首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We demonstrate enhanced generation of coherent light in the "water window" region of the soft x-ray spectrum at 4.4 nanometers, using quasi-phase-matched frequency conversion of ultrafast laser pulses. By periodically modulating the diameter of a gas-filled hollow waveguide, the phase mismatch normally present between the laser light and the generated soft x-ray light can be partially compensated. This makes it possible to use neon gas as the nonlinear medium to coherently convert light up to the water window, illustrating that techniques of nonlinear optics can be applied effectively in the soft x-ray region of the spectrum. These results advance the prospects for compact coherent soft x-ray sources for applications in biomicroscopy and in chemical spectroscopy.  相似文献   

2.
High-harmonic generation (HHG) traditionally combines ~100 near-infrared laser photons to generate bright, phase-matched, extreme ultraviolet beams when the emission from many atoms adds constructively. Here, we show that by guiding a mid-infrared femtosecond laser in a high-pressure gas, ultrahigh harmonics can be generated, up to orders greater than 5000, that emerge as a bright supercontinuum that spans the entire electromagnetic spectrum from the ultraviolet to more than 1.6 kilo-electron volts, allowing, in principle, the generation of pulses as short as 2.5 attoseconds. The multiatmosphere gas pressures required for bright, phase-matched emission also support laser beam self-confinement, further enhancing the x-ray yield. Finally, the x-ray beam exhibits high spatial coherence, even though at high gas density the recolliding electrons responsible for HHG encounter other atoms during the emission process.  相似文献   

3.
Modern laser technology has revolutionized the sensitivity and precision of spectroscopy by providing coherent light in a spectrum spanning the infrared, visible, and ultraviolet wavelength regimes. However, the generation of shorter-wavelength coherent pulses in the x-ray region has proven much more challenging. The recent emergence of high harmonic generation techniques opens the door to this possibility. Here we review the new science that is enabled by an ability to manipulate and control electrons on attosecond time scales, ranging from new tabletop sources of coherent x-rays to an ability to follow complex electron dynamics in molecules and materials. We also explore the implications of these advances for the future of molecular structural characterization schemes that currently rely so heavily on scattering from incoherent x-ray sources.  相似文献   

4.
Ionization is the dominant response of atoms and molecules to intense laser fields and is at the basis of several important techniques, such as the generation of attosecond pulses that allow the measurement of electron motion in real time. We present experiments in which metastable xenon atoms were ionized with intense 7-micrometer laser pulses from a free-electron laser. Holographic structures were observed that record underlying electron dynamics on a sublaser-cycle time scale, enabling photoelectron spectroscopy with a time resolution of almost two orders of magnitude higher than the duration of the ionizing pulse.  相似文献   

5.
Photoelectrons excited by extreme ultraviolet or x-ray photons in the presence of a strong laser field generally suffer a spread of their energies due to the absorption and emission of laser photons. We demonstrate that if the emitted electron wave packet is temporally confined to a small fraction of the oscillation period of the interacting light wave, its energy spectrum can be up- or downshifted by many times the laser photon energy without substantial broadening. The light wave can accelerate or decelerate the electron's drift velocity, i.e., steer the electron wave packet like a classical particle. This capability strictly relies on a sub-femtosecond duration of the ionizing x-ray pulse and on its timing to the phase of the light wave with a similar accuracy, offering a simple and potentially single-shot diagnostic tool for attosecond pump-probe spectroscopy.  相似文献   

6.
Precision spectroscopy at ultraviolet and shorter wavelengths has been hindered by the poor access of narrow-band lasers to that spectral region. We demonstrate high-accuracy quantum interference metrology on atomic transitions with the use of an amplified train of phase-controlled pulses from a femtosecond frequency comb laser. The peak power of these pulses allows for efficient harmonic upconversion, paving the way for extension of frequency comb metrology in atoms and ions to the extreme ultraviolet and soft x-ray spectral regions. A proof-of-principle experiment was performed on a deep-ultraviolet (2 x 212.55 nanometers) two-photon transition in krypton; relative to measurement with single nanosecond laser pulses, the accuracy of the absolute transition frequency and isotope shifts was improved by more than an order of magnitude.  相似文献   

7.
A high-temperature plasma is created when an intense laser pulse is focused onto the surface of a solid. An ultrafast pulse of x-ray radiation is emitted from such a plasma when the laser pulse length is less than a picosecond. A high-speed streak camera detector was used to determine the duration of these x-ray pulses, and computer simulations of the plasmas agree with the experimental results. Scaling laws predict that brighter and more efficient x-ray sources will be obtained by the use of more intense laser pulses. These sources can be used for time-resolved x-ray scattering studies and for the development of x-ray lasers.  相似文献   

8.
Femtosecond synchrotron pulses were generated directly from an electron storage ring. An ultrashort laser pulse was used to modulate the energy of electrons within a 100-femtosecond slice of the stored 30-picosecond electron bunch. The energy-modulated electrons were spatially separated from the long bunch and used to generate approximately 300-femtosecond synchrotron pulses at a bend-magnet beamline, with a spectral range from infrared to x-ray wavelengths. The same technique can be used to generate approximately 100-femtosecond x-ray pulses of substantially higher flux and brightness with an undulator. Such synchrotron-based femtosecond x-ray sources offer the possibility of applying x-ray techniques on an ultrafast time scale to investigate structural dynamics in condensed matter.  相似文献   

9.
Subfemtosecond light pulses can be obtained by superposing several high harmonics of an intense laser pulse. Provided that the harmonics are emitted simultaneously, increasing their number should result in shorter pulses. However, we found that the high harmonics were not synchronized on an attosecond time scale, thus setting a lower limit to the achievable x-ray pulse duration. We showed that the synchronization could be improved considerably by controlling the underlying ultrafast electron dynamics, to provide pulses of 130 attoseconds in duration. We discuss the possibility of achieving even shorter pulses, which would allow us to track fast electron processes in matter.  相似文献   

10.
Nonlinear optics plays a central role in the advancement of optical science and laser-based technologies. We report on the confinement of the nonlinear interaction of light with matter to a single wave cycle and demonstrate its utility for time-resolved and strong-field science. The electric field of 3.3-femtosecond, 0.72-micron laser pulses with a controlled and measured waveform ionizes atoms near the crests of the central wave cycle, with ionization being virtually switched off outside this interval. Isolated sub-100-attosecond pulses of extreme ultraviolet light (photon energy approximately 80 electron volts), containing approximately 0.5 nanojoule of energy, emerge from the interaction with a conversion efficiency of approximately 10(-6). These tools enable the study of the precision control of electron motion with light fields and electron-electron interactions with a resolution approaching the atomic unit of time ( approximately 24 attoseconds).  相似文献   

11.
Ultrabroad coherent comb-like optical spectra spanning several octaves are a chief ingredient in the emerging field of attoscience. We demonstrate generation and guidance of a three-octave spectral comb, spanning wavelengths from 325 to 2300 nanometers, in a hydrogen-filled hollow-core photonic crystal fiber. The waveguidance results not from a photonic band gap but from the inhibited coupling between the core and cladding modes. The spectrum consists of up to 45 high-order Stokes and anti-Stokes lines and is generated by driving the confined gas with a single, moderately powerful (10-kilowatt) infrared laser, producing 12-nanosecond-duration pulses. This represents a reduction by six orders of magnitude in the required laser powers over previous equivalent techniques and opens up a robust and much simplified route to synthesizing attosecond pulses.  相似文献   

12.
Electrons emit light, carry electric current, and bind atoms together to form molecules. Insight into and control of their atomic-scale motion are the key to understanding the functioning of biological systems, developing efficient sources of x-ray light, and speeding up electronics. Capturing and steering this electron motion require attosecond resolution and control, respectively (1 attosecond = 10(-18) seconds). A recent revolution in technology has afforded these capabilities: Controlled light waves can steer electrons inside and around atoms, marking the birth of lightwave electronics. Isolated attosecond pulses, well reproduced and fully characterized, demonstrate the power of the new technology. Controlled few-cycle light waves and synchronized attosecond pulses constitute its key tools. We review the current state of lightwave electronics and highlight some future directions.  相似文献   

13.
The production of spin-polarized hydrogen atoms from the photodissociation of hydrogen chloride with circularly polarized 193-nanometer light is inferred from the measurement of the complete angular momentum distributions of ground state Cl(2P3/2)and excited state Cl(2P1/2)cofragments by slice imaging. The experimentally measured and ab initio predicted a q(k) (p)parameters, which describe the single-surface and multiple-surface-interference contributions to the angular momentum distributions, are in excellent agreement. For laser pulses longer than about 0.7 ns, the polarization of the electron and the proton are both 36%.  相似文献   

14.
X-ray holography offers the possibility of three-dimensional microscopy with resolution higher than that of the light microscope and with contrast based on x-ray edges. In principle, the method is especially advantageous for biological samples if x-rays in the wavelength region between the carbon and oxygen K edges are used. However, until now the achieved resolution has not exceeded that of the light microscope because of the poor coherence properties of the x-ray sources and the low resolution of the detectors that were available. With a recently developed x-ray source based on an undulator on an electron storage ring, and high resolution x-ray resist, a hologram has been recorded at about 400-angstrom resolution. The experiment utilized x-rays with wavelengths of 24.7 angstroms and required a 1-hour exposure of the pancreatic zymogen granules under study.  相似文献   

15.
We report the direct observation by x-ray diffraction of a photoinduced paraelectric-to-ferroelectric structural phase transition using monochromatic 100-picosecond synchrotron pulses. It occurs in tetrathiafulvalene-p-chloranil, a charge-transfer molecular material in which electronic and structural changes are strongly coupled. An optical 300-femtosecond laser pulse switches the material from a neutral to an ionic state on a 500-picosecond time scale and, by virtue of intrinsic cooperativity, generates self-organized long-range structural order. The x-ray data indicate a macroscopic ferroelectric reorganization after the laser irradiation. Refinement of the structures before and after laser irradiation indicates structural changes at the molecular level.  相似文献   

16.
Electric field x-ray scattering measurements on tobacco mosaic virus   总被引:1,自引:0,他引:1  
The feasibility of electric field x-ray solution scattering with biological macromolecules was investigated. Electric field pulses (1.25 to 5.5 kilovolts per centimeter) were used to orient tobacco mosaic virus in solution (4.5 milligrams per milliliter). The x-ray scattering is characteristic of isolated oriented particles. The molecular orientation and its field-free decay were monitored with a time resolution of 2 milliseconds by means of synchrotron radiation and a multiwire proportional area detector. The method should also be applicable to synthetic polymers and inorganic colloids.  相似文献   

17.
Phase-matched harmonic conversion of visible laser light into soft x-rays was demonstrated. The recently developed technique of guided-wave frequency conversion was used to upshift light from 800 nanometers to the range from 17 to 32 nanometers. This process increased the coherent x-ray output by factors of 10(2) to 10(3) compared to the non-phase-matched case. This source uses a small-scale (sub-millijoule) high repetition-rate laser and will enable a wide variety of new experimental investigations in linear and nonlinear x-ray science.  相似文献   

18.
Many hypotheses have been postulated regarding the early evolution of the mammalian brain. Here, x-ray tomography of the Early Jurassic mammaliaforms Morganucodon and Hadrocodium sheds light on this history. We found that relative brain size expanded to mammalian levels, with enlarged olfactory bulbs, neocortex, olfactory (pyriform) cortex, and cerebellum, in two evolutionary pulses. The initial pulse was probably driven by increased resolution in olfaction and improvements in tactile sensitivity (from body hair) and neuromuscular coordination. A second pulse of olfactory enhancement then enlarged the brain to mammalian levels. The origin of crown Mammalia saw a third pulse of olfactory enhancement, with ossified ethmoid turbinals supporting an expansive olfactory epithelium in the nasal cavity, allowing full expression of a huge odorant receptor genome.  相似文献   

19.
The direct observation of molecular dynamics initiated by x-rays has been hindered to date by the lack of bright femtosecond sources of short-wavelength light. We used soft x-ray beams generated by high-harmonic upconversion of a femtosecond laser to photoionize a nitrogen molecule, creating highly excited molecular cations. A strong infrared pulse was then used to probe the ultrafast electronic and nuclear dynamics as the molecule exploded. We found that substantial fragmentation occurs through an electron-shakeup process, in which a second electron is simultaneously excited during the soft x-ray photoionization process. During fragmentation, the molecular potential seen by the electron changes rapidly from nearly spherically symmetric to a two-center molecular potential. Our approach can capture in real time and with angstrom resolution the influence of ionizing radiation on a range of molecular systems, probing dynamics that are inaccessible with the use of other techniques.  相似文献   

20.
Reversible structural changes of a nanostructure were measured nondestructively with subpicometer spatial and subpicosecond temporal resolution via x-ray diffraction (XRD). The spatially periodic femtosecond excitation of a gallium arsenide/aluminum gallium arsenide superlattice results in coherent lattice motions with a 3.5-picosecond period, which was directly monitored by femtosecond x-ray pulses at a 1-kilohertz repetition rate. Small changes (DeltaR/R = 0.01) of weak Bragg reflexes (R = 0.005) were detected. The phase and amplitude of the oscillatory XRD signal around a new equilibrium demonstrate that displacive excitation of the zone-folded acoustic phonons is the dominant mechanism for strong excitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号