首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Climatic changes over the North Pacific which began in the mid 1970s, peaked in the early 1980s, and ended by the late 1980s, appear to have altered productivity at various trophic levels in the marine ecosystem in the central North Pacific. The climatic change resulted in increased mixed layer depth and the frequency of deep mixing events, particularly during January-March. A number of biological time series for species ranging from primary to apex levels in the North-western Hawaiian Islands, show corresponding declines in productivity of 30–50% from the early 1980s to the present. We hypothesize that during the early 1980s, increased mixing due to the climate event resulted in greater nutrient input into the euphotic zone and ultimately increased ecosystem productivity. Productivity over a range of trophic levels declined when the climate event ended.  相似文献   

2.
  1. The largest changes in the circulation of the South-eastern Pacific resulting from global warming are associated with the southward shift and intensification of the anticyclone and with coastal surface warming. Coastal upwelling is projected to be increase off central Chile, due to an increase in equatorward winds, although increased oceanic stratification and associated enhanced nearshore turbulence will yield an onshore deepening/flattening of the thermocline.
  2. The overall increase in south-easterly trade winds of the South-eastern Pacific in a warmer climate are likely to increase the connectivity pattern between Juan Fernandez and Desventuradas islands, and along the Sala y Gomez ridge, through increasing wind-driven mean ocean currents.
  3. Deoxygenation associated with the warmer temperatures and changes in ventilation are likely to modify marine habitat and the respiratory barriers of species in the seamounts located in the vicinity of the limits of the minimum oxygen zone.
  4. In the South-eastern Pacific, the prevailing 2D understanding of the responses of marine life to climate change needs to be expanded to 3D approaches, integrating the vertical habitat compression of marine organisms as a result of ocean warming and deoxygenation, as climate velocities for temperature and oxygen have contrasting vertical and horizontal patterns.
  5. There is a need for regional biogeochemical-coupled modelling studies dedicated to the Chilean islands in order to provide an integrated view of the impact of anthropogenic stressors (e.g. deoxygenation, increased stratification, and climate shift) at the scale required for addressing socio-ecological interactions.
  6. A refined understanding of the large-scale biogeography and spatial dynamics of marine populations through experimentation with high-resolution regional ocean models is a prerequisite for scaling-up regional management planning and optimizing the conservation of interconnected marine ecosystems across large scales.
  相似文献   

3.
Impact of climate change on marine biogeochemical parameters and ecosystem is one of the important issues of our environment. Direct evidence of marine pelagic ecosystem changes is found with warming of sea water and sea‐level rise in the main stream of the Kuroshio in the East China Sea and the western North Pacific during these three decades based on the analysis of long‐term comprehensive hydrographic observations. In terms of annual mean, the warming rate of surface air temperature and sea surface temperature ranged from 0.15 to 0.21°C per decade in and around the main stream of the Kuroshio in the East China Sea, which exceed the global mean warming rate of 0.128 ± 0.026°C per decade during the period from 1956 to 2005 reported in IPCC 2007. One of the features in this rapid warming region is an increase of number of Pterosagitta draco, a cosmopolitan warm‐water zooplankton. Biogeochemical parameters, such as wet weight of zooplankton, plant pigment and nutrients concentration in the upper 200 m have been decreasing while dissolved oxygen content and seawater temperature have been increasing in the upper 200 m in the main stream of the Kuroshio in the East China Sea. These observed linear trends of the biogeochemical parameters would be foresights for temperate oceans in the future.  相似文献   

4.
Albacore tuna are widespread in the North Pacific Ocean and the basis of an important commercial fishery. These fish live mainly within a fairly narrow thermal niche range defined by sea surface temperature (SST) isotherms between 14 and 19°C. Because the fish's thermal range coincides with strong latitudinal temperature gradients off the northwest coast of North America, there is a great deal of seasonal and interannual variability in the distribution of these fish, and a significant potential for a new habitat in this region with anthropogenic climate change. We use historical catch and effort data from the Canadian troll fleet to define the fish's thermal niche, and document observed shifts in distribution associated with interannual climate variability. We then use an ensemble of climate model simulations from the Coupled Model Intercomparison Project to estimate northward extension of the potential habitat under anthropogenic warming scenarios. A potential new habitat is about half a million square kilometres even under a moderate mitigation scenario. Estimates are smaller for some months of the year in which the fishery is conducted, but as well as opening up new regions, the length of season in which the fishery is active may be extended in the northern part of the range. However, much of the potential new habitat will be in oceanic waters with relatively low productivity. Our estimated area of potential habitat is based on the fish's thermal niche and assumes that other biologically important factors such as food will not be limiting.  相似文献   

5.
The protistan parasite Ichthyophonus occurred in populations of Pacific herring Clupea pallasii Valenciennes throughout coastal areas of the NE Pacific, ranging from Puget Sound, WA north to the Gulf of Alaska, AK. Infection prevalence in local Pacific herring stocks varied seasonally and annually, and a general pattern of increasing prevalence with host size and/or age persisted throughout the NE Pacific. An exception to this zoographic pattern occurred among a group of juvenile, age 1+ year Pacific herring from Cordova Harbor, AK in June 2010, which demonstrated an unusually high infection prevalence of 35%. Reasons for this anomaly were hypothesized to involve anthropogenic influences that resulted in locally elevated infection pressures. Interannual declines in infection prevalence from some populations (e.g. Lower Cook Inlet, AK; from 20–32% in 2007 to 0–3% during 2009–13) or from the largest size cohorts of other populations (e.g. Sitka Sound, AK; from 62.5% in 2007 to 19.6% in 2013) were likely a reflection of selective mortality among the infected cohorts. All available information for Ichthyophonus in the NE Pacific, including broad geographic range, low host specificity and presence in archived Pacific herring tissue samples dating to the 1980s, indicate a long‐standing host–pathogen relationship.  相似文献   

6.
7.
Knowing how Pacific halibut (Hippoglossus stenolepis) distribute in relation to ocean conditions is of primary importance to halibut managers, as they are tasked with estimating stock size and designing effective monitoring programs amidst a changing climate. This research examined near‐bottom environmental data alongside halibut survey catch data for the years 2006–2009 on the continental shelf of Oregon, Washington, and southern British Columbia. The objectives of the research were to: (1) characterize summer environmental conditions and halibut distribution; (2) explore ranges and possible tolerance thresholds for halibut in relation to temperature, dissolved oxygen (DO), salinity, and pH; and (3) identify the primary environmental factors affecting distribution of halibut and model the observed relationships. Seasonal hypoxia is an annual feature of the study area and results suggest halibut exhibited an apparent DO minimum threshold of 0.9 mL L?1. Ordinary least squares multiple regression analysis indicated that depth, temperature, and DO were significant variables in predicting halibut distribution, whereas salinity and bottom type were not. Ambiguity in model results led to the use of two additional analytical methods, geographically weighted regression (GWR) and tree regression, to examine regional variation and the overarching structure of halibut distribution. The three models yielded similar results indicating the importance of DO and temperature as variables describing structure. The GWR model yielded the best fit of the three when using DO as a predictor variable, indicating that regional variation is a factor. These results suggest that low, but above‐threshold, DO may be contributing to catchability differences in the survey.  相似文献   

8.
Wild Pacific salmonids (WPS) are economically and culturally important to the Pacific North region. Most recently, some populations of WPS have been in decline. Of hypothesized factors contributing to the decline, infectious agents have been postulated to increase the risk of mortality in Pacific salmon. We present a literature review of both published journal and unpublished data to describe the distribution of infectious agents reported in wild Pacific salmonid populations in British Columbia (BC), Canada. We targeted 10 infectious agents, considered to potentially cause severe economic losses in Atlantic salmon or be of conservation concern for wild salmon in BC. The findings indicated a low frequency of infectious hematopoietic necrosis virus, piscine orthoreovirus, viral haemorrhagic septicaemia virus, Aeromonas salmonicida, Renibacterium salmoninarum, Piscirickettsia salmonis and other Rickettsia-like organisms, Yersinia ruckeri, Tenacibaculum maritimum and Moritella viscosa. No positive results were reported for infestations with Paramoeba perurans in peer-reviewed papers and the DFO Fish Pathology Program database. This review synthesizes existing information, as well as gaps therein, that can support the design and implementation of a long-term surveillance programme of infectious agents in wild salmonids in BC.  相似文献   

9.
Aquaculture is threatened by the climate change which includes changes in temperature, precipitation, drought, storms and floods. The socio‐economic impacts of climate change on aquaculture are difficult to assess due to the uncertainties regarding the extent and rate of predicted changes. By including bond indexes as climate change variables, this study constructed a provincial‐level panel data set to estimate the profits and productivity of the Chinese aquaculture. Results indicate that aquaculture production has heterogeneous responses to climate change. However, the majority of climate variables, including extreme weather events and long‐term climate changes, strongly affect aquaculture profits. Future research needs to focus on designing suitable adaptation measures in an interdisciplinary setting to address the challenges from natural risks and economic volatility.  相似文献   

10.
We developed habitat suitability index (HSI) models for two size classes of Pacific saury Cololabis saira in the Northwestern Pacific Ocean. Environmental data, including sea surface temperature, sea surface height, salinity, and net primary production, and catch and effort data from Taiwanese distant‐water stick‐held dip net fisheries during the main fishing season (August–October) during 2002–2015 were used. Habitat preferences and suitable habitat area differed between size classes. The suitable habitat was located between 40–47.5°N and 145–165°E for large‐sized Pacific saury but encompassed a greater area (35–47°N and 140–165°E) for medium‐sized Pacific saury. Both size classes were affected by substantial interannual variation in the environmental variables, which in turn can be important in determining the potential fishing grounds. We found a significant negative relationship between the suitable habitat area and the Niño3.4 indices with a time‐lag of 6 months for the large‐sized (= ?0.68) and medium‐sized (= ?0.42) Pacific saury, respectively, as well as the total landings of Pacific saury by all fishing fleets (= ?0.46). As remotely‐sensed environmental data become increasingly available, HSI models may prove useful for evaluation of possible changes in habitat suitability resulting from climate change or other environmental phenomena and in formulating scientific advice for management.  相似文献   

11.
Anthropogenic global warming has significantly influenced physical and biological processes at global and regional scales. The observed and anticipated changes in global climate present significant opportunities and challenges for societies and economies. We compare the vulnerability of 132 national economies to potential climate change impacts on their capture fisheries using an indicator-based approach. Countries in Central and Western Africa (e.g. Malawi, Guinea, Senegal, and Uganda), Peru and Colombia in north-western South America, and four tropical Asian countries (Bangladesh, Cambodia, Pakistan, and Yemen) were identified as most vulnerable. This vulnerability was due to the combined effect of predicted warming, the relative importance of fisheries to national economies and diets, and limited societal capacity to adapt to potential impacts and opportunities. Many vulnerable countries were also among the world's least developed countries whose inhabitants are among the world's poorest and twice as reliant on fish, which provides 27% of dietary protein compared to 13% in less vulnerable countries. These countries also produce 20% of the world's fish exports and are in greatest need of adaptation planning to maintain or enhance the contribution that fisheries can make to poverty reduction. Although the precise impacts and direction of climate-driven change for particular fish stocks and fisheries are uncertain, our analysis suggests they are likely to lead to either increased economic hardship or missed opportunities for development in countries that depend upon fisheries but lack the capacity to adapt.  相似文献   

12.
A variety of changes are occurring in the ecosystems of the North Pacific Ocean and Bering Sea, but information about the mechanisms of change has been relatively limited, due in part to the region’s remoteness and subarctic conditions. Any number of ecosystem components or indicators could be used to exemplify this dilemma, but here we point to the salmon shark (Lamna ditropis, Lamnidae) as an example of a species that can potentially mediate considerable ecosystem change due to its high trophic level, but for which some basic information is lacking despite attracting some interesting research and widespread rumours and anecdotal evidence of increased abundance. Increases in the abundance of sharks such as salmon sharks in this region during the 1990s, if true, may help explain other observed changes such as declines in ocean survival rates of Pacific salmon (Oncorhynchus spp., Salmonidae) in the region and declines in some wild salmon stocks. Mechanisms that could cause salmon shark increases in Alaskan coastal waters include: (i) increases in sea temperature since the 1970s allowing distributional shifts of this species and changes in the abundance or distribution of their prey; (ii) the 1992 banning of high seas drift gillnets; and (iii) indirect fisheries effects such as competitive release of salmon sharks in the North Pacific transition region and towards the more southern geographic extent of their annual migration as the result of fishery‐related reductions in blue sharks (Prionace glauca, Carcharhinidae) and other pelagic predators. The relative plausibility of these alternative explanations can be evaluated using combinations of existing ecosystem models and empirical research and monitoring programmes including local and indigenous observations.  相似文献   

13.
ABSTRACT

The productive fisheries of the Lower Mekong Basin of Cambodia and Vietnam are essential to the food security and nutrition of 60 million people. Yet these fisheries, both culture and capture, are susceptible to the impacts of climate change. This article reports on a study undertaken to examine the vulnerability, as perceived by snakehead (Channa striata) fish farmers in Vietnam and fishers in Cambodia, to the impacts from climate change. Perceived impacts on various actors in the value chain are identified, as well as adaptation strategies currently being utilized and planned for the future. Recommendations are suggested to contribute to assisting snakehead farmers and fishers in adapting and preparing for the impacts of climate change.  相似文献   

14.
We examined somatic energy patterns in two stocks (Chilko and Early Stuart) of adult Fraser River (British Columbia, Canada) sockeye salmon (Oncorhynchus nerka), collected at the end of their ocean residency, spanning years across different climate regimes. Both stocks had high levels of somatic energy in years with high open ocean productivity (1956, 1957, 2001 and 2002), and relatively low levels in years with poor open ocean productivity (1999 and 2000). For Early Stuart sockeye, energy levels in 1999 and 2000 were approximately 15% lower (~1.5 MJ kg?1) than that in the 1950s, an amount of energy equivalent to that necessary for migrating 600 km upriver. In recent years (2001 and 2002), energy levels have increased by about 9% for both stocks. Low energy levels at the onset of upriver migration, particularly in years of energetically demanding in‐river conditions, such as high flows or temperatures, are likely to contribute to prespawning and en route mortality in Fraser sockeye.  相似文献   

15.
16.
A simple 3-D biogeochemical model is coupled to a dynamical model forced by weekly winds deduced from ERS1 scatterometer data, to simulate new production in the equation Pacific from April 1992 to June 1995. The biogeochemistry is modelled as a nitrate sink modulated by chlorophyll, using nitrate/chlorophyll regressions derived from field data. The first simulation was carried out assuming that remineralization below the euphotic layer is totally controlled by sinking particles. In the second simulation, it is shown that the simulation of nitrate and new production by the biogeochemical model is improved, in comparison with field data, by adding an explicit dissolved organic nitrogen compartment. In the equatorial band, the model simulates a nitrate-poor region (low new production) in the fresh warm pool separated from richer waters of the upwelling region by a salinity front. The zonal displacement of this salinity/nitrate front is associated with the El Niño–Southern Oscillation (ENSO). The modelled new production and physics, both in good agreement with the field data, represent useful tools for the study of skipjack tuna ( Katsuwonus pelamis ) forage distribution in the Pacific.  相似文献   

17.
Temperature controls important physiological processes in fish and determines aspects of their niches. In an effort to inform selective fishing and spatiotemporal management in the U.S. Northeast Multispecies fishery, we used 16 years of data from the Northeast Fisheries Science Center Spring and Fall Scientific Trawl Surveys to determine if bottom temperature can be used to differentiate the distribution of Atlantic cod (Gadus morhua) from other species within the fishery management plan (FMP). We identified two separate regimes in spring temperatures and used empirical cumulative distribution functions to calculate biomass availability by temperature for each species. We applied a bagged approach to find optimum thermal threshold values that maximize the difference in cod biomass from each of the other species. For our study area, 38% to 54% of the species considered were well separated from cod by temperature in spring, whereas only 17% were separable in the fall. This study suggests that temperature targeting can be used seasonally to separate cod from many other species in the FMP including top catches and no‐retention species. The use of temperature targeting may allow fishermen to better meet multiple quotas while avoiding choke species. Our results also suggested increasing thermal overlap between cod and species inhabiting higher median temperatures (e.g., spiny dogfish, Squalus acanthias) under the current warming temperature regime. These results indicate that the ability to selectively fish in the US Northeast Multispecies fishery will become more difficult under a warming ocean.  相似文献   

18.
Long-term variability in zooplankton biomass in the subarctic Pacific Ocean   总被引:11,自引:0,他引:11  
Zooplankton collections from the subarctic Pacific were analyzed from two periods (1956–1962 and 1980–1989). In this report, we document: 1) a positive correlation between the intensity of winter winds and subsequent summer zooplankton biomass in the subarctic gyre within these periods; and 2) a doubling of zooplankton biomass and a similar increase in pelagic fish and squid abundance between these two periods of time. Some possible explanations for these changes are considered.  相似文献   

19.
Forage fish occupy a central position in marine food‐webs worldwide by mediating the transfer of energy and organic matter from lower to higher trophic levels. The lesser sandeel (Ammodytes marinus) is one of the ecologically and economically most important forage fish species in the North‐east Atlantic, acting as a key prey for predatory fish and sea birds, as well as supporting a large commercial fishery. In this case study, we investigate the underlying factors affecting recruitment and how these in turn affect productivity of the North Sea sandeel using long‐term data and modelling. Our results demonstrate how sandeel productivity in the central North Sea (Dogger Bank) depends on a combination of external and internal regulatory factors, including fishing and climate effects, as well as density dependence and food availability of the preferred zooplankton prey (Calanus finmarchicus and Temora longicornis). Furthermore, our model scenarios suggest that while fishing largely contributed to the abrupt stock decline during the late 1990s and the following period of low biomass, a complete recovery of the stock to the highly productive levels of the early 1980s would only be possible through changes in the surrounding ecosystem, involving lower temperatures and improved feeding conditions. To that end, we stress the need for ecosystem‐based management accounting for multiple internal and external factors occurring within the broader context of the ecosystem in which forage fish species, such as sandeel, play an important and integral part.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号