共查询到19条相似文献,搜索用时 93 毫秒
1.
使靶基因表达沉默的RNA干扰(RNA interference,RNAi)技术,由于其独特的生物学作用,已经作为动物疫病防控领域的新手段在动物病毒性疾病研究中得到了广泛的应用。本文对RNAi技术在猪病、禽病及牛病研究中的应用进行简要综述。 相似文献
2.
3.
RNA干扰技术及其在遗传育种中的应用 总被引:3,自引:0,他引:3
RNA干扰(RNA interference,RNAi)是二十世纪末发现的一种基因沉默机制,具有广大的应用前景。本文就RNAi的可能机制、特征、RNAi技术中存在的问题及其在基因组、基因表达调控和干细胞研究、基因治疗、育种等方面的应用进行了综述。 相似文献
4.
RNA干扰(RNAinterference,RNAi)是二十世纪末发现的一种基因沉默机制,具有广大的应用前景。本文就RNAi的可能机制、特征、RNAi技术中存在的问题及其在基因组、基因表达调控和干细胞研究、基因治疗、育种等方面的应用进行了综述。 相似文献
5.
6.
7.
随着基因组计划的实施,人类步入生物医学研究的崭新时代——后基因组时代,人们的关注点开始集中于革命性的基因新技术,RNA干扰(RNA interfereqce,RNAi)技术就是倍受关注的一个焦点。RNAi现象是指通过与内源性mRNA编码区某段序列同源的双链RNA(dsRNA)特异性抑制靶基因的转录后表达而引起的基因沉默现象。 相似文献
8.
RNA干扰(RNAi)是最近几年发现和发展起来的一门新兴的在转录水平上的基因阻断技术〔1〕。RNAi是由双链RNA介导的,在转录后mRNA水平上关闭相应基因表达的过程,也就是序列特异性的转录后基因沉默(post-transcrip-tional gene silencing,PTGS)。RNAi是生物体中存在的一种普遍现象, 相似文献
9.
11.
12.
本文旨在构建有效抑制朊蛋白(Prion protein,PrP)表达的重组质粒,并以此为工具控制PrP表达,从而探讨PrP对细胞SOD活性的影响。设计并化学合成1对含有发夹结构的寡核苷酸片段(shPrP),退火后与表达载体pG-super(Hairpin siRNA expressing vector)定向连接,构建重组质粒pG-super-shPrP。对重组子进行PCR鉴定,测序正确后,脂质体法转染C6细胞,采用实时荧光定量RT-PCR检测PrP mRNA的表达水平,以验证pG-super-shPrP的抑制效率;结果表明:重组质粒pG-super-shPrP构建成功,且显著降低C6细胞PrP mRNA表达(P〈0.05),抑制效率为34.2%。利用pG-super、pG-super-shPrP分别转染C6细胞,并检测细胞SOD总活性及SOD表达水平,探讨PrP对细胞SOD活性的影响及其作用机制,结果表明PrP促进细胞SOD的活性(P〈0.01),但对细胞SOD的表达量无影响,即PrP对SOD活性的促进作用与SOD1的表达量无关。本研究在成功构建了PrP的RNA干扰表达质粒的基础上,利用此质粒,在细胞水平上揭示了PrP对细胞SOD活性的促进作用。 相似文献
13.
14.
RNA干扰及其抗口蹄疫病毒复制的研究进展 总被引:3,自引:0,他引:3
RNA干扰(RNA interference,RNAi)是指由双链RNA(double strand RNA,dsRNA)介导的序列特异性RNA降解作用。已经证明,在植物和昆虫细胞中RNAi是其主要的抗病毒机制,但迄今为止,几乎没有发现哺乳动物细胞感染病毒后能自发诱导有效的抗病毒RNAi反应。为此,通过人工方法在哺乳动物细胞中建立有效的抗病毒RNAi便成了国内外学者孜孜探索的重要抗病毒策略之一。目前,RNAi的分子机制及其功能仍然有待更加深入地研究与阐明,但它作为一种反向遗传学手段已经在基因组结构与功能研究中得到广泛运用,不仅在抗多种哺乳动物病毒的研究方面取得了令人振奋的结果,而且已作为一种治疗策略运用于人类抵抗重大遗传性和病毒性疾病的研究当中。笔者对RNAi的分子机制,及其抗口蹄疫病毒复制的相关研究进展作了有关介绍。 相似文献
15.
16.
RNA干扰是将双链RNA导入细胞引起特异基因mRNA降解的一种细胞反应过程,涉及多种蛋白质共同参与。此干扰机制可在转录、转录后和翻译水平上实现。转录水平上的干扰机制是通过对靶基因染色质结构的改变,使其基因转录受限,导致表达系统的关闭。翻译水平上的干扰机制,是通过抑制相应mRNA的翻译,使相应的蛋白质表达受阻。转录后水平则包括siRNA形成阶段和扩增循环阶段。siRNA形成阶段即外源性或内源性dsRNA通过Argonaute家族基因编码的蛋白质的识别,进一步诱导双链RNA与Dicer结合。扩增循环阶段即特异性siRNA与靶mR-NA结合后,没有被活性酶切割、降解;而是以siRNA中的一条链为引物,以靶mRNA为模板,在RNA依赖的RNA聚合酶的作用下,延伸形成新的双链RNA,被Dicer内切酶或相关酶切割为新的21 nt~23 nt siRNA。随着RNA干扰技术的不断进步,RNA干扰可广泛地应用到抗病毒,肿瘤治疗,药物靶点筛选以及免疫性疾病治疗等方面。 相似文献
17.
18.