首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为进一步明确莫迦小麦(Triticum macha) T型恢复基因Rf3与K型不育基因rfv1的连锁关系, 利用T型细胞质背景(T504A/Tm3314 F2代和T504A//KTm3314A/90(13)21杂交分离群体)的可育株在K型细胞质下的育性测交分析, 明确了来自莫迦小麦的这2个基因连锁并不紧密, 交换值约为16.54%。可利用T型主效恢复基因Rf3提高含有T型主效恢复基因和K型主效不育基因的基础材料的选择效率。  相似文献   

2.
Two dominant, closely linked and complementary genes, Btr1 and Btr2, control rachis brittleness in barley. Recessive mutations in any of these genes turn the fragile rachis (brittle) into a tough rachis phenotype (non-brittle). The cross of parents with alternative mutations in the btr genes leads to a brittle F1 hybrid that presents grain retention problems. We evaluated rachis fragility through a mechanical test and under natural conditions, in F1 crosses with different compositions at the btr genes. Brittleness was significantly higher in Btr1btr1Btr2btr2 crosses compared to hybrids and inbred parents carrying one of the mutations (btr1btr1Btr2Btr2/Btr1Btr1btr2btr2). This fact could jeopardize the efficient harvest of hybrids bearing alternative mutations, reducing the choice of possible crosses for hybrid barley breeding and hindering the exploitation of potential heterotic patterns. Furthermore, non-brittle hybrids showed higher brittleness than inbreds, suggesting the presence of other dominant factors affecting the trait. In conclusion, this work encourages a deeper study of the genetic control of the rachis brittleness trait and urges the consideration of rachis tenacity as a target for hybrid barley breeding.  相似文献   

3.
Genetic diversity within spelta and macha wheats based on RAPD analysis   总被引:3,自引:0,他引:3  
Genetic diversity in a crop species is basic to improvement of the species and can be estimated at the molecular level. The objective of this study was to estimate genetic diversity within and between spelta and macha wheats. Random amplified polymorphic DNA (RAPD) analysis was conducted on 69 spelta and 32 macha wheat accessions. The classification of spelta and macha accessions, based on Jaccard genetic similarity coefficients for RAPD markers, was consistent with their geographic origin. The results indicated that the germplasm of macha wheat was more diverse than that of spelta wheat. In the dendrogram of macha wheat, four spelta-like accessions grouped together, separate from the remaining macha accessions, suggesting that these accessions were misclassified. In addition, accessions with identical RAPD patterns were found, indicating that these accessions were probably duplicated. Thus RAPD analysis can be used to estimate genetic diversity and identify duplicate accessions in wheat germplasm collections. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
为进一步明确莫迦小麦(Triticum macha) T型恢复基因Rf3与K型不育基因rfv1的连锁关系, 利用T型细胞质背景(T504A/Tm3314 F2代和T504A//KTm3314A/90(13)21杂交分离群体)的可育株在K型细胞质下的育性测交分析, 明确了来自莫迦小麦的这2个基因连锁并不紧密, 交换值约为16.54%。可利用T型主效恢复基因Rf3提高含有T型主效恢复基因和K型主效不育基因的基础材料的选择效率。  相似文献   

5.
为探讨偏凸山羊草-柱穗山羊草双二倍体SDAU18在小麦遗传改良中的利用价值,以SDAU18和普通小麦品种烟农15及其9个杂种世代为材料,分析不同自交和回交世代染色体和性状分离的特点。结果表明,随自交和以烟农15为轮回亲本回交世代的增加,染色体数目逐渐减少,回交比自交能使后代的染色体数目更快趋近普通小麦的42条,至F5和BC3F1代,染色体数目为42的植株已分别达93.9%和92.0%。与自交世代相比,回交后代减数第一分裂中期的花粉母细胞的染色体构型较为简单,回交次数过多不利于外源染色体与普通小麦染色体发生重组,一般应以回交2~3次为宜;随自交和回交世代的增进,杂种的育性提高,至F3和BC2F1代育性基本稳定。在不同杂种世代可分离出具有矮秆、大穗、大粒、对白粉病、条锈病免疫或高抗及外观品质优良的变异类型,以F3和BC1F1代的变异类型最丰富。  相似文献   

6.
Genotypes for the glume colour character have been studied in 27 cultivars of common wheat (Triticum aestivum L.) originated from old landraces, and 1 specimen of T. petropavlovskyi Udacz. et Migusch. by means of analysis of the F2 populations. The following tester lines have been used: white-glumed ‘Novosibirskaya 67’ ‘Diamant I’, and ‘Federation’, carrying the Rg1 gene alone; lines RL5405 and near-isogenic ‘Saratovskaya 29’ *5 (T. timopheevii Zhuk./T. tauschii (Coss.) Schmal.), carrying Rg2; line (1A ‘CS’ × ‘Strela’) with Rg3. The red glume colour in 21 cultivars of Triticum aestivum and in the accession of T. petropavlovskyi has been shown to be determined by the single gene Rg1, located on chromosome 1B. Five cultivars carrying the gene Rg3 for red glumes on chromosome 1A have been revealed. The cultivars ‘Zhnitsa’ and ‘Iskra’ carry the gene Rg3 alone. The red glume colour in the cultivars ‘Milturum 321’, ‘Milturum 2078’, ‘Sredneural'skaya’ is controlled by two genes, Rg1 and Rg3. In two common wheat cultivars, ‘Sarrubra’ and ‘Krasnoyarskaya 1103’ the red glume colour is determined by Rg1, inherited from local populations (‘Turka’ and ‘Kubanka’ respectively) of tetraploid wheat T. durum Desf. var. hordeiforme Host. Wide occurrence of the Rg1 gene in common wheat has been confirmed. On the contrary, none of the investigated varieties carries the gene Rg2. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
Summary The correlation between glume color and gluten strength and the heritability of each trait was estimated in two durum wheat crosses. Brown glume color appeared to be dominant to white in both crosses. In one cross, glume color was clearly controlled by one gene while in the other cross it appeared to be controlled by one or two genes with modifiers. The heritability of gluten strength was moderately high. The correlation of F2 glume color and F3 gluten strength was high (r=0.66 and 0.78) indicating that F2 glume color was a good predictor of gluten strength in the F3 generation. Selection for glume color appears to be an effective breeding strategy for improving gluten strength in those environments where glume color differences are easily detected.  相似文献   

8.
Italian and Tunisian durum wheats from different eras of breeding were assessed for the presence of a gene for brittle rachis. Nine of 15 Italian durum landraces had brittle rachides. Strampellis achievement was the release of the well-known variety, Senatore Cappelli, which was derived from a Tunisian landrace, Jenah Rhettifah, which has a brittle rachis. Rachides of two Tunisian landraces were also brittle. Since the 1950s, 16 accessions were released as selections from crosses or mutagenesis involving Senatore Cappelli. Seven of these accessions have brittle rachides. F2 segregation in intercrosses of Senatore Cappelli with other durum accessions with brittle rachides indicated a common allele for brittle rachis. Segregation of the F2 from Senatore Cappelli/ANW 10A and the F2 of Senatore Cappelli/ANW 10B showed that the gene for brittle rachis of Senatore Cappelli was allelic to the brittle allele of the Br-B1 locus on chromosome 3B. Senatore Cappelli was presumably the only source of brittle rachis used in Italian breeding programmes. The genes for brittle rachis have been retained in the gene pool of durum wheat, suggesting that the brittle rachis character is not associated with an appreciable yield loss in modern farming systems in Mediterranean environments.  相似文献   

9.
Summary Wheat doubled haploid (DH) lines were produced from the F1 hybrid, Fukudo-komugi x Oligo Culm, through intergeneric crosses between wheat and maize. F2 plants and 203 DH lines were analyzed for the segregation of the eight genetic markers, namely, grain proteins, grain esterases, GA-insensitivity and glume traits. The segregation in the F2 plants fitted to the expected ratios. No deviation was observed among the DH lines, either, except for the glume pubescence. The result indicates the absence of correlation between the markers investigated and the efficiency of embryo formation in the DH lines.  相似文献   

10.
J. Thomas  Q. Chen  L. Talbert 《Euphytica》1998,100(1-3):261-267
Robertsonian translocation between homoeologous chromosomes is one means for introducing alien genes from related species into common wheat. This study was undertaken to determine if selection for normal segregation of an alien trait could be used to identify favourable translocations. Agrotana (an octoploid agrotriticum, probably derived from Thinopyrum ponticum) carries resistance to the wheat curl mite (Eriophyes tulipae Keifer) which is the vector of wheat streak mosaic virus. Agrotana was crossed with the winter durum Michurinka (Triticum turgidum L. em. Bowden), and resistant F2 plants were backcrossed four times with Norstar winter wheat (T. aestivum L. em. Thell.). During the later stages of backcrossing and selfing, resistant progenies were tested for their segregation ratios; selection was made for high and stable rates of transmission of mite resistance in segregating male gametes and zygotes. The 49 descendant gametes were tested for Mendelian-like inheritance of resistance. Two lines were identified with segregations that approached Mendelian ratios (1:1 male transmission in a testcross, 3:1 in F2 and 1:2:1 among F3 families). Contrary to expectations, selection for stable F2 ratios (3:1) proved more efficient than selection for normal male transmission (1:1) as a means of identifying these stocks. Chromosome painting and PCR (polymerase chain reaction) analysis indicated the recovery of two independent Robertsonian translocations, both of which probably involved the reunion of the short arm of a group 6 chromosome of Thinopyrum ponticum and the long arm of chromosome 6D. In conclusion, selection for Mendelian ratios from among backcross derivatives of an interspecific hybrid was successful in isolating desirable translocations; cytogenetic methods were only used to characterise desirable stocks once these were identified. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The bottleneck restricting introgression of useful genes directly from diploid into hexaploid wheats is the low number of BC1F1 seeds obtained. In crosses between hexaploid wheat (Triticum aestivum L.; AABBDD) and Aegilops squarrosa L. (DD) or T. urartu Thum. (AA), this bottleneck may be overcome simply by pollinating a sufficient number of F1 spikes. However, hybrids between hexaploid wheat cultivars (T. aestivum) and T. monococcum L. (AA) generally are highly female-sterile, often having no pistils. One T. monococcum accession, PI 355520, when crossed with T. aestivum, produced hybrids with female fertility in the same range as that of T. aestivum/A. squarrosa or T. aestivum/T. urartu hybrids, ca. 0.5 to 1.0 backcross seed per spike. We found that female fertility was controlled by two duplicate genes in PI 355520, and that this accession can be used as a bridging parent to introgress genes from other T. monococcum accessions into hexaploid wheat. Pairing of homologous chromosomes was less frequent and weaker in such crosses than in T. aestivum/A. squarrosa crosses, but homoeologous bivalents occurred at a rate of almost 0.5 II per cell. Restitution division was detected in crosses involving all three diploid species and was confirmed cytologically in crosses with PI 355520. Chromosome numbers of BC1F1 plants ranged from 35 to 67; plants with 49 or more chromosomes occurred at frequencies of 0.09 to 0.21 among progeny of A. squarrosa and T. urartu and 0.29 in progeny of T. aestivum/T. monococcum crosses involving PI 355520. These results are consistent with those of previous studies, demonstrating the potential of direct Hexaploid/diploid crosses for rapidly introgressing useful genes into Hexaploid wheat with minimum disturbance of the background genotype.  相似文献   

12.
N. Watanabe  N. Takesada  Y. Shibata  T. Ban 《Euphytica》2005,144(1-2):119-123
Glaucous leaf and tough rachis phenotypes are rare in Aegilops tauschii, the D genome donor to common wheat (Triticum aestivum). The genes for glaucous leaf and tough rachis were mapped using microsatellite probes in A. tauschii. The glaucous phenotype was suppressed by the inhibitor W2I located on chromosome 2DS. The gene W2I was mapped to the distal part of 2DS, and was unlinked to the centromere. This suggests that the distance of the W2I locus from the centromere was maintained during the evolution of hexaploid wheat from its diploid progenitors as the inhibitor gene is at the same position in A. tauschii and bread wheat. The Brt (Brittle rachis of A. tauschii) locus was located on the short arm of chromosome 3D, and was 19.7 cM from the centromeric marker, Xgdm72.3D. Brt causes breakage of the spike at the nodes, thus creating barrel-shaped spikelets, while Br1 in hexaploid wheat causes breakage above the junction of the rachilla with the rachis such that a fragment of rachis is attached below each spikelet.  相似文献   

13.
小麦主要亲缘种籽粒的Fe、Zn、Cu、Mn含量及其聚类分析   总被引:7,自引:0,他引:7  
郝志  田纪春  姜小苓 《作物学报》2007,33(11):1834-1839
以19份小麦亲缘种及普通小麦中国春为材料,测定比较了籽粒的Fe、Zn、Cu、Mn含量,并进行了聚类分析。结果表明,Fe、Zn、Cu、Mn含量平均值分别为50.94、34.89、6.96和33.21 μg g-1,其改良潜力分别为121.94%、40.46%、41.17%和73.03%。根据Fe、Zn、Cu、Mn含量将供试材料均分为高、中、低3类,其中塔城高拉山小麦Fe含量高达124.32 μg g-1,为富Fe材料。富Zn材料有野生一粒小麦、野生二粒小麦等6个品种(系),均值为49.91 μg g-1。富Cu材料有分枝小麦和小黑麦(8X),均值为8.66 μg g-1。富Mn材料为斯卑尔脱小麦,含量高达63.85 μg g-1。不同倍性染色体倍性材料间,Fe、Zn和Mn含量均以四倍体小麦最高,Cu含量以八倍体小麦最高。不同染色体组间,AABB染色体组材料的Fe、Zn和Mn含量最高,其次是AA染色体组材料,Cu以AABBDDRR染色体组最高。这些结果可为小麦营养品质育种的亲本选择和有利基因的发掘和利用提供参考依据。  相似文献   

14.
A New Mutation in Wheat Producing Three Pistils in a Floret   总被引:2,自引:0,他引:2  
A floret carries only one pistil that will develop into one grain after fertilization in normal cultivated common wheat (Triticum aestivum L.) plants. A new cultivated common wheat mutation line ‘Three Pistils’ is described. It carries three pistils in a floret, all with the potential to develop into grains. The floret morphology of this line is reported. Genetic analysis of the three pistils trait was carried out by crossing Three Pistils with the normal common wheat variety Chinese Spring. F2 population segregation analysis revealed that the three pistils trait is controlled by a single dominant gene. This conclusion was confirmed by the backcross test.  相似文献   

15.
Synthetic hexaploid wheat, produced by combining tetraploid wheat (AB genome) with Triticum tauschii (D genome), was crossed to modern hexaploid wheat (Triticum aestivum ABD genome) in an attempt to introduce new cold hardiness genes into the common hexaploid wheat gene pool. The cold hardiness levels of F) hybrids ranged from similar to parental means to equal to the hardy parent, indicating that cold hardiness was controlled by both additive and dominant genes. As expected when dominant gene action is involved, differences between F2 and parental means were smaller than comparable differences in the F., Frequency distributions of F2—derived F3 lines also suggested that dominant genes were involved in the control of cold hardiness in some crosses. Heritability estimates for cold hardiness ranged from 63 to 70 % indicating that selection for cold hardiness should be effective in populations arising from crosses between common and synthetic hexaploid wheat. However, high selection pressure on the progeny of crosses that included the most hardy T. aestivum, T. durum, and T. tauschii accessions as parents did not identify transgressive segregates for improved cold hardiness. These observations indicate that the close wheat relatives, sharing common genomes with T. aestivum, are not promising sources of new genes to increase the maximum cold hardiness potential of common hexaploid wheat.  相似文献   

16.
四排穗(four-rowed spike, FRS)性状是超数小穗(supernumerary spikelets, SS)性状的一种类型,表现为在一个穗轴节片上近垂直地着生2个无柄小穗,从而增加了小穗数和穗粒数,对提高产量有一定的潜力。为了解圆锥小麦0880 FRS性状的遗传特征,将0880与正常穗(normal spike, NS)圆锥小麦0879杂交,构建了遗传群体,并对0880 (FRS) × 0879 (NS)与0879 (NS) × 0880 (FRS) F1、F2及F2:3植株的穗部性状进行了调查。结果显示,正反交组合的F1植株均表现为正常穗,F2群体中正常穗与四排穗符合3∶1的分离比例,表明0880的四排穗性状由隐性单基因控制,将该基因定名为frs1;细胞质对frs1无显著影响。采用已定位于普通小麦A组与B组的SSR分子标记并结合混合分组分析法(BSA), 筛选出32个在双亲及F2单株构建的四排穗型池和正常穗型池都具有多态性的SSR分子标记,利用JoinMap4.0软件构建了与frs1连锁的2A染色体11个SSR分子标记遗传图谱,其中SSR标记Xwmc598和Xwmc522位于frs1基因两侧,与该基因的遗传距离分别为4.0 cM和2.4 cM。利用2A染色体缺失系对这11个SSR进行物理定位,Xwmc598和Xwmc522均被定位在2A染色体短臂FL0.00~0.78区域。本研究的结果为frs1基因的精细定位及分子标记辅助选择奠定了基础。  相似文献   

17.
N. Watanabe  I. Imamura 《Euphytica》2002,128(2):211-217
The Chinese wheat landrace, Xinjiang rice wheat (T. petropavlovskyi Udacz. et Migusch., 2n = 42), known as ‘Daosuimai’ or rice-head wheat is characterized by long glumes, and was found in the agricultural areas in the west part of Talimu basin, Xinjiang, China in 1948. The gene for long glume from T. petropavlovskyi was introduced into a line of spring durum wheat, LD222. The gene for long glume is located approximately46.8 cm from the cn-A1 locus, which controls the chlorinatrait. Significant deviation from a 3:1 in the F2 of LDN7D(7A)/ANW5C confirmed that the long glume of T. petropavlovskyi can be controlled by a gene located on chromosome 7A. The gene locates approximately 12.4 ± 0.5 cM from the centromere on the long arm of 7A. It is considered that the gene for long glume from T. petropavlovskyi is an allele on the P 1 locus, and it should be designated as P 1a. It is suggested that T. petropavlovskyi originated from either the natural hybrid between T. aestivum that has an awn-like appendage on the glume and T. polonicum or a natural point mutation of T. aestivum. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Triticum turgidum ssp. durum (tetraploid durum) germplasm is very susceptible to crown rot, caused by the fungus Fusarium pseudograminearum. Screening activities to date have failed to identify even moderately susceptible lines. In contrast partial resistance to this disease has been identified in a number of Triticum aestivum (hexaploid wheat) lines, including 2-49 and Sunco. This study describes the successful introgression of partial crown rot resistance from each of these two hexaploid wheat lines into a durum wheat background. Durum backcross populations were produced from two 2-49/durum F6 lines which did not contain any D-genome chromosomes and which had crown rot scores similar to 2-49. F2 progeny of these backcross populations included lines with field based resistance to crown rot superior to that of the parent hexaploid wheat.  相似文献   

19.
G. Singh    S. Rajaram    J. Montoya  G. Fuentes-Davila   《Plant Breeding》1995,114(5):439-441
Fourteen Mexican genotypes of bread wheat (Triticum aestivum L.) with good to moderate levels of resistance to Karnal bunt (Tilletia indica (Mitra)) were crossed with the highly susceptible cultivar WL711 to determine the genetic basis of resistance. The parents, F1 F2 and backcross populations of the 14 crosses were evaluated under artificial epiphytotic conditions during the 1993–94 season for Karnal bunt resistance. The F1 data suggested that the resistance was dominant to partially dominant over susceptibility. The F2 analysis of the segregation ratios in the F2 and backcross generations indicated that the resistance in the wheat genotypes Luan, Attila, Vee #7/Bow, Star, Weaver, Milan, Sasia and Turacio/Chil is controlled by two genes. The resistance in genotypes Cettia, Irena, Turaco, Opata, Picus, and Yaco was found to be conditioned by a single dominant gene. The genotypes with two genes for resistance expressed a higher level of resistance than those with a single gene and, therefore, are better sources of resistance to Karnal bunt.  相似文献   

20.
The Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), has become a serious, perennial pest of wheat (Triticum aestivum L.) in many areas of the world. This study was initiated to determine the inheritance of RWA resistance in PI 140207 (a RWA-resistant spring wheat) and to determine its allelic relationship with a previously reported RWA resistance gene. Crosses were made between PI 140207 and ‘Pavon’ (a RWA-susceptible spring wheat). Genetic analysis was performed on the parents, F1, F2, backcross (BC) population and F2-derived F3 families. Analyses of segregation patterns of plants in the F1, F2, and BC populations, and F2-derived F3 families indicated single dominant gene control of RWA resistance in PI 140207. Results of the allelism test indicated that the resistance gene in PI 140207, while conferring distinctly different seedling reactions to RWA feeding, is the same as Dn 1, the resistance gene in PI 137739.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号