首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
土壤pH值对极小种群毛枝五针松生理特性的影响   总被引:1,自引:0,他引:1  
幼苗建成期是毛枝五针松(Pinus wangii)天然更新的关键阶段,为找出影响毛枝五针松幼苗存活的关键生态因子,采用植物生理学方法,研究在7个酸碱度土壤培育下,毛枝五针松松针超氧化物歧化酶(SOD)、过氧化物酶活性(POD)活性和脯氨酸、可溶性糖质量分数及丙二醛(MDA)摩尔质量浓度的变化。结果表明:毛枝五针松在弱碱土壤中抗逆性更强,形态观察得知其在弱碱性土壤中生长更好;生理指标测定结果表明,土壤在p H=7.69~8.42时最适宜毛枝五针松幼苗的生长发育。  相似文献   

2.
利用不同质量浓度(0、0.25、0.50、0.75、1.00 g·L~(-1))的水杨酸(SA)对云南蓝果树种子进行浸种处理和利用不同质量分数(0、5%、10%、15%)的PEG-6000溶液模拟不同强度的干旱胁迫(模拟的水势分别为0、-0.1、-0.2、-0.4 MPa),研究干旱胁迫下水杨酸浸种处理对云南蓝果树早期幼苗叶片生理指标的影响。结果表明:未经SA浸种处理时,随着PEG-6000质量分数的增加,云南蓝果树早期幼苗叶片的超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)活性,脯氨酸(Pro)、可溶性糖质量分数显著降低,而丙二醛(MDA)质量摩尔浓度显著升高。随着SA质量浓度的升高,SOD、POD、CAT活性,Pro、可溶性糖质量分数显著升高,而MDA质量摩尔浓度显著降低,意味着水杨酸对云南蓝果树种子的预处理一定程度上增强了其早期幼苗的抗旱性。因此,水杨酸浸种可减轻干旱胁迫对云南蓝果树早期幼苗的伤害。而且,云南蓝果树早期幼苗在水杨酸质量浓度高于0.75 g·L~(-1)、水势低于-0.1 MPa时,防御作用较强。建议育苗前对云南蓝果树种子进行SA预处理,最适质量浓度为0.75 g·L~(-1)。  相似文献   

3.
通过不同浓度外源水杨酸(SA)处理盐胁迫下小丽花幼苗,测定其生理指标,探讨SA对盐胁迫下小丽花幼苗生理特性的影响。结果表明,6 g·L-1Na Cl溶液处理,显著提高了小丽花幼苗的丙二醛(MDA)含量,降低了超氧化物歧化酶(SOD)活性,说明已达到盐胁迫水平。在盐胁迫下,随着SA浓度的增加,小丽花幼苗MDA含量呈先降低后升高的趋势,以0.5 g·L-1SA达最小值;SOD活性呈先升高后降低的趋势,以0.5 g·L-1SA达最大值。Na Cl盐胁迫下,添加0.5 g·L-1SA可有效缓解小丽花的盐害作用。  相似文献   

4.
为探明外源SA浸种对盐胁迫下小油菜幼苗渗透性物质及叶绿素含量的影响,以五月慢小油菜幼苗为试验材料,采用沙培法,研究了不同浓度SA在盐胁迫下对小油菜幼苗叶绿素、地上部脯氨酸、地上部可溶性糖和地上部MDA含量的影响。结果表明:以蒸馏水浸种为对照,0~0.50mmol·L-1的SA使小油菜幼苗叶绿素和地上部的脯氨酸、可溶性糖含量增加,1.00~8.00mmol·L-1的SA,使其相应指标降低;盐胁迫下,叶绿素含量增加,地上部的脯氨酸、可溶性糖含量降低。以蒸馏水浸种为对照,0~1.00mmol·L-1的SA使小油菜幼苗地上部MDA含量下降,2.00~8.00mmol·L-1的SA使MDA增加;盐胁迫下,MDA含量增加。0.25~1.00mmol·L-1的SA有利于改善盐胁迫下小油菜幼苗地上部各项研究指标。  相似文献   

5.
采用室内有培养土的纸杯培养方法,研究了不同浓度水杨酸(SA)处理对废电池胁迫下,绿豆幼苗抗氧化酶及生理特性的影响.结果表明,废电池胁迫下,超氧化物歧化酶(SOD)活性升高,过氧化物酶(POD)活性降低,光合色素、可溶性蛋白含量下降,脯氨酸和丙二醛(MDA)含量升高,电导率增大,膜稳定性降低.显示出一定的毒害效应;低浓度(≤100mg·L-1)的外源SA处理能够明显增强废电池胁迫下绿豆叶片SOD、POD活性,改善多项指标,但随着SA浓度升高,SOD和POD酶活性逐渐降低.说明低浓度SA能通过刺激抗氧化酶活性.减轻氧化胁迫,缓解废电池对绿豆幼苗的毒害作用,但高浓度SA(≥100mg·L-1)缓解作用降低.  相似文献   

6.
采用模拟结合田间试验的方法,研究不同浓度豆蔻酸对茄子幼苗生长及叶片防御酶活性的影响。结果表明,在豆蔻酸浓度为0.05~1 mmol·L-1时,随浓度的增加,豆蔻酸对茄子幼苗生长指标、叶绿素含量、根系活力的促进作用逐渐增加,在1 mmol·L-1时促进作用最大,而后随着浓度增大,又表现出抑制作用。适宜浓度的豆蔻酸对丙二醛(MDA)含量和相对电导率起到抑制作用,并随浓度增加作用强度增大。当浓度增至1 mmol·L-1时,表现的抑制作用最强;在0.05~1 mmol·L-1时,豆蔻酸对叶片防御酶CAT、POD、PPO和PAL活性均表现促进作用,且在1 mmol·L-1的促进作用最大。豆蔻酸在某种程度上促进茄子幼苗的生长并提高叶片防御酶的活性。  相似文献   

7.
采用溶液培养方法,研究不同浓度外源水杨酸(SA)对镉(Cd)胁迫下玉米幼苗的生长、光合色素的变化、叶片氮代谢及根系抗氧化系统酶活性的影响。结果表明,Cd胁迫抑制了玉米的生长发育和叶绿素合成,使硝态氮在叶中累积,同时影响了根系的抗氧化系统。应用50~250μmol·L-1浓度范围外源SA,叶绿素含量与胁迫情况下相比可提高81.3%、115.2%和45.9%,硝酸还原酶活性提高了1.32和1.29倍,降低了叶中硝态氮的含量30%,提高了谷氨酰胺合成酶(GS)和谷氨酸合成酶(GOGAT)活性60%以上,维持了氮素代谢过程的良好进行。外源50~250μmol·L-1SA可将玉米根系过氧化物酶(POD)活性减小至0.026 min·mg-1,POD和超氧化歧化酶(SOD)的活性与无Cd胁迫下的酶活性无显著差异,降低了Cd胁迫对质膜氧化系统的伤害。但外源SA对Cd胁迫的修复缓解作用受浓度的影响较大,低浓度的SA具有良好的修复效果,高浓度的SA反而影响了光合色素的合成以及酶的活性,抑制了玉米的生长。综合考虑各项指标,具有良好修复作用的外源SA浓度为50~100μmol·L-1。  相似文献   

8.
外源钙对小麦幼苗耐盐性的影响   总被引:1,自引:0,他引:1  
分别用浓度为0、100、200mmol·L-1的NaCl溶液以及100mmol·L-1NaCl+5 mmol·L-1CaCl2溶液、200mmol·L-1NaCl+5mmol·L-1CaCl2溶液处理小麦幼苗,然后于第1、第4、第7天测定幼苗脯氨酸(Pro)、丙二醛(MDA)含量和过氧化物酶(POD)活性,通过相关生理指标变化,探讨外源钙对小麦幼苗耐盐性的影响.结果表明,经CaCl2处理的小麦幼苗,其脯氨酸含量增加,过氧化物酶活性增强,丙二醛含量降低.可知外源CaCl2提高了小麦幼苗的耐盐性.  相似文献   

9.
以"二叶一心"期甜瓜(Cucumis melo L.)为材料,研究了沙培条件下不同浓度(0、0.1、0.25、0.35、0.7、1.1、2.2 g·L-1)的海带硫酸多糖对150 mg·kg-1氯化镉(CdC12·2.5H2O)毒害下甜瓜幼苗的保护作用.结果表明,甜瓜幼苗的镉积累量、叶绿索含量、生物量、蛋白质含量、丙二醛(MDA)含量、膜透性以及抗氧化酶活性均与海带硫酸多糖浓度的变化具有相关性.随灌施海带硫酸多糖浓度的升高,甜瓜叶片和根系中镉积累量和渗透势持续下降,0.25 g·L-1和0.35 g·L-1的海带硫酸多糖水平下无显著差异,与其他浓度水平差异显著(P<0.05);叶绿素含量、生物量、蛋白质含量、超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)等抗氧化酶活性呈先上升后下降趋势,0.35 g·L-1海带硫酸多糖水平下含量最高;MDA和膜透性则表现为先下降后上升趋势,且0.35 g·L-1海带硫酸多糖水平下含量最低.综合来看,当海带硫酸多糖的浓度低于0.35 g·L-1时,对镉毒害下的甜瓜幼苗有一定保护作用,高于0.35 g·L-1时,不仅没有缓解镉毒害的作用,反而加重对甜瓜幼苗的伤害.  相似文献   

10.
研究豇豆种子在不同浓度(0、3.0、4.0、8.0、10.0、20.0、50.0、100.0 mg·L-1)的蛋氨酸硒溶液的影响下的萌发情况及其幼苗生长状况的变化。结果表明,低浓度(20.0 mg·L-1)的蛋氨酸硒溶液能在一定程度上促进豇豆种子的萌发,而过高浓度的蛋氨酸硒溶液则会使豇豆种子发芽率显著降低;豇豆种子发芽指数的变化趋势伴随蛋氨酸硒溶液浓度的逐步升高,与上述发芽率呈现相似的先升后降的现象;适量(50.0 mg·L-1)的蛋氨酸硒溶液有利于增强豇豆幼苗体内过氧化物酶(POD)的活性,但当蛋氨酸硒溶液浓度超过此范围时,豇豆植株内此酶的活性遭到一定程度的破坏;在存在一定低浓度(10.0 mg·L-1)蛋氨酸硒溶液的环境下,豇豆幼苗体内丙二醛(MDA)含量随着蛋氨酸硒溶液处理浓度的升高而逐步降低,即浓度较低时,硒的存在有利于豇豆对抗逆境利于其正常生长;但当蛋氨酸硒溶液浓度持续升高时,MDA含量也随之持续增加,即硒浓度过高时,硒的存在阻碍其正常生长。豇豆幼苗体内脯氨酸(Pro)含量随蛋氨酸硒溶液浓度的升高与其MDA含量出现相似的变化趋势,在蛋氨酸硒浓度为10.0 mg·L-1时,豇豆幼苗体内Pro的含量达到最小值。因而,适宜浓度的蛋氨酸硒有助于豇豆种子的正常萌发及其幼芽的健康生长发育,但高浓度的蛋氨酸硒则会对豇豆种子的正常萌发及其幼苗的正常生长发育产生抑制作用。  相似文献   

11.
板栗叶水浸液对商洛丹参幼苗酶活性的影响   总被引:1,自引:0,他引:1  
实验以商洛丹参种子为材料,以板栗叶为供体,研究不同浓度板栗叶水浸液对商洛丹参幼苗酶活性的影响。采用生物测定法测定丹参幼苗酶活性的状况。结果表明:不同浓度板栗叶水浸液对商洛丹参幼苗SOD、PPO、NR酶活性均有显著地影响。低浓度的板栗叶水浸液对商洛丹参幼苗PPO、NR酶活性都有明显的促进作用;随着水浸液浓度的升高,其对丹参幼苗酶PPO、NR活性起到一定的抑制作用。SOD酶活性的变化规律与PPO、NR相比较为复杂。板栗叶水浸液浓度在0~0.03 g·m L-1范围内时,SOD酶活性变化不大。当浓度达到0.04 g·m L-1时,丹参幼苗SOD酶活性开始呈现出明显上升的趋势,并随着板栗叶浸提液浓度的进一步提升而升高。当板栗叶浸提液浓度为0.05 g·m L-1时,丹参幼苗SOD活性最大。结论:板栗叶水浸液对商洛丹参幼苗的SOD、PPO、NR酶活性有影响。  相似文献   

12.
为探讨茉莉酸甲酯( MeJA)诱导巨桉幼苗防御反应的生化机制及其对桉树枝瘿姬小蜂的抗性效应,在室内采用喷施不同浓度MeJA处理,测定并分析了MeJA对桉叶苯丙氨酸解氨酶( PAL)、超氧化物歧化酶( SOD)、过氧化物酶( POD)和多酚氧化酶(PPO)4种防御酶活性,以及胰蛋白酶抑制剂(TI)和胰凝乳蛋白酶抑制剂(CI)2种植物蛋白酶抑制剂活性的影响。结果表明,喷施MeJA处理24-148 h后,巨桉幼苗叶片PAL、 SOD、 POD和PPO 四种防御酶和TI、 CI两种蛋白酶抑制剂活性均有不同程度的变化;用1.00 mmol·L-1 MeJA处理后桉树枝瘿姬小蜂种群趋势指数为24.13,防治效果达70.98%。 MeJA处理可诱导巨桉幼苗产生明显的防御反应,相关防御酶活性的变化与MeJA浓度和处理时间有关; MeJA可诱导巨桉幼苗产生抗虫性,对桉树枝瘿姬小蜂繁殖力和种群趋势指数产生影响,具有明显的防治效果。  相似文献   

13.
不同配方生根粉对香石竹品种扦插生根的影响   总被引:1,自引:0,他引:1  
为了促进香石竹品种扦插生根,以香石竹品种马斯特、小桃红、红旗、皇族为材料,采用萘乙酸(NAA)和吲哚丁酸(IBA)不同浓度配比7个处理,对不同品种的香石竹插穗进行处理,观察生根效果。结果表明:马斯特用处理1(NAA浓度为1.67g·L-1、IBA浓度为0.33g·L-1)的效果最理想,根长达4.41cm,生根率高达100.00%,成苗率达66.67%;小桃红用处理2(NAA浓度为1.00g·L-1、IBA浓度为0.60g·L-1)的效果最理想,根长达3.68cm,生根率高达100.00%,成苗率达65%;红旗用处理3(NAA浓度为1.00g·L-1、IBA浓度为0.33g·L-1)的效果最理想,根长达3.59cm,生根率高达96.67%,成苗率达61.67%;皇族用处理4(NAA浓度为1.00g·L-1、IBA浓度为0.50g·L-1)的配方效果最理想,根长达3.36cm,生根率高达98.33%,成苗率达61.67%;其生根率、成苗率和根长都显著高于其它处理。  相似文献   

14.
以西洋杜鹃中‘粉珍珠’为试验材料,采用人工气候模拟热胁迫(38℃/30℃,昼/夜)并结合叶面喷施不同浓度水杨酸(0.05、0.10、0.15、0.20μmol·L-1,SA)的处理方法,从形态表现、膜脂过氧化、渗透调节物质和抗氧化酶活性及叶片解剖结构等角度,研究外源水杨酸在植物抵抗高温胁迫过程中的生理功能及其作用机理。结果表明:高温胁迫(38℃/30℃)下,水杨酸预处理能够缓解高温胁迫对西洋杜鹃植株的伤害,经0.15~0.20μmol·L-1SA处理可有效抑制叶绿素质量分数的降低,并利于植株后期恢复;经0.05μmol·L-1SA处理可有效抑制丙二醛(MDA)、过氧化氢(H2O2)质量摩尔浓度的累积,并提高可溶性蛋白质量分数,增强超氧化物歧化酶(SOD)和过氧化物酶(POD)活性,且不同处理间差异显著;经0.05、0.10μmol·L-1SA处理有利于增加气孔密度、减小气孔张开度和气孔面积。经适宜浓度水杨酸处理能提高西洋杜鹃幼苗的耐热性,并以0.05μmol·L-1浓度处理效果最佳。  相似文献   

15.
以黄瓜霜霉病为研究对象,用浓度分别为0.00(CK),0.05,0.10,0.50,1.00,2.00 mmol·L-1的月桂醇处理黄瓜幼苗,探讨其对接种黄瓜霜霉菌后黄瓜植株生长状况、发病情况和相关防御酶活性的影响。结果表明:0.05~1.00 mmol·L-1月桂醇处理,降低了黄瓜霜霉病的发病率和病情指数,其中以0.10 mmol·L-1处理效果最好,对照严重发病时,其发病率仅为44.44%,病情指数为15.87,防治效果达63.53%;低浓度月桂醇对黄瓜植株的株高、茎粗、鲜质量、根系活力及苯丙氨酸解氨酶(PAL)、过氧化物酶(POD)、多酚氧化酶(PPO)活性均表现为促进作用,0.10 mmol·L-1月桂醇处理的促进作用最大;而低浓度月桂醇降低了脯氨酸含量和相对电导率,0.10 mmol·L-1月桂醇处理的抑制作用最大。说明0.10 mmol·L-1月桂醇处理效果最佳。  相似文献   

16.
外源水杨酸降低辣椒幼苗盐害的生理效应   总被引:1,自引:0,他引:1  
为了明确外源水杨酸(Salicylic acid,SA)提高蔬菜作物抗盐的生理生化机制,以辣椒(Capsicumfrutescens L.)为材料,在150 mmol.L-1 NaCl胁迫条件下,采用叶面喷施法,研究了不同浓度外源SA对幼苗形态建成及其生理生化特性的影响。结果表明,外源SA能够显著提高幼苗的株高、展开叶片数、茎粗、植株鲜重及干物重以及壮苗指数,明显降低丙二醛(MDA)含量,显著提高游离脯氨酸、可溶性蛋白含量及超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)酶活性。其中,SA浓度为200 mg.L-1时作用效果最明显。  相似文献   

17.
以1年生火力楠幼苗为试材,通过甜菜碱(BT)、氯化钙(CaCl2)、茉莉酸甲酯(MeJA)和水杨酸(SA)4种外源物质进行处理,研究其对300 mmol·L-1 NaCl胁迫下火力楠幼苗相对电导率、叶绿素、可溶性糖和蛋白质量分数、过氧化氢酶(CAT)、过氧化物酶(POD)、超氧化物歧化酶(SOD)活性的影响.结果表明:(1)单盐胁迫下火力楠幼苗的相对电导率、SOD活性显著升高,可溶性糖质量分数和CAT活性升高,POD活性先升高后下降,叶绿素、可溶性蛋白质量分数下降.(2)喷施适宜浓度的不同外源物质后叶片相对电导率显著降低,可溶性糖和可溶性蛋白质量分数明显增多,CAT、POD、SOD活性显著增强,叶绿素质量分数变化不大.(3)利用隶属法进行综合评价结果显示4类外源物质缓解火力楠幼苗盐伤害作用效果排序由大到小为MeJA、SA、CaCl2、BT.喷施外源3 mmol·L-1 MeJA最能减少盐胁迫对火力楠幼苗的伤害,其次为100 mg·L-1 SA、5 mmol·L-1 CaCl2处理.  相似文献   

18.
为了探明水杨酸(salicylic acid,SA)对NaCl胁迫下番茄(Lycopersicon esculentum Mill.)幼苗的叶片氧化损伤的影响,对番茄幼苗叶面喷施不同浓度SA(0,100,300,500mg·L-1),研究了SA对NaCI(100mmol·L-1)胁迫下番茄幼苗叶片保护酶活性和渗透调节物质含量的影响.结果表明:NaCl胁迫下番茄幼苗叶片中的SOD,PoD,CAT活性,游离脯氨酸含量,可溶性蛋白质含量,可溶性糖含量和丙二醛含量上升,SA处理显著提高了NaCl胁迫下番茄幼苗SOD、CAT和POD活性,游离脯氨酸含量、可溶性蛋白质含量和可溶性糖的含量.其中500mg·L-1SA处理效果最好,其最高值分别比单独NaCl处理植株增加了27.83%、29.52%、27.83%、 32.39%、51.39%和13.57%;SA处理显著降低丙二醛的含量,其中500mg·L-1SA处理效果最好,其最高值比单独NaCl处理植株降低了11.41%.外源SA可以通过提高植株渗透调节能力和抗氧化能力,维持植株水分平衡,保护膜结构和功能,减轻NaCl对番茄幼苗的胁迫伤害.  相似文献   

19.
硫酸锌、氯化钙溶液浸种对玉米种子萌发的影响   总被引:7,自引:0,他引:7  
采用不同浓度的硫酸锌、氯化钙溶液对玉米种子浸种.试验结果表明,不同浓度处理对玉米种子的发芽势、发芽率、活力指数、根长、幼苗的过氧化物酶活性、淀粉酶活性等性状、指标的影响均达显著水平.对玉米种子的发芽势、发芽率、活力指数、根长、POD活性、淀粉酶活性处理效果较好的是250 mg·L-1硫酸锌、10 mmol·L-1氯化钙.硫酸锌和氯化钙共同处理的适宜组合是250 mg·L-1硫酸锌和10 mmol·L-1氯化钙混合液.  相似文献   

20.
外源SA预处理对低温胁迫下萝卜幼苗的生理效应   总被引:1,自引:0,他引:1  
以阳春早秀萝卜幼苗为试材,通过叶面喷施适宜浓度的水杨酸(SA),探讨外源SA对低温胁迫下萝卜幼苗的缓解效应。结果表明,0.75mmol.L-1SA预处理幼苗后,随低温处理时间延长,可溶性糖和脯氨酸质量分数逐渐升高,抗氧化酶活性也显著高于同期对照,而丙二醛(MDA)质量摩尔浓度显著低于同期对照。因此,适当浓度的外源SA可通过增加渗透调节物质质量分数和提高抗氧化酶活性来提高萝卜幼苗对低温胁迫的抗性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号