首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
In this study, the direct effects of exterior abscisic acid (ABA) on both calcium distribution of mesophyll cells and cytosolic calcium concentration of guard cells were examined. The distribution of Ca^2+ localization were observed with calcium antimonate precipitate-electromicroscopic-cyto-chemical methods after treated with ABA and pretreated with ethylene glycol-bis-(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA), verapamil (Vp), and trifluoperazine (TFP). The laser scanning confocal microscopy was used to measure the cytosolic calcium concentrations of guard cells under different treatments. The results showed that the cytosolic Ca^2+ concentration of mesophyll ceils was induced to increase by ABA, but to decrease in both outside cell and the vacuoles within 10 rain after treatments. The cytosolic calcium concentration of guard cells was increased gradually with the lag in treatment time. However, both EGTA and TFP could inverse those effects, indicating that the increase of cytosolic calcium induced by exterior ABA was mainly caused by calcium influx. The results also showed that calmodulin could influence both the calcium distribution of mesophyll cells and calcium concentration of guard cells. It shows that calmodulin participates in the process of ABA signal transduction, but the mechanism is not known as yet. The changes both calcium distribution of mesophyll cells and calcium concentration of guard cells further proved that the variations of cytosolic Ca^2+ concentration induced by ABA were involved in the stomatal movements of maize seedlings.  相似文献   

2.
Nitrate uptake characteristics and ammonium effects on nitrate uptake were compared between upland rice (Brazilian upland rice) and paddy rice (Wuyujing 3 and Yangdao 6) through the glass microelectrode technique and the concentration gradient method of uptake kinetics.Results indicated that nitrate uptake by rice seedlings and ammonium effects were depending on membrane potential of root cells.And upland rice and paddy rice presented obviously different responses.For all cultivars,the nitrate treatments induced rapid depolarization and then slow repolarization of membrane potential in root epidermal cells,and even hyperpolarization was observed when nitrate concentration was low.The membrane potential of epidermal cells in Brazilian upland rice roots was larger and its response to NO3- was bigger than those of two paddy rice cultivars.Depolarization of membrane potential was amplified when ammonium was simultaneously added with nitrate into the measure medium,but repolarization was reduced,even disappeared.Brazilian upland rice seedlings had high Vmax of nitrate uptake and low Km,furthermore,Vmax and Km were little affected by ammonium,but Vmax of Wuyujing 3 was reduced significantly.Therefore,inhibition of NH4+ differed obviously between upland rice and paddy rice.  相似文献   

3.
When maize seedlings were subjected to salt stress,a decline in root xylem pressure was observed within seconds,followed by a gradual increase in Na+ deposition in the seedlings.The magnitude of xylem pressure response was positively correlated with,but not proportional to the intensity of the stress.A continuous recording of the xylem pressure profile showed that self-regulation of the xylem pressure existed before and after the imposition of salt stress when the environmental conditions were relatively stable.The salt induced increase in xylem tension dominated the total water potential of the plant when the salt stress was mild,but the osmotic potential became more prominent when the NaCl concentration in the root bathing solution was raised to over 100 mol m-3.The average transpiration rate of the seedlings dropped by 40% when the NaCl concentration in the root ambient was increased to 150 mol m-3.Although salt stress resulted in the decline of both the xylem pressure potential and the osmotic potential in the root xylem,the changes in the total water potential of the root xylem solution were always smaller than the changes in the water (osmotic) potentials of the solution bathing the root.An analysis to the water relations of maize seedlings showed that not only the water potential components,but the radial reflection coefficient of the roots was also dependent on the level of salinity.When the NaCl level in the root bathing solution was raised from 25 to 150 mol m-3,the radial reflection coefficient of the root declined from 0.43 to 0.31.This small change resulted in a remarkable increase in the normalised relative NaCl absorption by 2.4 times,indicating that the radial reflection coefficient of root played a very important role in regulating the absorption of NaCl in maize seedlings under salt stress.  相似文献   

4.
K+ is the most abundant cation in plant cells and plays an important role in many ways.K+ uptake of plant has respect to its salt resistant capacity.There are two categories of channel transportation for plants to uptake K+,one is through K+ channels and the other is through nonselective cation channels(NSCCs).The transmembrane localization of K+ may change membrane potential(MP).In this paper,three wheat varieties with different salt tolerance were selected and the MP was measured by microelectrode during K+ uptake.The results showed that the effects of K+ uptake on MP through K+ channels or NSCCs were distinct.K+ influx through K+ channels led to MP hyperpolarization,while K+ influx through NSCCs resulted in depolarization.Diverse MP alteration of wheat varieties with different salt tolerance was mainly due to NSCCs-mediated K+ uptake.Compared with the salt-tolerant wheat,the MP hyperpolarization during K+ uptake of saltsensitive wheat was much more evident,probably because of the cation outflux through NSCCs during this process.  相似文献   

5.
The purpose of this research was to study the effect of hypoxia on the Ca^2+ concentration in broiler's cardiac muscle cells (CMCs). The concentration of Ca^2+ in the CMC was observed using a laser scanning confocal microscope (LSCM). The results showed that hypoxia could significantly increase intracellular Ca^2+(normal oxygen, 99.3 +_ 13.1; hypoxia, 129.4 +_ 24.3, P 〈 0.01) in CMCs. The Ca^2+ antagonist (nifedipine, verapamil) could significantly restrain the Ca^2+ influx across the cell membrane of CMC treated by hypoxia (CMC: hypoxia + verapamil, 100.9± 28.2; hypoxia + nifedipine, 107.6± 27.7; P 〈 0.01). The results showed hypoxia could increase intracellular Ca^2+ concentration of CMC, and the Ca^2+ antagonist could restrain the Ca^2+ influx across the cell membrane of CMC treated by hypoxia.  相似文献   

6.
Three techniques of root pressure probe, pressure chamber and high pressure flow meter were used to measure the hydraulic conductivities (Lpr) of whole root systems of young maize (Zea mays L.) seedlings grown hydroponically under either drought or normal water conditions. Compared to normal water conditions, drought stress simulated by polyethylene glycol 6 000 (osmotic potential =-0.2 MPa) reduced Lpr in the root system by over 50%. It indicated that water permeability in the roots decreased significantly when plants suffered from water shortages. Moreover, there was no significant difference (P〈 0.05) on the Lpr values in the root systems developed under a given water stress regime among the three techniques used. Therefore, all three methods are acceptable to study the hydraulic conductivity of maize seedling root systems. We have also highlighted some of the technical limitations of each method. It can be inferred that the root pressure probe is preferable for young maize seedlings because it is subtle and has the additional ability to determine solute transport properties, but the method is time consuming. Other advantages and disadvantages of each technique are discussed in order to acquaint researchers with basic information that could contribute to their choice of an appropriate technique for future studies.  相似文献   

7.
过量Mg~(2+)对农作物种子萌发特性的影响(英文)   总被引:7,自引:0,他引:7  
[Objective] The research aimed to reveal the effects of excessive Mg2+ on the germination characteristics of maize and soybean. [Method] Eleven concentration gradients of Mg2+ including 0,40,80,120,160,200,240,280,320,360 and 400 mmol/L were set up to study the effects of different treatments on such indices as the germination potential,germination rate,fresh weight,dry weight,root length,plant height and stem diameter of maize and soybean. [Result] With the increasing of Mg2+ concentration,the germination of maize delayed and the germination rate of soybean obviously decreased,reaching the significant difference at 0.05 level. When Mg2+ concentration increased,the fresh weight and dry weight of maize and soybean decreased,but maize and soybean showed some adaptability. The growth of radicles and seedlings in maize and soybean were obviously inhibited by Mg2+,and atrophy and dysplasia phenomena appeared. [Conclusion] Excessive Mg2+ stress has different effects on the germination potential and germination rate of different crops and has obvious poisoning effects on the root and stem growth of crops.  相似文献   

8.
To study the mechanism of potassium (K) application on improvement of maize resistance to stalk rot at cellular level, scanning electron microscope and transmission electron microscope were used to observe the effect of K on the ultrastructure of maize stalk pith tissue and young root tip cell influenced by K and pathogen. In K deficient treatment, parenchyma cells of stalk pith had abnormal structure, and the cell wall between upper and lower adjacent cell was damaged, resulting in the loss of connections between vascular cells and insufficient supporting capacity. However, an improved K nutrition helped to keep a quite tight arrangement of root cell with thick cell wall, and prevent the invasion of pathogen effectively. Moreover, K treated root cell had abundant golgi apparatus, which could excrete large amount of secretions to degrade mycelium. Papillary and highly electronic intensity dot were accumulated at the invading point to prevent the deveJopment of the mycelium. Improved K nutrition could increase the resistant ability of maize plant to stalk rot, through keeping cell structure stability, preventing the expansion of intracellular space to reduce the chances of pathogen invasions, and through reinforcing cell wall and formation of intercellular and intracellular material to restrict further development of pathogen in host cell.  相似文献   

9.
Wide adoption of a few kinds of homogeneous germplasm would reduce crop genetic diversity, increase crop vulnerability to stresses, and reduce the stability of crop production. The introduction and utilization of foreign germplasm is a sustainable solution for broadening the genetic diversity and promoting periodical replacement of varieties. The genetic contribution and economic impact of foreign germplasm, particularly those of US and CGIAR (Consultative Group on International Agricultural Research, referred to as the CG system) materials, on China's maize production are evaluated on the basis of an analysis of variety pedigree information from 20 major maize-producing provinces in China from 1982 to 1997. The results indicated that the contribution of US and CG germplasm to Chinese maize production continues to increase, particularly CG germplasm, which has shown a rapid increasing trend since the 1990s. If the genetic contribution of US germplasm is increased by 1%, maize yield will gain by 0.2% (0.01 t ha^-1). If contribution of CG germplasm, which has greater production potential, is increased by 1%, maize yield will gain by 0.025 t ha^-1. A policy should be implicated by the government in this direction to encourage breeders to focus more on the use and improvement of CG germplasm. The US germplasm has been utilized extensively in China so that it can offer germplasm resources for maize breeding efforts.  相似文献   

10.
In China, the purity of maize hybrid strain is discomforting to the development of seed industrialization. Finding a new method for reproduction of maize hybrid strain is necessary. In this study, using particle bombardment, barstar gene was transferred into maize inbred line 18-599 (White), which is an antiviral and high quality maize inbred line. By molecular detection of the anther of transgenic maize, two plants transferred with barstar gene were gained in this study, which are two restorer lines. The two plants showed normal male spike, and lively microspores. But the capacity of the two restorer lines should be studied in the future. The aim of this study is to find a new method of reproduction of maize hybrid strain using engineering restorer lines and engineering sterility lines by gene engineering technology.  相似文献   

11.
野大麦耐盐适应性反应机制的研究   总被引:3,自引:1,他引:3  
【目的】探讨野大麦的耐盐适应性反应机制。【方法】采用原子吸收和X-ray微区分析等方法分析野大麦[Hordeum brevisubulatum (Trin.) Link]在NaCl胁迫下幼苗生长、K+和Na+吸收、运输、分配及外排等生理响应。【结果】在NaCl≤350 mmol•L-1时,茎叶和根系的干重变化不明显,盐浓度的增加对根生长的抑制作用小于茎叶,根Na+含量增加的幅度小于茎叶、茎叶和根中K+含量均下降,但茎叶可维持较高的K+含量;野大麦具有较强的K+-Na+吸收选择性;低盐胁迫时Na+主要贮存于液泡和细胞间质;高盐胁迫时主要通过外排Na+来维持体内离子平衡。【结论】野大麦在NaCl≤350mmol•L-1时生长正常,其耐盐性与根拒绝吸收Na+及茎叶维持高K+含量有关,Na+区域化与外排可能是野大麦主要的耐盐适应性反应机制。  相似文献   

12.
运用非损伤微测技术(NMT),研究了短期盐胁迫下胞外ATP(eATP)、H2 O2 、Ca2 + 与NO 对非泌盐红树木榄根 系K+/Na+ 平衡的调控作用。NaCl(100 mmol/L,24 h)与等渗甘露醇处理的实验表明,木榄根尖对盐胁迫的响应具 有高度的离子特异性。盐胁迫增强了木榄根尖的Na+ 外流,但Na+ 外流被Na+ /H+ 逆向转运蛋白抑制剂Amiloride 和质膜H+ -ATPase 抑制剂Vanadate 抑制,表明Na+ 外流源于根尖表皮细胞质膜Na+ /H+ 逆向转运系统驱动的Na+ 外排。短期盐胁迫处理能诱导木榄根尖K+ 外流,但被氯化四乙胺(TEA,外向K+ 通道抑制剂)明显抑制,证明K+ 外流是由激活的去极化外向型离子通道KORCs 介导。胞外ATP(300 mol/L)、H2 O2 (10 mmol/L)、Ca2 + (10 mmol/ L)与SNP(NO 供体,100 mol/L)均能增加短期盐胁迫下的Na+ 外流,同时抑制K+ 外流。其中,促进Na+ 外流效果 较强的是H2 O2 和Ca2 + ,而Ca2 + 和NO 抑制K+ 外流的效果突出。这些实验结果表明,胞外ATP、H2 O2 、Ca2 + 与NO 这4 种盐胁迫信使是通过上调木榄根系细胞质膜Na+ /H+ 逆向转运体系(Na+ /H+ 逆向转运体和H+ 泵)活性,在促 进Na+ 和H+ 逆向跨膜转运的同时,抑制去极化激活的K+ 离子通道来减少盐诱导的K+ 外流。   相似文献   

13.
[目的]研究不同盐分胁迫下四翅滨藜耐盐营养生理,旨在探明盐碱地四翅滨藜的生物脱盐作用.[方法]采用不同浓度梯度的NaCl盐溶液作为渗透剂对四翅滨藜进行盐胁迫,测定四翅滨藜叶片的相关营养生理指标.[结果]四翅滨藜在盐胁迫下呈现出的抗盐营养生理机制主要有:随着盐浓度的升高,Na+/K+ 升高,膜透性增加,Na+ 的吸收促进K+ 离子的吸收;随着盐浓度的升高,四翅滨藜叶片全氮含量在缓慢地下降,继续维持盐胁迫下氮的代谢;四翅滨藜植株开始受到盐胁迫时,其叶片钙含量略有下降,但随着盐胁迫浓度的升高,其叶片钙含量有所回升并维持一定水平,下降幅度十分小,直至2.7;的盐胁迫下全氮和全钙含量迅速下降.[结论]四翅滨藜是一种耐盐程度较高的植物.  相似文献   

14.
NaCl和PEG胁迫对玉米幼苗根系生长的影响   总被引:1,自引:0,他引:1  
采用不同渗透势的NaCl和PEG营养液,对3种不同基因型玉米幼苗进行培养,玉米生长12 d后用根系分析仪扫描分析玉米幼苗根系的生长情况。结果表明:抗盐品种登海11根系生长受PEG引起的低渗透势的影响比由NaCl浓度增大所引起的低渗透势的影响要大,抗旱品种郑单958的情况与此相反。NaCl和PEG所导致的渗透势降低均可以影响所有供试玉米品种的根长,但只明显影响抗盐品种的根系平均直径,而对其他品种的根系平均直径影响很小。由NaCl和PEG所造成的低渗透势对玉米根系发育的影响有所不同。盐胁迫下根系生长量的降低可能是耐盐品种对高盐环境的一种应激反应。  相似文献   

15.
  目的  明确耐盐锻炼黑果枸杞适应长期盐渍化胁迫的机理,为其修复极端干旱区盐渍化土壤提供依据。  方法  应用回归分析及主成分分析低盐胁迫(MSS)、中盐胁迫(HSS)和高盐胁迫(SS)土壤黑果枸杞各器官K+、Na+和Ca2+区隔化特征,器官干质量和根系形态对盐胁迫的响应。  结果  (1)NaCl浓度小于183.63 mmol/L,耐盐锻炼黑果枸杞植株成活率随着NaCl浓度增加而增大,NaCl浓度 ≥ 355.88 mmol/L植株全部死亡。随着NaCl浓度升高,花期到初果期果实相对生长速率显著减缓,初果期到果实完全成熟期果实相对生长速率加快。(2)HSS处理的根K+和Na+显著高于MSS和SS,茎中K+、Na+和Ca2+含量均显著低于MSS和SS。HSS处理的根和茎中K+/Na+和Ca2+/Na+差异不显著。SS处理的叶Ca2+分别是MSS和HSS的5和3倍。SS处理的根和茎Na+含量没有显著差异,根和叶Ca2+含量也没有显著差异。胁迫程度从MSS上升到SS,茎中Na+含量平均增加0.78 g/kg。(3)PCA分析表明,主成份1(PCA1)和主成份2(PCA2) 共解释了黑果枸杞适应盐胁迫的73.9%。PCA1可解释黑果枸杞盐胁迫的57.8%信息,其中,地上器官干质量对PCA1贡献最大,按照对PCA1贡献率大小排序为叶干质量、茎干质量、根干质量和主根直径。PCA1与根Na+含量、地上器官Na+含量和侧根直径呈显著负相关。株高、根Ca2+含量、茎粗、地上器官K+/Na+、根干质量、主根直径与PCA1呈正相关。植株K+/Na+、根系K+/Na+、根际土壤K+/Na+、根Ca2+含量和地上器官Ca2+含量可以解释PCA2盐胁迫的16.1%信息,上述指标均与PCA2呈显著负相关。  结论  随着盐胁迫程度增加,叶维持高浓度Ca2+调控植株体K+/Na+,根和茎富集储存Na+能力显著增强,说明经过耐盐锻炼黑果枸杞倾向于不同器官协同分担盐胁迫以适应长期盐胁迫。   相似文献   

16.
盐胁迫对黄蜀葵生长及金丝桃苷含量的影响   总被引:2,自引:0,他引:2  
通过种子萌发试验和盆栽试验,探讨了盐胁迫对黄蜀葵种子发芽、生长发育、植株体内离子分布以及金丝桃苷含量的影响。结果表明,盐胁迫对黄蜀葵种子萌发有一定的抑制作用,随着盐浓度的增加,其发芽率呈下降趋势;低浓度NaCl胁迫有利于黄蜀葵生长,其中,0.3%的NaCl处理下生长发育较好;盐处理后,黄蜀葵根中Na+和K+含量显著高于茎与叶,Ca2+含量、K+/Na+和Ca2+/Na+值显著低于茎与叶;随NaCl浓度提高,根中Na+含量逐渐增加,各个器官中Ca2+和K+含量均呈上升趋势。盐胁迫对黄蜀葵花冠中金丝桃苷含量影响显著,当NaCl浓度为0.3%时,金丝桃苷含量达到最高,但当NaCl浓度为0.7%时,金丝桃苷含量急剧下降。认为黄蜀葵为耐盐植物,适度的盐胁迫可以提高黄蜀葵花冠中金丝桃苷的含量。  相似文献   

17.
通过种子萌发试验和盆栽试验,探讨了盐胁迫对黄蜀葵种子发芽、生长发育、植株体内离子分布以及金丝桃苷含量的影响。结果表明,盐胁迫对黄蜀葵种子萌发有一定的抑制作用,随着盐浓度的增加,其发芽率呈下降趋势;低浓度NaCl胁迫有利于黄蜀葵生长,其中,0.3%的NaCl处理下生长发育较好;盐处理后,黄蜀葵根中Na+和K+含量显著高于茎与叶,Ca2+含量、K+/Na+和Ca2+/Na+值显著低于茎与叶;随NaCl浓度提高,根中Na+含量逐渐增加,各个器官中Ca2+和K+含量均呈上升趋势。盐胁迫对黄蜀葵花冠中金丝桃苷含量影响显著,当NaCl浓度为0.3%时,金丝桃苷含量达到最高,但当NaCl浓度为0.7%时,金丝桃苷含量急剧下降。认为黄蜀葵为耐盐植物,适度的盐胁迫可以提高黄蜀葵花冠中金丝桃苷的含量。  相似文献   

18.
张彪  李品芳 《中国农业科学》2011,44(19):4121-4128
 【目的】探讨施用硝态氮对马蔺(Iris lactea Pall. var. chinensis(Fisch.)Koidz.)耐盐性及叶片渗透调节物质的影响,为马蔺的栽培和管理提供理论依据。【方法】采用砂培马蔺幼苗,透灌含不同浓度NaCl和硝态氮的营养液(设置3个NaCl浓度0.1、140、210 mmol•L-1与3种硝态氮含量0.25、4和8 mmol•L-1交互组合的9个处理),处理35 d后,测定叶片和根部的生物量、矿质元素吸收量以及叶片中主要渗透调节物质的含量。【结果】在中等盐浓度(140 mmol•L-1)处理下,施加多量硝态氮(8 mmol•L-1)更大程度地促进了马蔺叶片生物量的累积。当NaCl浓度增高到210 mmol•L-1时,4 mmol•L-1和8 mmol•L-1硝态氮处理区的叶片生物量相比对照增加了约30%,但两种浓度的效果没有显著差异(P<0.05)。施加硝态氮降低了NaCl胁迫下马蔺的根冠比和叶片质膜透性,提高了叶片和根部的氮素含量,但没有显著改变无机离子(K+、Na+、Ca2+、Mg2+)的吸收量。硝态氮和NaCl交互组合处理下,叶片渗透调节物质中各无机离子的浓度大小为:Cl->K+>Na+>NO3-。硝态氮的施加显著降低了Cl-、Na+和K+浓度,但提高了脯氨酸和NO3-浓度。【结论】外施适量的硝态氮能显著提高马蔺的耐盐性,其机理与盐胁迫下氮营养的改善、脯氨酸和NO3-含量的增加以及根冠比、Cl-和Na+含量的降低等有关。  相似文献   

19.
NaCl对泌盐红树和非泌盐红树Cd吸收和积累的影响   总被引:1,自引:1,他引:0  
为研究NaCl对红树植物Cd吸收和转运的影响,本文以非泌盐红树秋茄和泌盐红树桐花树幼苗为实验材料,研究了不同浓度NaCl和CdCl2处理下地上和地下各器官中Na+、Ca2+、Cd2+离子浓度的变化,并利用非损伤微测技术测定植物根尖在不同处理下对Cd2+和Ca2+的动态吸收。结果表明,随着CdCl2处理浓度的增加,2种红树的根、胚轴、茎和叶4器官中的Cd2+含量均明显增加。而泌盐红树桐花树各器官中Cd2+含量均高于非泌盐红树秋茄,分别达到65%(根)、19%(胚轴)、203%(茎)和96%(叶)。利用非损伤微测技术测定Cd2+流,发现Cd2+内流能被Ca2+通道抑制剂LaCl3抑制,表明Cd2+主要通过Ca2+通道实现内流。在NaCl对Cd2+吸收的影响方面,低浓度NaCl(100~200 mmol/L)能促进秋茄对Cd2+的积累,但高浓度NaCl(400 mmol/L)抑制了桐花树和秋茄对Cd2+的吸收。这是由于:1)红树根系对Na+吸收增加,而Na+能与Cd2+竞争膜上转运蛋白上的金属离子结合位点从而减少Cd2+的吸收,2)NaCl促进了植物根尖对Ca2+的吸收,从而竞争性的抑制了Cd2+通过Ca2+通道的内流,最终减少了2种红树根系对Cd2+的吸收和积累。泌盐红树桐花树Cd2+含量高于非泌盐红树秋茄,表明桐花树根细胞质膜上的转运蛋白与Ca2+通道对Cd2+的吸收能力高于秋茄。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号