulbactam were reached at similar times (0.47+/-0.02 and 0.72+/-0.01 h, respectively) and peak concentrations were also similar but not proportional to the dose administered (17.88+/-0.91 mg/L of ampicillin and 12.92+/-0.79 mg/L of sulbactam). Both drugs had similar pharmacokinetic behaviour after i.m. administration. Since the plasma concentrations of sulbactam were consistently higher during the elimination phase of their disposition, consideration could be given to formulating the ampicillin-sulbactam combination in a ratio higher than 2:1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号