首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composition and pattern of weed flora in arable fields are determined by their seedbank structure; but the influence of fallow management practices on weed seedbank structure is presently unknown. The objective of this study was to investigate weed seedbank characteristics and weed population dynamics in arable fields in natural and planted-fallow systems. The study plots were at Mbaise, a densely populated area of southeastern Nigeria, where farmers regenerate their exhausted soils by maintaining planted fallows of Dactyladenia barteri (Hook. F. ex Oliv.) Prance & F. White, and at Umuahia, a less-densely populated area in the same region, where farmers depend on natural bush fallow for soil regeneration. The effect of three years of fallow on the weed flora of arable fields in the two fallow management systems differed remarkably. The first flush of weeds on fields that were cultivated after three years of planted D. barteri fallow (Mbaise) consisted of 80% broadleaf weeds, 7% grass weeds and 13% sedges. On the other hand, the first flush of weeds on the natural bush fallow fields (Umuahia) of the same fallow duration as the D. barteri fallow system consisted of 17% broadleaf weeds, 70% grasses and 13% sedges. Three years of planted fallow caused 36% decrease in weed seedbank at Mbaise relative to the cropped field while the same duration of natural bush fallow caused a 31% increase in weed seedbank at Umuahia. These results show that the planted D. barteri fallow system has a higher potential to reduce weed pressure in smallholder agriculture than the natural bush fallow system and may explain in part why farmers in this humid forest zone have adopted the practice. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
在撒哈拉以南的非洲地区,黄独脚金寄生杂草(Strigahermonthica)侵扰是限制小农产自给性农业生产的主要因素之一。土壤肥力低加之总体环境退化是寄生杂草侵扰产生的重要原因。引入改良的耕作制度来解决寄生杂草侵扰和土壤肥力下降的问题势在必行。本文对肯尼亚西部双峰高原地区内,用豆科植物--印度田菁改良的休耕地对玉米产量和农田寄生杂草侵扰的作用进行了研究。实验处理分阶段进行,处理包括田菁改良6和18个月的休耕地、未经耕作自然植物再生6和18个月的休耕地、连续种植玉米未施肥的耕地和连续种植玉米同时施加氮和磷肥的耕地。结果表明,与未施肥玉米地相比,田菁改良休耕地明显(p〈0.5)增加玉米产量.除草管理降低了第一季度(428000±63000株·hm-2)、第二季度(51000±1500株·hm-2)玉米地寄生杂草植株种群。实验周期内,除草管理降低玉米地土壤中寄生杂草种子种群数。短期田菁改良休耕地对玉米产量的促进作用明显好于未施肥的玉米地,但是短期杂草休耕地对玉米产量无显著影响。种植玉米和除草控制寄生杂草效果要好于休耕。  相似文献   

3.
Shortened fallows have resulted in declining upland rice yields in slash-and-burn upland rice systems in northern Laos. We studied the benefit of planted legume fallows for rice productivity, weeds, and soil nitrogen and phosphorus availability. Four systems were evaluated over a 5-year period: 1-year fallow with native species, 1-year Cajanus cajan fallow, 1-year Leucaena leucocephala fallow, and continuous annual rice cropping. Rice was grown either once each year as continuous annual cropping or in alternate years of 2001, 2003, and 2005. C. cajan and L. leucocephala were sown with rice during the 2001 growing season. In subsequent years, L. leucocephala regenerated from root stock and did not have to be resown, whereas C. cajan was resown in 2003. Establishment of either C. cajan or L. leucocephala had no significant effect on rice yield in 2001, and rice yields ranged from 2.0 to 2.3 t/ha. Rice yields declined rapidly in succeeding years, and rice yields in the four systems ranged from 0.7 to 1.1 t/ha in 2003 and from 0.3 to 0.5 t/ha in 2005. Although two planted fallow systems increased nitrogen input because of greater biomass accumulation in 2003 and 2005 and soil phosphorus availability was higher following L. leucocephala fallow in 2005, there were no significant differences in rice yields among the four systems in either year. Weed biomass during the rice growing season increased each year in all systems and increased more rapidly for continuous annual rice cropping, in which the dominant weed species was Ageratum conyzoides L. Among the other three systems, there were no significant differences in the weed biomass in 2003 and 2005. We conclude that C. cajan and L. leucocephala as 1-year fallows do not offset the negative effects of increased cropping intensity on rice yield in this region.  相似文献   

4.
Purely annual crop-based production systems have limited scope to be sustainable under upland conditions prone to infestation by Imperata cylindrica if animal or mechanical tillage is not available. Farmers who must rely on manual cultivation of grassland soils can achieve some success in suppressing Imperata for a number of years using intensive relay and intercropping systems that maintain a dense soil cover throughout the year, especially where leguminous cover crops are included in the crop cycle. However, labour investment increases and returns to labour tend to decrease in successive years as weed pressure intensifies and soil quality declines.Continuous crop production has been sustained in many Imperata-infested areas where farmers have access to animal or tractor draft power. Imperata control is not a major problem in such situations. Draft power drastically reduces the labour requirements in weed control. Sustained crop production is then dependent more solely upon soil fertility management. Mixed farming systems that include cattle may also benefit from manure application to the cropped area, and the use of non-cropped fallow areas for grazing. In extensive systems where Imperata infestation is tolerated, cassava or sugarcane are often the crops with the longest period of viable production as the land degrades.On sloping Imperata lands, conservation farming practices are necessary to sustain annual cropping. Pruned tree hedgerows have often been recommended for these situations. On soils that are not strongly acidic they may consistently improve yields. But labour is the scarcest resource on small farms and tree-pruning is usually too labour-intensive to be practical. Buffer strip systems that provide excellent soil conservation but minimize labour have proven much more popular with farmers. Prominent among these are natural vegetative strips, or strips of introduced fodder grasses.The value of Imperata to restore soil fertility is low, particularly compared with woody secondary growth or Compositae species such as Chromolaena odorata or Tithonia diversifolia. Therefore, fallow-rotation systems where farmers can intervene to shift the fallow vegetation toward such naturally-occurring species, or can manage introduced cover crop species such as Mucuna utilis cv. cochinchinensis, enable substantial gains in yields and sustainability. Tree fallows are used successfully to achieve sustained cropping by some upland communities. A variation of this is rotational hedgerow intercropping, where a period of cropping is followed by one or more years of tree growth to generate nutrient-rich biomass, rehabilitate the soil, and suppress Imperata. These options, which suit farmers in quite resource-poor situations, should receive more attention.  相似文献   

5.
In many parts of Africa, farmers periodically fallow their land, which is allowing land to lie idle for one or more seasons primarily to restore its fertility. This paper assesses the feasibility, profitability, and acceptability of improved tree fallows, which are the deliberate planting of trees or shrubs in rotation with crops to improve soil fertility. Improved tree fallows are assessed at different stages of intensification, drawing on farmers' experiences in three different settings. In extensive systems where land is plentiful and existing fallows with natural regeneration of vegetation restore soil fertility (southern Cameroon), farmers have little incentive to invest labor in establishing improved fallows. Where population density is higher and fallow periods are decreasing and farmers perceive a decline in soil fertility (eastern Zambia), improved fallows have great potential. In intensive systems where land is unavailable and cropping is often continuous (western Kenya), many farmers find it difficult to fallow land. Even here, there is scope for introducing improved fallows, especially among farmers who have off-farm income. Labor constraints and institutional support were found to greatly influence the feasibility of improved fallows. In intensive systems, low returns to cropping, low base yields, and a high opportunity cost of labor increase the returns to improved fallows. Principal factors associated with acceptability include past perception of soil fertility problems, past use of measures for improving soil fertility, current fallowing, economic importance of annual cropping, and wealth level. Adoption potential may be increased by reducing fallow periods, intercropping trees and crops during the first season, reducing establishment costs, producing higher value by-products, and by encouraging farmers to test improved fallows on high-value crops.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

6.
Planted fallows are an alternative to the unsustainable bush fallow for improved soil and weed management in the tropics. However, the interactive effects of planted fallows and tillage on the weed seedbank are not well documented in the tropical environment. The effect of fallow type and tillage on the weed seedbank in the soil was assessed in 1995 and 1996 at Ibadan, southwest Nigeria. The planted fallow species consisted of a herbaceous legume (Pueraria phaseoloides) and three woody legumes (Acacia auriculiformis, Leucaena leucocephala, and Senna siamea). Natural bush fallow and continuous cassava/maize plots were controls. Tillage treatments were minimum tillage and mounding. Continuous maize/cassava plots had the largest weed seedbank in both years. After six years of continuous fallow, the weed seedbank was 86% lower in A. auriculiformis, 79% in P. phaseoloides, 68% in S. siamea, 53% in L. leucocephala, and 35% in natural bush fallow plots than in continuously cultivated plots. Compared to minimum tillage, mounding reduced the seedbank by 47% in 1995 and 66% in 1996. Redundancy analysis showed that tillage contributed significantly to the variance in species composition. Euphorbia hyssopifolia, E. heterophylla, and Cynodon dactylon showed no preference in terms of tillage. Perennial and annual grasses (Digitaria horizontalis, Eleusine indica, Paspalum orbiculare, Cynodon dactylon) with Cyathula prostrata and Desmodium scorpiurus, an annual and perennial broadleaf, respectively, were most abundant in the seedbank of continuously cultivated plots. There were more annual broadleaf weeds in the seedbank of planted fallow plots than in the control plots. Species diversity of the seedbank was greatest in plots under minimum tillage. Mounding as a seedbed preparation method, especially within the improved fallow system, could reduce the high weed pressure experienced by smallholder farmers in southwest Nigeria.  相似文献   

7.
The ecological importance of fallowing to swidden (slash and burn) agriculture is well known. Cyclic agroforestry systems which emphasize utilization of the fallow cycle should, where appropriate, consider the ecologic processess of site recovery, so as not to impair the productivity of the subsequent swidden cycle. this artical discusses the ecologic ‘fit’ of a cyclic swidden-fallow management scheme into swidden cultivation and fallow succession. Such a fit suggests a reciprocally reinforcing situation between this agroforestry design and processes involved in site recovery. Observed among some indigenous and colonist inhabitants of the Peruvian Amazon, this system produces fallow crops and products, while enhancing site nutrient recovery. The economic benefits of this scheme have recently been reported (Denevan and Padoch, n.d.) while the ecologic attributes involved in promoting site recovery have not; primarily these include:
  1. Less destruction of the nutrient cycling root-mat in the swidden cycle, and its quicker re-formation in the fallow cycle.
  2. Discouraging the establishment of exotic, pantropical weeds and grasses such as imperata, while encouraging the colonization of local, early successional species.
  3. Encouraging the earlier establishment of woody plants in abandoned swiddens.
  4. A natural litterfall higher in nutrients than in unmanaged fallows.
  5. Additions of ‘slash’ litterfall higher in nutrient content than natural litterfall in the proximity of valuable managed plants.
  6. The increased capacity of the managed stand to scavenge limiting nutrients such as N and P from, and leach unneeded quantities of non-limiting nutrients such as K, Ca and Mg to, thoughfall.
  7. Increasing the alkalinity of throughfall, possibly resulting in less soil cation leaching in managed fallows.
  8. Staggering seed production, germination and maturation times of the rapid nutrient sycling softwood trees.
  9. Increasing the spontaneously occuring abundance of valuable fallow plants with management of successive fallow cycles, thereby possibly reducing the labor requirement, and increasing the value of this agroforestry scheme over time.
  相似文献   

8.
Striga hermonthica is a major constraint to smallholder subsistence agriculture production in the sub-Saharan African region. Low soil fertility and overall environmental degradation has contributed to the build-up of the parasitic weed infestation. Improved cropping systems have to be introduced to address the interrelated problems of S. hermonthica and soil fertility decline. Thus, the effects of improved fallow with leguminous shrub Sesbania sesban on maize yields and levels of S. hermonthica infestation on farm land in the bimodal highlands of western Kenya were investigated. The experimental treatments were arranged in a phased entry, and randomized complete block scheme were six months Sesbania fallow, 18 months Sesbania fallow, six months natural fallow consisting of regrowth of natural vegetation without cultivation, 18 months natural fallow, continuous maize cropping without fertilizer application, and continuous maize cropping with P and N fertilization. Results show that Sesbania fallows significantly (p<0.05) increase maize yield relative to continuous unfertilized maize. S. hermonthica plant populations decrease in continuous maize between the first season (mean = 428 000 ± 63 000 ha−1) and second season (mean=51 000 ± 15 000 ha−1), presumably in response to good weed management. S. hermonthica seed populations in the soil decrease throughout the duration of the experiment in the continuous maize treatments. Short-duration Sesbania fallows can provide modest yield improvements relative to continuous unfertilized maize, but short-duration weedy fallows are ineffective. Continuous maize cultivation with good weed control may provide more effective S. hermonthica control than fallowing.  相似文献   

9.
Managed short-duration fallows may have the potential to replace longer fallows in regions where population density no longer permits slow natural fallow successions. The purpose of fallows is not only to improve subsequent crop performance but also to restore soil fertility and organic matter content for the long term. We therefore evaluated the soil organic matter and nutrient flows and fractions in a short fallow experiment managed in the western Kenya highlands, and also compared the experimental area with a 9–12-yr-oldadjacent natural bush fallow. The factorial agroforestry field experiment with four land-use and two P fertilizer treatments on a Kandiudalfic Eutrudox showed that 31-wk managed fallows with Tithonia diversifolia(Hemsley) A. Gray and Crotalaria grahamiana Wight &Arn. improved soil fertility and organic matter content above those of a natural weed fallow and continuous maize (Zea mays L.). Post-fallow maize yields were also improved, although cumulative three-season increases in yield were small (0–1.2 Mg ha−1) when the yield foregone during the fallow season was accounted for. Improvements in yield and soil quality could be traced to quantity or quality of biomass recycled by the managed fallows. The non-woody recycled biomass produced by the continuous maize, weed fallow, and tithonia treatments was near 2Mg ha−1, whereas crotalaria produced three times more recyclable biomass and associated N and P. Increases in topsoil N due to the fallows may have been attributable in part to deep acquisition and recycling of N by the fallows. Particulate macro-organic matter produced by the fallows contained sufficient N(30–50 kg ha−1) to contribute substantially to maize production. Organic Paccumulation (29 kg ha−1) similarly may play a significant role in crop nutrition upon subsequent mineralization. The effect of the P fertilizer application on soil properties and maize yield was constant for all land-use systems (i.e., no land-use system × P fertilizer interactions occurred). There was an indication that tithonia may have stimulated infestation of Striga hermonthica (Del.) Benth., and care must be taken to evaluate the full effects of managed fallows over several seasons. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Weed suppression is an important reason for fallowing in swidden systems. Recently, in Laos, an increase in weeds and resulting increase in labor input has become a problem; however, causal factors influencing weed growth and weeding labor other than fallow period have yet to be fully examined. Therefore, an experimental research on swidden weeds, combining a forest survey and interviews with local farmers, was conducted in a mountain village in northern Laos where swidden agriculture is practiced as a major means of livelihood. Weed amount, weed composition and time required for weeding were found to be more influenced by fallow vegetation than fallow period. Bushy vegetation in a short fallow field was shown to lead to abundance of herbaceous weeds, resulting in higher labor input. There was a possibility that increases in some bamboo species were a cause of recent weed increases. Based on the results, we suggest that maintaining a minimum fallow period of forest fallowing, with fallow management to suppress bamboo and promote tree growth may be effective in reducing labor input in swidden agriculture.  相似文献   

11.
Chromolaena odorata, introduced to Laos in the 1930s, has become the most abundant weed and fallow species in slash-and-burn fields over a wide range of land use systems, elevation, and pH ranges. Regeneration from roots, high seed production and easy dispersal allow for the rapid colonization of fields in the initial fallow period. At rice harvest, after a 1-year and a 2-year fallow, the total aboverground biomass in monitoring plots was 1.4, 10, and 15.4 t ha–1, with 16, 48, and 29% contribution byC. odorata, respectively. With progressing fallow periodC. odorata is gradually replaced by tree and bamboo species. Slash-and-burn farmers preferredC. odorata over other fallow species common in their fields.Chromolaena odorata is an excellent fallow species considering its fast expansion after crop harvest, high biomass production, weed suppression, and fast decomposition rate. Some of these properties may, however, become a serious disadvantage when farmers gradually change to land use systems that integrate grazed fallow, crop rotation, and/or fruit and timber plantations.  相似文献   

12.
Short-term improved fallow technology, which is characterised by deliberate planting of fast growing N2 fixing legumes species in rotation with crops is currently being promoted for soil fertility replenishment in the small holder farms in the tropics. Recent research and extension efforts on this technology have mainly focused on a narrow range of species. There is a need to evaluate more alternative species in order to diversify the options available to farmers and hence reduce the risks of over dependence on fewer species. We evaluated twenty-two shrubby and herbaceous species for their site adaptability, biomass and nutrient accumulation, biomass quality and maize yield response to soil incorporated plant biomass after the fallow (six and twelve months) in three different field experiments on a Kandiudalfic Eutrudox in western Kenya. Species which yielded large amounts ofthe most biomass N adequate for two to three maize crops were Sesbania sesban, Tephrosia vogelii, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii and Macroptilium atropurpureum. Most fallow species tested recycled <22 kg P ha–1 in plant biomass. Significant amounts of K were recycled through plant biomass of Sesbania sesban, Tithonia diversifolia, Tephrosia candida, Crotalaria grahamiana, Dodonea viscosa, Colopogonium mucunoides, Desmondium uncinatum, Glycine wightii, Macroptilium atropurpureum and natural weed fallows. Recyclable K in plant biomass ranged between 4 and 188 kg ha–1Two methods of establishing S. sesban and T. vogelii fallows did not result in significant differences in biomass and nutrient yields at the end of the fallow period. Shrubby species gave Hhigh lignin (>10%) and polyphenol (>2%) concentrations. were found only in the shrubby species, and the (Ppolyphenol + lignin ): N ratio varied widely (0.3–5) amongst the species. evaluated. Maize yield increased by two-fold in the first season following the fallow phase compared with continuous maize for most species. Results suggest that there are a wide variety of legumes that could be used for use in improved fallow technologies aimed at ameliorating nutrient degraded soils and subsequently enhancing crop yields.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

13.
Food crop production in highly populated areas around major cities of the humid lowlands of Cameroon is highly dependent on a fallow system (two–four years duration) mainly of Chromolaena odorata. Where such fallows have been in use for some time, problems of soil fertility with declining crop yields and higher incidence of weeds were reported. Although improved fallows have been widely adopted in sub-humid zones, there is no evidence of successful adoption of agroforestry-based technologies for soil fertility improvement in the humid forest areas. In response, ICRAF has developed a short fallow system with Cajanus cajan for soil fertility improvement in the humid lowlands of West Africa. Farmers' response to these cajanus fallows is positive. Benefits reported are higher crop yields after cajanus fallows compared to natural fallows, clearing of cajanus is easier and the shrubs shade out the weeds. Women particularly appreciate the technology for its low labour demand and for the fact that these shrubs can be planted on land with less secure tenure. Economic analysis of cajanus fallows compared to natural fallow over six years shows that cajanus fallows are profitable under most tested scenarios, both in terms of returns to land and to labour. It seems that improved fallows with Cajanus cajan are a good response to shortening natural fallows for households in the humid lowlands of Cameroon with land constraints. However, wider dissemination of the technology requires a targeted extension approach and adequate seed supply strategies, which should be based on joint efforts between farmers, extension services and research.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

14.
Ecosystem fertility and fallow function in the humid and subhumid tropics   总被引:10,自引:4,他引:6  
The regeneration of natural vegetation (fallowing) is a traditional practice for restoring fertility of agricultural land in many parts in the tropics. As a result of increasing human population and insufficient fertilizer inputs, the ecosystem fertility functions of traditional fallows must now be improved upon via the use of managed fallows. Interactions between vegetation and soil determine nutrient losses and gains in crop—fallow systems and are influenced by fallow species, patterns and rates of biomass allocation, and crop and fallow management. Nutrient losses occur through offtake in crop harvests during the cropping phase and through leaching, runoff, and erosion in the cropping phase and the initial stage of fallows $#x2014; when nutrient availability exceeds nutrient demand by vegetation. Gains in nutrient stocks in later stages of fallow are generally more rapid on soils with high than low base status due to greater quantities of weatherable minerals and lack of constraints to N2 fixation, deep rooting, and retrieval of subsoil nutrients by fallow vegetation. On low base status soils (exchangeable Ca < 1 cmolc kg–1), N2 fixation and atmospheric inputs are likely to be the main sources of nutrient additions. On high base status soils limited by N, gains in N stocks by inputs from N2 fixation and retrieval of subsoil nitrate can occur relatively rapidly; hence short-term fallows can often improve crop performance. Large losses of Ca associated with soil organic matter (SOM) mineralization and soil acidification during cropping and fallow establishment, combined with chemical barriers to root penetration, suggest that long-duration fallows (> 5 yr) are needed for recovery of cation stocks and crop performance on low base status soils. On both soils, however, residual benefits of fallows on crop yields usually last less than three crops.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
Improved fallow is a technology that can help to raise agricultural productivity in systems of poor soil fertility and low financial capital. Models, once calibrated, can be used to investigate a range of improved fallow systems relatively quickly and at relatively low cost, helping to direct experimental research towards promising areas of interest. Six fallow crop rotations were simulated using the WaNuLCAS model in a bimodal rainfall setting in Kenya over a 10 year period: (A) alternating fallow and crop seasons, (B) one season fallow followed by three seasons crop, (C) one season fallow followed by four seasons crop, (D–F) 1–3 seasons fallow periods followed by 3–5 seasons crop. The strategies were tested using a number of fallow growth rates, soil clay contents, and rainfall amounts to determine the interaction of fallow rotation and biophysical variables on maize (Zea mays (L.)) yield and sustainability (organic matter, N2 fixation, leaching). The best simulated fallow strategies doubled maize yield compared to continuous maize over a 10 year period. Across all biophysical treatments strategy A and B of no more than three consecutive cropping seasons and of one consecutive fallow season yielded the most maize. This was because fallow benefits were largely due to the immediate fallow soil fertility benefit (IFB) rather than the cumulative benefit (CFB). The difference in yield between the two strategies was through a balance between (1) their interaction with the biophysical variables affecting accumulation of organic matter, hence increasing soil fertility and (2) the extra intrinsic soil fertility used for maize productivity by the inclusion of more cropping seasons within the rotation. We propose the following conceptual framework to manage fallows for maximum maize yield: when environmental factors are strongly limiting to fallow and crop growth then fallow strategy A would be the best strategy to employ (less risk but more labour) and when factors are less limiting then strategy B would be the best to employ.  相似文献   

16.
Improved fallows are the deliberate planting of fast-growing species — usually legumes — for rapid replenishment of soil fertility. Improved fallows are rapidly spreading in several regions of the tropics as a sensible way for in situ accumulation of large quantities of N in vegetation and soil, as well as for providing sustainability enhancing services. Research on improved fallows increased after the mid 1980s with the development of what is known as the second soil fertility paradigm, which is based on sustainability considerations. Many lessons have emerged from short-term improved fallows (<5 years duration). These include the diversity of farm sizes where improved fallows are used, the advantage of sequential versus simultaneous systems, the utilization of dry seasons unfavorable for crop production, the comparative advantages of woody versus herbaceous leguminous fallows, the magnitude of N accumulation, the strategic use of N fertilizers, and the importance of P. Other key services provided by fallows include fuelwood production, recycling of nutrients besides N, provision of a C supply to soil microorganisms, weed suppression, Striga control, and improved soil water storage. Natural fallows of non-legume shrubs belonging to the Asteraceae family, collectively called daisy fallows, may provide lessons for the development of improved fallows. The maintenance of genetic diversity in fallows is paramount. The main limiting factor in Africa is clearly the supply of germplasm of improved fallow species. This must be overcome though large-scale seed orchards and nursery development before impact at the scale of millions of farmers can take place.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
Striga hermonthica (striga) weed is a major threat to crop production in sub-Saharan Africa, and short duration improved fallow species have recently been found to reduce the effects of this weed because of their ability to replenish soil nitrogen. The objective of this study was to compare the efficacy and profitability of coppicing improved fallow species (Gliricidia sepium [gliricidia], Leucaena trichandra [leucaena] and Calliandra calothyrsus [calliandra]) and non-coppicing species (Sesbania sesban [sesbania], Mucuna pruriens [mucuna], and Tephrosia vogelii [tephrosia]), in controlling striga. Natural fallow and a sole maize crop were included as control treatments. The fallow treatments were split into two and either fertilized with N or unfertilized. The results showed that coppicing fallows produced higher biomass than non-coppicing fallows. For example, Callindra (coppicing fallow species) produced 19.5 and 41.4 Mg ha−1 of leafy and woody biomass, respectively after four cumulative harvests as compared with Sesbania (non-coppicing species), which produced only 2.3 and 5.9 Mg ha−1 leaf and woody biomass, respectively. Improved fallows reduced striga population in proportion to the amount of leafy biomass incorporated into the soil (r = 0.87). N application increased cumulative maize yield by between 15–28% in improved fallow systems and by as much as 51–83% in the control treatments. Added total costs of the coppicing fallows did not differ significantly from those of the non-coppicing fallows and control treatments. However, the added net benefits of the coppicing fallows were significantly higher (US$ 527 for +N and 428 for −N subplots; P < 0.01) than those of the non-coppicing fallows (US$ 374 for +N and 278 for −N), and the least for the control treatments. The most profitable fallow system was Tephrosia with net added benefits of US$ 453.5 ha−1 season−1 without N, and US$ 586.7 ha−1 season−1 with added N.  相似文献   

18.
Interest in planted fallow systems has focused on soil fertility improvement, neglecting other potential benefits of such systems. It is important to quantify other processes responsible for crop yield increases under planted fallows, such as weed control. The suppressive potential on weeds of Flemingia macrophylla [(Willd.) Merrill] and Pueraria phaseoloides (Roxb.) Benth, planted fallows was evaluated in field trials in three villages in southern Cameroon. In each village, experiments were set up in 4–5 year-old bush fallow dominated by Chromolaena odorata (L.) R. M. King & H. Rob. and 20 year-old secondary forest. Total aboveground biomass production of P. phaseoloides was 7.45 Mg ha−1, 4.2 times higher than F. macrophylla (1.78 Mg ha−1 ; P < 0.05). The high biomass of P. phaseoloides resulted in a significantly greater reduction in total weed biomass compared to Flemingia macrophylla in both wet and dry seasons. In the wet season (11 and 18 MAP), there were significant fallow system × land use and fallow system × village interactions for total weeds and broadleaf weeds. P. phaseoloides in bush (0.55 Mg ha−1), and P. phaseoloides at Ngoumou (0.09 Mg ha−1) had the lowest total weeds in the wet seasons. After the dry season, the lowest total weed mass was consistently recorded in P. phaseoloides while the highest was in the natural regrowth. The population of grasses was always higher in the F. macrophylla system than in P. phaseoloides system throughout the wet and dry seasons. Grass biomass in the P. phaseoloides-forest LUS was the least (0.01 Mg ha−1), 58 times lower than in F. macrophylla-bush (0.58 Mg ha−1). Biomass production of P. phaseoloides was highly significantly correlated with total weed biomass (r = −0.64; P = 0.004) while no relationship was found between biomass production of F. macrophylla and total weed biomass (r = −0.08, P = 0.747). It was concluded that P. phaseoloides was a suitable leguminous species for weed control. But for F. macrophylla, its low biomass production coupled with a compact plant architecture compromised it as an appropriate species for weed control in a planted fallow system.  相似文献   

19.
Poor establishment, due to loss of soil fertility, weeds and lack of appropriate shade, is a major constraint to replanting cacao on previously used land. Spathodea campanulata, Newbouldia laevis and Ricinodendron heudelotii planted as monospecific improved fallow and Terminalia ivorensis, T. superba and Antiaris toxicaria planted as a multispecies improved fallow and a natural tree fallow were assessed for their potential to facilitate cacao replanting in a randomized complete block design experiment. Simpson and Shannon diversity indices and species richness in the natural tree fallow were 0.6, 1.6 and 20, respectively, at 4 years after trial inception. The Multispecies and the R. heudelotii improved fallows had better height growth, crown development and light transmission characteristics, which are desirable for cacao shade. However, these were not comparable to S. campanulata or the natural tree fallow in terms of improving microsite topsoil pH, % organic carbon and % total nitrogen and site capture. Since optimum fallow period is shortened by growing fast-growing trees, the height growth rate >2.0 m per annum in all the treatments except N. laevis indicates the suitability of these species for improved fallow. The trees species showed different and complementary characteristics and from a standpoint of biodiversity conservation and the future floristic composition of the landscape the natural tree fallow with its diversity of tree species may be recommended as a rehabilitation technique to facilitate the replanting of cacao with a diverse overhead shade.  相似文献   

20.
An experiment was carried out in a slash-and-burn production system in northern Laos to evaluate legume establishment methods and effects of legume species on fallow vegetation, weeds, yield of upland rice, and soil parameters. Cajanus cajan, Calliandra calothyrsus, Crotalaria anagyroides, Flemingia congesta, Leucaena leucocephala, and Sesbania sesban were dibbled separately or mixed with rice. Legume and planting method had no effect on rice yield. Legume establishment was slightly improved and vigor after rice harvest was higher when planted in separate hills. Compared to control (no legume), the above ground fallow biomass observed 13 months after establishment, consisting mostly of Chromolaena odorata, was reduced by 68% with C. anagyroides and by 40% with L. leucocephala, while other species had no effect. Most of the C. cajan and S. sesban plants died. In March 1995, 22 months after planting, the biomass was 0.21, 0.25, 1.62 and 2.56 kg m-2 for F. congesta, C. calothyrsus, C. anagyroides, and L. leucocephala, respectively. Legume species had no effect on rice yield or weed biomass in the rice crop. The species tested can influence fallow vegetation but do not allow for field preparation without burning. Compared to mulching, burning of residue reduced weed biomass by 42%, soil organic C by 9% and the C/N ratio by 6% but increased extractable P by 90% and pH by 8%. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号