首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Axonal growth cones that cross the nervous system midline change their responsiveness to midline guidance cues: They become repelled by the repellent Slit and simultaneously lose responsiveness to the attractant netrin. These mutually reinforcing changes help to expel growth cones from the midline by making a once-attractive environment appear repulsive. Here, we provide evidence that these two changes are causally linked: In the growth cones of embryonic Xenopus spinal axons, activation of the Slit receptor Roundabout (Robo) silences the attractive effect of netrin-1, but not its growth-stimulatory effect, through direct binding of the cytoplasmic domain of Robo to that of the netrin receptor DCC. Biologically, this hierarchical silencing mechanism helps to prevent a tug-of-war between attractive and repulsive signals in the growth cone that might cause confusion. Molecularly, silencing is enabled by a modular and interlocking design of the cytoplasmic domains of these potentially antagonistic receptors that predetermines the outcome of their simultaneous activation.  相似文献   

2.
The axonal chemoattractant netrin-1 guides spinal commissural axons by activating its receptor DCC (Deleted in Colorectal Cancer). We have found that chemical inhibitors of metalloproteases potentiate netrin-mediated axon outgrowth in vitro. We have also found that DCC is a substrate for metalloprotease-dependent ectodomain shedding, and that the inhibitors block proteolytic processing of DCC and cause an increase in DCC protein levels on axons within spinal cord explants. Thus, potentiation of netrin activity by inhibitors may result from stabilization of DCC on the axons, and proteolytic activity may regulate axon migration by controlling the number of functional extracellular axon guidance receptors.  相似文献   

3.
During axon guidance, the ventral guidance of the Caenorhabditis elegans anterior ventral microtubule axon is controlled by two cues, the UNC-6/netrin attractant recognized by the UNC-40/DCC receptor and the SLT-1/slit repellent recognized by the SAX-3/robo receptor. We show here that loss-of-function mutations in clr-1 enhance netrin-dependent attraction, suppressing ventral guidance defects in slt-1 mutants. clr-1 encodes a transmembrane receptor protein tyrosine phosphatase (RPTP) that functions in AVM to inhibit signaling through the DCC family receptor UNC-40 and its effector, UNC-34/enabled. The known effects of other RPTPs in axon guidance could result from modulation of guidance receptors like UNC-40/DCC.  相似文献   

4.
Neural circuits are assembled through the coordinated innervation of pre- and postsynaptic partners. We show that connectivity between two interneurons, AIY and RIA, in Caenorhabditis elegans is orchestrated by a pair of glial cells that express UNC-6 (netrin). In the postsynaptic neuron RIA, the netrin receptor UNC-40 (DCC, deleted in colorectal cancer) plays a conventional guidance role, directing outgrowth of the RIA process ventrally toward the glia. In the presynaptic neuron AIY, UNC-40 (DCC) plays an unexpected and previously uncharacterized role: It cell-autonomously promotes assembly of presynaptic terminals in the immediate vicinity of the glial cell endfeet. These results indicate that netrin can be used both for guidance and local synaptogenesis and suggest that glial cells can function as guideposts during the assembly of neural circuits in vivo.  相似文献   

5.
Cyclic nucleotides regulate axonal responses to a number of guidance cues through unknown molecular events. We report here that Drosophila nervy, a member of the myeloid translocation gene family of A kinase anchoring proteins (AKAPs), regulates repulsive axon guidance by linking the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) to the Semaphorin 1a (Sema-1a) receptor Plexin A (PlexA). Nervy and PKA antagonize Sema-1a-PlexA-mediated repulsion, and the AKAP binding region of Nervy is critical for this effect. Thus, Nervy couples cAMP-PKA signaling to PlexA to regulate Sema-1a-mediated axonal repulsion, revealing a simple molecular mechanism that allows growing axons to integrate inputs from multiple guidance cues.  相似文献   

6.
The SAX-3/roundabout (Robo) receptor has SLT-1/Slit-dependent and -independent functions in guiding cell and axon migrations. We identified enhancer of ventral-axon guidance defects of unc-40 mutants (EVA-1) as a Caenorhabditis elegans transmembrane receptor for SLT-1. EVA-1 has two predicted galactose-binding ectodomains, acts cell-autonomously for SLT-1/Slit-dependent axon migration functions of SAX-3/Robo, binds to SLT-1 and SAX-3, colocalizes with SAX-3 on cells, and provides cell specificity to the activation of SAX-3 signaling by SLT-1. Double mutants of eva-1 or slt-1 with sax-3 mutations suggest that SAX-3 can (when slt-1 or eva-1 function is reduced) inhibit a parallel-acting guidance mechanism, which involves UNC-40/deleted in colorectal cancer.  相似文献   

7.
Plexins are cell surface receptors for semaphorin molecules, and their interaction governs cell adhesion and migration in a variety of tissues. We report that the Semaphorin 4D (Sema4D) receptor Plexin-B1 directly stimulates the intrinsic guanosine triphosphatase (GTPase) activity of R-Ras, a member of the Ras superfamily of small GTP-binding proteins that has been implicated in promoting cell adhesion and neurite outgrowth. This activity required the interaction of Plexin-B1 with Rnd1, a small GTP-binding protein of the Rho family. Down-regulation of R-Ras activity by the Plexin-B1-Rnd1 complex was essential for the Sema4D-induced growth cone collapse in hippocampal neurons. Thus, Plexin-B1 mediates Sema4D-induced repulsive axon guidance signaling by acting as a GTPase activating protein for R-Ras.  相似文献   

8.
Axonal and synaptic degeneration is a hallmark of peripheral neuropathy, brain injury, and neurodegenerative disease. Axonal degeneration has been proposed to be mediated by an active autodestruction program, akin to apoptotic cell death; however, loss-of-function mutations capable of potently blocking axon self-destruction have not been described. Here, we show that loss of the Drosophila Toll receptor adaptor dSarm (sterile α/Armadillo/Toll-Interleukin receptor homology domain protein) cell-autonomously suppresses Wallerian degeneration for weeks after axotomy. Severed mouse Sarm1 null axons exhibit remarkable long-term survival both in vivo and in vitro, indicating that Sarm1 prodegenerative signaling is conserved in mammals. Our results provide direct evidence that axons actively promote their own destruction after injury and identify dSarm/Sarm1 as a member of an ancient axon death signaling pathway.  相似文献   

9.
Regulated cleavage of a contact-mediated axon repellent   总被引:2,自引:0,他引:2  
Contact-mediated axon repulsion by ephrins raises an unresolved question: these cell surface ligands form a high-affinity multivalent complex with their receptors present on axons, yet rather than being bound, axons can be rapidly repelled. We show here that ephrin-A2 forms a stable complex with the metalloprotease Kuzbanian, involving interactions outside the cleavage region and the protease domain. Eph receptor binding triggered ephrin-A2 cleavage in a localized reaction specific to the cognate ligand. A cleavage-inhibiting mutation in ephrin-A2 delayed axon withdrawal. These studies reveal mechanisms for protease recognition and control of cell surface proteins, and, for ephrin-A2, they may provide a means for efficient axon detachment and termination of signaling.  相似文献   

10.
Axonal guidance and vascular patterning share several guidance cues, including proteins in the netrin family. We demonstrate that netrins stimulate proliferation, migration, and tube formation of human endothelial cells in vitro and that this stimulation is independent of known netrin receptors. Suppression of netrin1a messenger RNA in zebrafish inhibits vascular sprouting, implying a proangiogenic role for netrins during vertebrate development. We also show that netrins accelerate neovascularization in an in vivo model of ischemia and that they reverse neuropathy and vasculopathy in a diabetic murine model. We propose that the attractive vascular and neural guidance functions of netrins offer a unique therapeutic potential.  相似文献   

11.
12.
To determine the domains of the low-affinity nerve growth factor (NGF) receptor required for appropriate signal transduction, a series of hybrid receptors were constructed that consisted of the extracellular ligand-binding domain of the human epidermal growth factor (EGF) receptor (EGFR) fused to the transmembrane and cytoplasmic domains of the human low-affinity NGF receptor (NGFR). Transfection of these chimeric receptors into rat pheochromocytoma PC12 cells resulted in appropriate cell surface expression. Biological activity mediated by the EGF-NGF chimeric receptor was assayed by the induction of neurite outgrowth in response to EGF in stably transfected cells. Furthermore, the chimeric receptor mediated nuclear signaling, as evidenced by the specific induction of transin messenger RNA, an NGF-responsive gene. Neurite outgrowth was not observed with chimeric receptors that contained the transmembrane domain from the EGFR, suggesting that the membrane-spanning region and cytoplasmic domain of the low-affinity NGFR are necessary for signal transduction.  相似文献   

13.
Cytokine signaling is thought to require assembly of multicomponent signaling complexes at cytoplasmic segments of membrane-embedded receptors, in which receptor-proximal protein kinases are activated. Indeed, CD40, a tumor necrosis factor receptor (TNFR) family member, forms a complex containing adaptor molecules TRAF2 and TRAF3, ubiquitin-conjugating enzyme Ubc13, cellular inhibitor of apoptosis proteins 1 and 2 (c-IAP1/2), IkappaB kinase regulatory subunit IKKgamma (also called NEMO), and mitogen-activated protein kinase (MAPK) kinase kinase MEKK1 upon ligation. TRAF2, Ubc13, and IKKgamma were required for complex assembly and activation of MEKK1 and MAPK cascades. However, these kinases were not activated unless the multicomponent signaling complex translocated from CD40 to the cytosol upon c-IAP1/2-induced degradation of TRAF3. This two-stage signaling mechanism may apply to other innate immune receptors, accounting for spatial and temporal separation of MAPK and IKK signaling.  相似文献   

14.
Transduction of receptor signals by beta-arrestins   总被引:2,自引:0,他引:2  
The transmission of extracellular signals to the interior of the cell is a function of plasma membrane receptors, of which the seven transmembrane receptor family is by far the largest and most versatile. Classically, these receptors stimulate heterotrimeric G proteins, which control rates of generation of diffusible second messengers and entry of ions at the plasma membrane. Recent evidence, however, indicates another previously unappreciated strategy used by the receptors to regulate intracellular signaling pathways. They direct the recruitment, activation, and scaffolding of cytoplasmic signaling complexes via two multifunctional adaptor and transducer molecules, beta-arrestins 1 and 2. This mechanism regulates aspects of cell motility, chemotaxis, apoptosis, and likely other cellular functions through a rapidly expanding list of signaling pathways.  相似文献   

15.
The immunoglobulin G (IgG)-containing B lymphocyte antigen receptor (IgG-BCR) transmits a signal distinct from that of IgM-BCR or IgD-BCR, although all three use the same signal-transducing component, Igalpha/Igbeta. Here we demonstrate that the inhibitory coreceptor CD22 down-modulates signaling through IgM-BCR and IgD-BCR, but not that through IgG-BCR, because of the IgG cytoplasmic tail, which prevents CD22 phosphorylation. These results suggest that the cytoplasmic tail of IgG specifically enhances IgG-BCR signaling by preventing CD22-mediated signal inhibition. Enhanced signaling through IgG-BCR may be involved in efficient IgG production, which is crucial for immunity to pathogens.  相似文献   

16.
A chimeric, ligand-binding v-erbB/EGF receptor retains transforming potential   总被引:12,自引:0,他引:12  
Comparison of amino acid sequences from human epidermal growth factor (EGF) receptor and avian erythroblastosis virus erbB oncogene product suggests that v-erbB represents a truncated avian EGF receptor gene product. Although both proteins are transmembrane tyrosine kinases, the v-erbB protein lacks most of the extracellular ligand-binding domain and a 32-amino acid cytoplasmic sequence present in the human EGF receptor. To test the validity of the proposed origin of v-erbB and to investigate the functional significance of the deleted extracellular sequences, a chimeric gene encoding the extracellular and the transmembrane domain of the human EGF receptor joined to sequences coding for the cytoplasmic domain of the avian erbB oncogene product was constructed. When expressed in Rat1 fibroblasts, this reconstituted gene product (HER-erbB) was transported to the cell surface and bound EGF. Its autophosphorylation activity was stimulated by interaction with the ligand. Expression of the HER-erbB chimera led to anchorage-independent cell growth in soft agar and EGF-induced focus formation in Rat1 monolayers. Thus, it appears that v-erbB protein sequences in the chimeric receptor retain their transforming activity under the influence of the human extracellular EGF-binding domain.  相似文献   

17.
Neurotrophins are secreted growth factors critical for the development and maintenance of the vertebrate nervous system. Neurotrophins activate two types of cell surface receptors, the Trk receptor tyrosine kinases and the shared p75 neurotrophin receptor. We have determined the 2.4 A crystal structure of the prototypic neurotrophin, nerve growth factor (NGF), complexed with the extracellular domain of p75. Surprisingly, the complex is composed of an NGF homodimer asymmetrically bound to a single p75. p75 binds along the homodimeric interface of NGF, which disables NGF's symmetry-related second p75 binding site through an allosteric conformational change. Thus, neurotrophin signaling through p75 may occur by disassembly of p75 dimers and assembly of asymmetric 2:1 neurotrophin/p75 complexes, which could potentially engage a Trk receptor to form a trimolecular signaling complex.  相似文献   

18.
The Smad proteins mediate transforming growth factor-beta (TGFbeta) signaling from the transmembrane serine-threonine receptor kinases to the nucleus. The Smad anchor for receptor activation (SARA) recruits Smad2 to the TGFbeta receptors for phosphorylation. The crystal structure of a Smad2 MH2 domain in complex with the Smad-binding domain (SBD) of SARA has been determined at 2.2 angstrom resolution. SARA SBD, in an extended conformation comprising a rigid coil, an alpha helix, and a beta strand, interacts with the beta sheet and the three-helix bundle of Smad2. Recognition between the SARA rigid coil and the Smad2 beta sheet is essential for specificity, whereas interactions between the SARA beta strand and the Smad2 three-helix bundle contribute significantly to binding affinity. Comparison of the structures between Smad2 and a comediator Smad suggests a model for how receptor-regulated Smads are recognized by the type I receptors.  相似文献   

19.
beta-Arrestins bind to activated seven transmembrane-spanning (7TMS) receptors (G protein-coupled receptors) after the receptors are phosphorylated by G protein-coupled receptor kinases (GRKs), thereby regulating their signaling and internalization. Here, we demonstrate an unexpected and analogous role of beta-arrestin 2 (betaarr2) for the single transmembrane-spanning type III transforming growth factor-beta (TGF-beta) receptor (TbetaRIII, also referred to as betaglycan). Binding of betaarr2 to TbetaRIII was also triggered by phosphorylation of the receptor on its cytoplasmic domain (likely at threonine 841). However, such phosphorylation was mediated by the type II TGF-beta receptor (TbetaRII), which is itself a kinase, rather than by a GRK. Association with betaarr2 led to internalization of both receptors and down-regulation of TGF-beta signaling. Thus, the regulatory actions of beta-arrestins are broader than previously appreciated, extending to the TGF-beta receptor family as well.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号