首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Leaf tissue harvested from cucumber plants (Cucumis sativus L.) expressing induced resistance against the powdery mildew fungus Podosphaera xanthii (syn. Sphaerotheca fuliginea, Castagne; Braun and Shishkoff) was extracted and analyzed for phytoalexin compounds. Fluorescence microscopy was then used to observe the production of these compounds in planta, and laser scanning confocal microscopy observations were made to locate the subcellular sites of phytoalexin accumulation. Phytochemical analyses and fluorescence microscopy observations revealed the production of autofluorescent C-glycosyl flavonoid phytoalexins within the epidermal tissues of disease-resistant plants undergoing fungal ingress. Phytoalexin production was triggered by the combination of an eliciting/inoculation treatment, and tissue autofluorescence of color characteristic of the phytoalexins reached a maximum 48 h after elicitation prior to subsiding following the collapse of the pathogen. After a second eliciting treatment, disease-resistant plants produced phytoalexins more rapidly in response to fungal challenge. At the cellular level, autofluorescent C-glycosyl flavonoid phytoalexins were observed associated with the plasma membrane of infected epidermal cells immediately following elicitation. In the hours that preceded the collapse of conidial chains, phytoalexins accumulated inside the haustorial complexes of the pathogen within the epidermal cells of disease-resistant plants. Taken together, the results of this study show the timely synthesis of C-glycosyl flavonoid phytoalexins at precise subcellular locations as a key defense reaction used by cucumber to create incompatible interactions with powdery mildew.  相似文献   

2.
采用喷雾法研究了大黄酚对黄瓜白粉病的生物活性及其在黄瓜组织中的内吸传导性。结果表明,大黄酚对黄瓜白粉病菌具有较高毒力,感染白粉病的叶片经200 mg/L的大黄酚处理2 d后,霉状物变褐色,病斑枯死。扫描电子显微镜观察显示,黄瓜白粉病菌经大黄酚处理后,菌丝和分生孢子梗扭曲、变形,分生孢子塌陷。盆栽试验表明,利用大黄酚防治黄瓜白粉病具有较长的持效期,黄瓜子叶上喷施100 mg/L的大黄酚,20 d后接种病原菌,其防效仍达84.83%,与有效成分500 mg/L的硫磺悬浮剂防效相近。此外,大黄酚在黄瓜组织中具有一定的跨层传导性,其横向传导性较弱,几乎无向顶及向基的传导性。  相似文献   

3.
A single spray of solutions of 0.005M H3BO3, 0.0025M CuSO4, and 0.0025 MnCl2, on the upper surface of the first true leaf of cucumber plants 2 h before inoculation with a conidial suspension of Sphaerotheca fuliginea, induced systemic protection against powdery mildew in leaves 2 and 3 without causing any damage on the induced leaf (first leaf). A similar level of systemic protection was observed when plants were induced by micronutrients, 2, 24 and 72 h before challenge with S. fuliginea. The level of protection induced by various concentrations varied from solution to solution. In general, the systemic protection induced by K2HPO4 was similar to that by the microelements. Spraying of a 1:1 mixture of phosphate and micronutrient solutions did not improve the systemic protection over that obtained with each of the solutions alone. Increasing the inoculum concentration of S. fuliginea increased the number of powdery mildew colonies produced on both induced and non-induced plants and has relatively affected the systemic protection on induced plants. A single foliar spray of micronutrient solutions, as a prophylactic treatment, on the upper surface of all the leaves of 3-leaf stage cucumber plants significantly inhibited powdery mildew development. A single spray of MnCl2 on leaf 1 elevated peroxidase activity in the soluble fraction and caused an enhancement of -1,3-glucanase content in the ionically bound fractions of leaf 2 of non-inoculated plants. Forty-eight hours after inoculation, the level of both fractions of the enzymes increased in non-treated plants and decreased (-1,3-glucanase) or remained unchanged (peroxidase) in treated (induced) plants as compared to non-treated plants. The possible mechanism for this protection, and the use of microelements and phosphate solutions as inducers for systemic protection and as agents for disease control are discussed.  相似文献   

4.
Thirty-nine genotypes ofCucumis melo (plant introduction entries, open-pollinated cultivars and F1 hybrids) were evaluated for resistance to powdery mildew under either natural field conditions or artificial inoculation in growth chambers at the cotyledonary stage and the 2-true-leaf stage. Results confirmed that susceptibility in cotyledons was not necessarily associated with susceptibility in either true leaves in growth chambers or adult plants in the field. However, resistance at the 2-true-leaf stage in growth chambers was highly correlated with resistance of field-grown plants. Results also showed that 20 muskmelon genotypes resistant to race 1 at the cotyledonary stage were also resistant at the 2-leaf-stage and as adult plants in the field. The same was true for ten genotypes with race 2 inoculations. Because muskmelon genotypes expressing resistance in cotyledons were also resistant in true leaves in growth chambers or the field, the use of plants at the cotyledonary stage is recommended for screening for powdery mildew resistance caused by race 1 or race 2 ofS. fuliginea. When cotyledons are susceptible, screening should be done at the 2-true-leaf stage.  相似文献   

5.
Since 2001, several isolates of Blumeria graminis, the causal agent of cereal powdery mildew, maintained on detached leaves at the John Innes Centre, Norwich, UK, have spontaneously become infected with an unknown filamentous fungus whose mycelia have quickly overgrown the powdery mildew colonies and destroyed them completely. A total of five isolates of the contaminant were obtained and identified as Paecilomyces farinosus based on morphological characteristics and rDNA ITS sequence data. To determine whether these P. farinosus isolates can be considered as biocontrol agents (BCAs) of powdery mildews, we studied the interactions between P. farinosus and the following four powdery mildew species: B. graminis f.sp. hordei infecting barley, Oidium neolycopersici infecting tomato, Golovinomyces orontii infecting tobacco and Podosphaera fusca infecting cucumber. The powdery mildew colonies of all these four powdery mildew species were quickly destroyed by P. farinosus in leaf cultures but neither conidial suspensions nor cell-free culture filtrates of P. farinosus isolates could suppress the spread of powdery mildew infections on diseased barley, tomato, tobacco or cucumber plants in the greenhouse. It is concluded that P. farinosus cannot be considered as a promising BCA of powdery mildew infections although it can destroy powdery mildew colonies in detached leaf cultures and can be a menace during the maintenance of such cultures of cereal, apple, cucurbit and tomato powdery mildew isolates.  相似文献   

6.
Culture filtrates of 17 different fungal species thriving upon other fungi were tested for their ability to reduce sporulation of cucumber powdery mildew,Sphaerotheca fuliginea.All culture filtrates reduced the number of healthy conidiophores. However, the differences in activity between the various treatments were not as conspicuous as after application of spore suspensions. The best results were obtained with culture filtrates ofCalcarisporium arbuscula. These reduced the number of healthy conidiophores to ca. 2% of the unsprayed control plants.  相似文献   

7.
Identification of the physiological races ofPodosphaera xanthii (syn.Sphaerotheca fuliginea), the causal agent of powdery mildew in cucurbits, is based upon the differing responses of various melon cultigens to the pathogen. Eight races of the pathogen have been identified to date in the USA, Africa, Europe and around the Mediterranean Sea, and four new races were reported from greenhouse melons in the major growing area of Japan. Plant responses to powdery mildew may be affected by environmental factors such as light intensity, temperature and humidity, as well as by age and nutritional status of the plants. The same factors affect the accuracy and reliability of race identification. In an attempt to overcome those obstacles, the genetic diversity ofP. xanthii was studied using molecular markers. Unfortunately, no correlation was found between DNA polymorphism and the race of the pathogen as identified by biological tests. The usefulness of race identification as a guide for the grower in selecting appropriate cultivars is limited because changes or shifts in the pathogen population are common. Such changes may be found among growing seasons, geographic regions and hosts, and also within a single greenhouse during a single season. On the other hand, race identification is important for basic research and is especially important for the commercial seed industry, which requires accuracy in declaring the type and level of resistance to powdery mildew in its products. http://www.phytoparasitica.org posting March 2, 2004. Contribution from the Agricultural Research Organization. No. 501/04.  相似文献   

8.
为明确小豆白粉病病原菌的种类以及小豆种质资源对白粉病的抗性,采用形态学和系统发育学方法对近年来在北京市发生的小豆白粉病病原菌种类进行鉴定,并采用室内苗期人工接种法评价小豆常见栽培品种(系)对白粉病的抗性。结果表明,从北京市采集的感白粉病小豆病样中培养获得病原菌BJ1,该菌能在小豆叶片和茎上产生明显的白色粉斑,分生孢子梗直立,不分枝,分生孢子单细胞,成链状着生于分生孢子梗上,呈椭圆形或卵圆形。通过rDNA-ITS序列系统发育分析,小豆白粉病菌BJ1被鉴定为白粉菌目白粉菌科的苍耳叉丝单囊壳Podosphaera xanthii。室内苗期人工接种条件下,19个供试小豆品种(系)接种小豆白粉病菌BJ1后均可发病,其中9个审定品种均表现为中度感病或高度感病,10个优良品系发病略轻。  相似文献   

9.
Leaves of powdery mildew-susceptible barley (Hordeum vulgare cv. Ingrid) and related near-isogenic lines bearing various resistance genes (Mla12, Mlg or mlo5) were inoculated with Blumeria graminis f. sp. hordei race A6. Fungal attack induced several-fold increases in ethylene emission and electrolyte leakage in leaves of susceptible Ingrid beginning 3 days after inoculation. Activities of peroxidase, superoxide dismutase, glutathione S-transferase, ascorbate peroxidase and glutathione reductase enzymes were induced markedly in susceptible leaves 5–7 days after inoculation. Similar, but less pronounced pathogen-induced changes were detected in inoculated leaves of Mla-type resistant plants that show hypersensitive cell death upon inoculation, and, to an even lesser extent, in the Mlg and mlo lines, where no visible symptoms accompanied the incompatible interaction. Glutathione content increased only in susceptible barley 7 days after inoculation. Catalase activity, total ascorbate content and redox state were not influenced by inoculation in any of the genotypes. The activity of dehydroascorbate reductase was significantly reduced 3–5 days after inoculation in the susceptible parental plants and after 5 days in Mla and Mlg lines, while it was stable in the mlo barley. Slightly elevated levels of H2O2 were observed in the inoculated resistant plants. In contrast, H2O2 content decreased in the susceptible line 7 days after pathogen attack. These data indicate that high levels of antioxidants are involved in the compatible interaction of susceptible barley and powdery mildew by protecting the pathogen from oxidative damage.  相似文献   

10.
Resistance to powdery mildew was induced in barley by preinoculation with virulent and avirulent races of barley powdery mildew ( Erysiphe graminis f.sp. hordei ), and with a race of wheat powdery mildew ( E. graminis f.sp. tritici ). Four inducer densities were tested in 13 different induction periods between 1 and 24 h. Generally, the resistance induced by barley powdery mildew increased up to 10-12 h of induction and was maintained in longer induction periods. The inducing abilities of virulent and avirulent races could not be distinguished up to 10-12 h of induction, after which the inducing ability of avirulent races increased significantly in relation to virulent races. Wheat powdery mildew was able to induce more resistance than barley powdery mildew in induction periods up to 8 h. In a single inoculation procedure the number of haustoria developing from virulent barley powdery mildew decreased as inoculum density increased. The effect was ascribed to induction of resistance. This reduction of infection efficiency in the compatible interaction was compared to induced resistance. However, the inoculum density needed for 50% resistance induction in the double inoculation procedure was approximately 40 times higher than the inoculum density needed for 50% reduction in infection efficiency in the single inoculation procedure.  相似文献   

11.
Plants have developed mechanisms to resist secondary infection upon inoculation with a necrotizing pathogen, chemical treatment as well as treatment with some non-pathogenic microorganisms such as rhizosphere bacteria. This phenomenon has been variously described as induced systemic resistance (ISR) or systemic acquired resistance. In the present study, the chemical benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH, acibenzolar-S-methyl), and the rhizobacteriaPseudomonas aeruginosa KMPCH andP. fluorescens WCS417 were tested for their ability to induce resistance toColletotrichum lindemuthianum in susceptible and moderately resistant bean plants (Phaseolus vulgaris L.). BTH induced local and systemic resistance when bean leaves were immersed in 10−3 to 10−7 M BTH 3 days before the challenge inoculation. At a high concentration (10−3 M), BTH induced resistance of the same order as resistance induced by the pathogenC. lindemuthianum, although at this high concentration BTH appeared to be phytotoxic. Soil and seed treatment with 1 mg kg−1 BTH protected beans against anthracnose. BTH-mediated induced resistance was effective in susceptible and moderately resistant plants.P. aeruginosa KMPCH induced resistance in bean againstC. lindemuthianum only in a moderately resistant interaction. KMPCH-567, a salicylic acid mutant of KMPCH, failed to induce resistance, indicating that salicylic acid is important for KMPCH to induce resistance in the bean—C. lindemuthianum system.P.fluorescens WCS417 could induce resistance toC. lindemuthianum in a susceptible and in moderately resistant interactions. http://www.phytoparasitica.org posting Jan. 16, 2002.  相似文献   

12.
Thirty barley landraces collected from Morocco in 1985 and 1989, and held in the Polish Gene Bank, IHAR, Radzików, Poland, were screened for resistance to powdery mildew. Fifteen tested landraces (50%) showed powdery mildew resistance reactions and 24 single plant lines were selected. Eighteen lines originating from 13 landraces were tested with 17 isolates of powdery mildew and another six lines originating from six landraces were tested with 23; the isolates were chosen according to their virulence spectra observed on the ‘Pallas’ isolines differential set. Three lines (E 1090-2-2, E 1110-3-2 and E 1077-1-1) showed resistance to all powdery mildew virulence genes prevalent in Europe. In 21 lines, unknown genes alone or in combination with specific ones were detected. Five different resistance alleles(Mlat, Mlal, Mla3, Mlg andMl(CP)) were postulated to be present in the tested lines, alone or in combination:Mlat was postulated to be present in nine (~38%) lines;Mlg andMl(CP) in two lines, andMla1 andMla3 in one tested line each. The use of newly identified sources of resistance in barley breeding as a means of controlling powdery mildew is discussed.  相似文献   

13.
为筛选出橡胶树白粉菌Oidium heveae Steimnann新的寄主载体,通过接种野生型拟南芥Col-0、突变体Sr1-4D及eds1,观察了橡胶树白粉菌侵染不同拟南芥突变体的过程,PCR扩增测序法验证相关致病基因,构建橡胶树白粉菌-拟南芥互作体系。结果表明,在Col-0、Sr1-4D叶片上面,橡胶树白粉菌产生部分菌丝后停止生长,不能形成典型的橡胶树白粉病症状;但能成功侵染eds1叶片,在叶片的正、背面有银白色辐射状菌丝,后期在病斑上出现一层粉层,表现橡胶树白粉病的典型症状。组织染色和显微观察结果显示,在突变体eds1叶片上橡胶树白粉菌完成了侵染过程。PCR扩增测序结果表明接种后突变体eds1叶片上及组织中病菌均为橡胶树白粉菌;使用橡胶树白粉菌3个致病相关基因作为靶标,验证了eds1和橡胶树上白粉菌基因组中的3个致病相关基因相似度均达到99%~100%。表明橡胶树白粉菌可侵染拟南芥突变体eds1。  相似文献   

14.
The possible involvement of salicylic acid in systemic acquired resistance ofCucumis sativus againstSphaerotheca fuliginea was studied. Cucumber plants were inoculated with tobacco necrosis virus on the cotyledons and the level of endogenous salicylic acid in the first true leaf was determined by gas chromatography. Salicylic acid increased continously from the second day after virus inoculation to the fifth day, when the same leaf was inoculated withSphaerotheca fuliginea. In healthy plants, the efficiency of exogenous salicylic acid in inducing resistance was assayed by applying aqueous solutions at different times beforeSphaerotheca fuliginea inoculation. To evaluate the level of induced resistance, the following parameters were examined by light microscopy: percentage of conidial germination, length of the hyphae derived from single conidia, number of haustoria, percentage of epidermal cells with lignified walls and of necrotic cells underlying fungal hyphae. In treated plants conidial germination was reduced, the total length of the hyphae was shorter, the number of haustoria was lower and the haustorium-containing epidermal cells had more frequently lignified walls. Moreover, an evident increase in callose deposition was observed leading to the formation of oversized papillae around the penetration pegs. These results indicate that the application of salicylic acid before inoculation withSphaerotheca fuliginea reduces the intensity of the infectious process and that salicylic acid is involved in the expression of systemic resistance in cucumber challenged by the biotrophic pathogenSphaerotheca fuliginea.  相似文献   

15.
Three reported antagonists of cucumber powdery mildew,Stephanoascus flocculosus, Stephanoascus rugulosus, andTilletiopsis washingtonensis, were tested and compared under different environmental conditions for their potential for controlling rose powdery mildew, caused bySphaerotheca pannosa var.rosae. Under controlled conditions in vitro, all three fungi induced a rapid collapse of conidia, conidiophores and hyphae ofS. pannosa var.rosae on detached leaflets of miniature roses within 48 h following their application, as observed under a SEM. Both temperature and relative humidity (r.h.) affected the activity of the antagonists differently. The colonization of powdery mildew was maximal at 26 °C, especially forSt. rugulosus andT. washingtonensis. Maximal colonization was achieved at the highest r.h. tested (90%) for all three antagonists but onlySt. flocculosus maintained a colonization of 80% or better under lower r.h. These observations stress the importance of considering environmental conditions when assessing the activity of antagonistic microorganisms.  相似文献   

16.
In 2002, a powdery mildew with catenate conidia lacking fibrosin bodies was found on cucumber in a greenhouse in Kanagawa Prefecture, Japan. Morphological observation revealed that the fungus belongs to Oidium subgenus Reticuloidium, anamorph of the genus Golovinomyces. Molecular phylogenetic analyses of the nucleotide sequences of the rDNA ITS regions and D1/D2 domains of the 28S rDNA indicated that the fungus belongs to the clade of G. orontii with other Golovinomyces fungi from a wide range of host plants, suggesting that the fungus was newly transported from abroad. Because there has been no prior report of cucumber powdery mildew caused by Reticuloidium, further research on the physiology, epidemiology, control and resistant cucumber varieties is required.  相似文献   

17.
Since 2003, Torenia fournieri plants grown for experimental purposes were repeatedly infected by powdery mildew in a laboratory in Hungary. Based on morphological characteristics, the pathogen belonged to the mitosporic genus Oidium subgen. Reticuloidium, the anamorph stage of Golovinomyces. The rDNA ITS sequence was identical to that of two other powdery mildew fungi, infecting Arabidopsis and Veronica, respectively, in different parts of the world. According to a previous phylogenetic analysis of ITS and 28S rDNA sequences, those two powdery mildews belong to a recently evolved group of Golovinomyces characterized by multiple host range expansions during their evolution. Both the ITS sequence and the morphological data indicate that the powdery mildew anamorph infecting Torenia also belongs to this group. It is likely that the powdery mildew infections of the experimental T. fournieri plants, native to south-east Asia, were the result of a very recent host range expansion of a polyphagous Golovinomyces because (i) T. fournieri is absent from our region, except as an experimental plant grown in the laboratory, (ii) the powdery mildew fungus infecting this exotic plant belongs to a group of Golovinomyces where host range expansion is a frequent evolutionary scenario, (iii) cross-inoculation tests showed that this pathogen is also able to infect other plant species, notably A. thaliana and tobacco, and (iv) no Golovinomyces species are known to infect T. fournieri anywhere in the world. Although host range expansion has often been proposed as a common evolutionary process in the Erysiphales, and also in other biotrophic plant pathogens, this has not been clearly demonstrated in any case studies so far. To our knowledge, this is the first convincing case of a host range expansion event in the Erysiphales.  相似文献   

18.
为明确毁灭炭疽菌Colletotrichum destructivum诱抗蛋白诱导烟草的抗病性及其作用,采用喷雾、摩擦接种方法及RT-PCR技术研究了诱抗蛋白的预防保护作用,以及烟草悬浮细胞经诱导后过氧化物酶(POD)、多酚氧化酶(PPO)、苯丙氨酸解氨酶(PAL)活性及脯氨酸(Pro)含量和病程相关基因表达的变化。结果表明,接种3、5和7 d后,该诱抗蛋白对烟草炭疽病的诱抗效果分别为58.00%、48.99%和49.65%,对烟草白粉病的诱抗效果分别为83.26%、80.76%和78.60%,并可以抑制烟草普通花叶病毒的复制及在寄主体内的扩增;经诱抗蛋白处理后,烟草悬浮细胞POD、PPO、PAL活性及Pro含量明显提高;诱抗蛋白能够诱导烟草病程相关蛋白基因PR-1a、PR-1b以及抗病信号传导途径关键基因NPR1的表达。表明毁灭炭疽菌诱抗蛋白可诱导烟草产生抗病性,可能与烟草悬浮细胞中POD、PAL、PPO的活性及Pro的含量提高以及相关病程基因表达有关。  相似文献   

19.
Downy mildew of pearl millet, caused by Sclerospora graminicola, is a devastating disease, resulting in high economic losses in the semi-arid regions of the world. Recently, induction of host plant resistance using biotic and abiotic inducers are included among disease management practices as an eco-friendly approach. Unsaturated fatty acids are considered as a new generation of plant disease resistance inducers. In the present study, six unsaturated fatty acids, viz. docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), arachidonic acid (AA), linolenic acid, linoleic acid and oleic acid, all originally detected in the zoospores of S. graminicola,were applied to seeds of susceptible cultivars of pearl millet to examine their ability to protect against downy mildew under greenhouse and field conditions. In greenhouse experiments, EPA and AA induced a maximum of 78.6% and 76.5% protection, whereas linoleic acid, DHA and linolenic acid provided up to 66.3%, 61.2% and 24.5% protection, respectively. Oleic acid was not effective in protecting pearl millet (only 5.1% protection). A time interval of four days between treatment of seeds and challenge inoculation was required to obtain optimum protection. Plants raised from treated seeds and challenge inoculated at the tillering and inflorescence stages showed enhanced resistance, resulting in higher grain yield compared to untreated plants of the same cultivar. Chitinase activity was found to be higher in susceptible seedlings of pearl millet after treatment with the fatty acids and pathogen inoculation than in seedlings only inoculated with the pathogen. This indicates that host defence responses are activated and thus that induced resistance is involved in the protection observed. The role of unsaturated fatty acids as activators of resistance against downy mildew in pearl millet is discussed.  相似文献   

20.
This study examines the effects of a vegetable fungicide on sugar beet powdery mildew (Erysiphe betae) and cucumber powdery mildew (Erysiphe cichoracearum). The formulations consisting of a dispersion of Brassicaceae meal in vegetable or mineral oils on infected leaves of sugar beet, reared in the greenhouse, and of musk melons cultivated under plastic tunnels, were tested in comparison to each oil taken separately. Both formulations containing Brassicaceae meals, caused 94% of conidia to be distorted while for the untreated group only 2% were distorted. Furthermore, the leaf area infected by E. betae was 56% for untreated plants and 2.7 and 9.9% respectively, for plants treated with meal containing mineral and vegetable oil. Vegetable oil considered separately or with Brassicaceae meals showed no phytotoxicity, while the formulations based on mineral oil showed a significantly lower fresh and dry weight on tomato plants. The low level or absence of phytotoxicity of plants treated with vegetable oil formulations suggests that to improve the efficacy of powdery mildew control, they could be used mixed with sulphur. The efficiency of the vegetable formulations in the powdery mildew control observed during these trials encourages further investigation on other parasitic fungi and foliar pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号