首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lycopene and beta-carotene were extracted from tomato paste waste using supercritical carbon dioxide (SC-CO(2)). To optimize supercritical fluid extraction (SFE) results for the isolation of lycopene and beta-carotene, a factorial designed experiment was conducted. The factors assessed were the temperature of the extractor (35, 45, 55, and 65 degrees C), the pressure of the extraction fluid (200, 250, and 300 bar), addition of cosolvent (5, 10, and 15% ethanol), extraction time (1, 2, and 3 h), and CO(2) flow rate (2, 4, and 8 kg/h). The total amounts of lycopene and beta-carotene in the tomato paste waste, extracts, and residues were determined by HPLC. A maximum of 53.93% of lycopene was extracted by SC-CO(2) in 2 h (CO(2) flow rate = 4 kg/h) at 55 degrees C and 300 bar, with the addition of 5% ethanol as a cosolvent. Half of the initially present beta-carotene was extracted in 2 h (flow rate = 4 kg/h), at 65 degrees C and 300 bar, also with the addition of 5% ethanol.  相似文献   

2.
To investigate the influence of the type of carbonyl group of the sugar on the structural changes of proteins during glycation, an exhaustive structural characterization of glycated beta-lactoglobulin with galactose (aldose) and tagatose (ketose) has been carried out. Conjugates were prepared via Maillard reaction at 40 and 50 degrees C, pH 7, and a w = 0.44. The progress of the Maillard reaction was followed by indirect formation of Amadori and Heyns compounds, advanced glycation end products, and brown polymers. The structural characterization of glycoconjugates was conducted by using a number of analytical techniques such as RP-HPLC, isoelectric focusing, MALDI-ToF, SDS-PAGE, size exclusion chromatography, and spectrofluorimetry (tryptophan fluorescence). In addition, the surface hydrophobicity of the beta-lactoglobulin glycoconjugates was also assessed. The results showed a higher reactivity of galactose than tagatose to form the glycoconjugates, probably due to the higher electrophilicity of the aldehyde group. At 40 degrees C, more aggregation was produced when beta-lactoglobulin was conjugated with tagatose as compared to galactose. However, at 50 degrees C hardly any difference was observed in the aggregation produced by galactose and tagatose. These results afford more insight into the importance of the functional group of the carbohydrate moiety during the formation of protein-carbohydrate conjugates via Maillard reaction.  相似文献   

3.
Supercritical carbon dioxide (SC CO(2)) was used for the extraction of oil and squalene from Amaranthus grain. Very small amounts of oil could be extracted by SC CO(2) from undisrupted grains, although SC CO(2) possesses higher diffusivity. Grinding increased the extraction rate and oil yield, and smaller particle size gave higher extraction rate. The oil yield and initial extraction rate increased linearly with the increasing SC CO(2) flow rate from 1 to 2 L/min. Increasing the flow rate of SC CO(2) above 2 L/min resulted in only a slight increase of oil yield and extraction rate. In the pressure range of 150-250 bar, extraction decreased with increasing temperature at a constant pressure, whereas at a pressure of 300 bar, the extraction yield increased with increasing temperature. Possible reasons for this are discussed. Effects of temperature and pressure on squalene yield were different from those on oil yield. A good oil yield (4.77 g of oil/100 g of grain) was obtained at 40 degrees C and 250 bar. The highest squalene yield (0.31 g of squalene/100 g of grain) and concentration (15.3% in extract) were obtained at 50 degrees C and 200 bar, although the oil yield under this condition was low (2.07 g of oil/100 g of grain). The moisture content within 0-10% had little influence on yields of oil and squalene at 40 degrees C and 250 bar. Finally, the oil yield and the squalene concentration in the extracts by SC CO(2) were compared to those by solvent extraction.  相似文献   

4.
Pressurized fluid extraction (PFE) is a new sample extraction method operated at elevated temperatures and pressures with liquid solvents. The use of PFE was investigated for the extraction of four Hawaiian clayey soils fortified with the selected chloroacetanilide and nitrogen heterocyclic herbicides Alachlor, Bromacil, Hexazinone, Metribuzin, and Tebuthiuron. The effects of operation temperature, pressure, flush volume, and static cycles on PFE performance were studied. Water was the most effective modifier of PFE for quantitative recoveries of the five herbicides in soils. The simple extraction method required pretreatment of the soil with 37.6% water and subsequent two-static-cycle extraction with a total of 32 mL of acetone at 1500 psi and 100 degrees C. Average recoveries of Alachlor, Bromacil, Hexazinone, Metribuzin, and Tebuthiuron ranged from 93 to 103% by the water-assisted PFE, compared with only 68-83% recoveries of the corresponding chemicals when no water was used. The extraction time and total organic solvent consumption were reduced from 18 h and 300 mL by Soxhlet to 22 min or less and 80 mL or less of organic solvent by PFE.  相似文献   

5.
Supercritical fluid extraction of organochlorine pesticides in eggs   总被引:2,自引:0,他引:2  
The efficacy of supercritical fluid extraction (SFE) for the recovery of 16 common organochlorine pesticides (OCPs) from liquid whole eggs was investigated by employing supercritical carbon dioxide (SC-CO(2)) without the use of a solvent modifier to minimize interfering coextractives. The OCPs tested included aldrin; alpha-, beta-, delta-, and gamma-BHCs; p,p'-DDD, -DDE, and -DDT; dieldrin; endosulfans I, II, and sulfate; endrin; endrin aldehyde; heptachlor; and heptachlor epoxide. The SFE conditions were as follows: 10000 psi (680 bar), 40 degrees C, SC-CO(2) flow rate of 3.0 L/min with an extraction time of 40 min for a total of 120 L of CO(2). The OCPs were trapped off-line in an SPE cartridge containing Florisil and then eluted by an acetone/hexane mixture and analyzed by gas chromatography-electron capture detection (GC-ECD). Recovery studies were carried out on homogenized eggs fortified at the 0.05, 0.10, and 0.20 ppm levels. At the lowest level, 0.05 ppm, recoveries ranged from 81.8 to 108.3%, with CVs < 9.8%. All recoveries were significantly higher than those obtained by an AOAC/FDA solvent extraction method. Eggs containing incurred endosulfan I were also effectively extracted by SFE. This study suggests that the application of SFE for the extraction of OCPs from eggs will result in significant savings in analysis time and lower solvent use and disposal costs compared to conventional solvent extraction procedures.  相似文献   

6.
Supercritical fluid extraction of lycopene from tomato processing byproducts   总被引:15,自引:0,他引:15  
Tomato seeds and skins acquired from the byproduct of a local tomato processing facility were studied for supercritical fluid extraction (SFE) of phytochemicals. The extracts were analyzed for lycopene, beta-carotene, alpha-carotene, alpha-tocopherol, gamma-tocopherol, and delta-tocopherol content using high-performance liquid chromatography-electrochemical detection and compared to a chemically extracted control. SFEs were carried out using CO(2) at seven temperatures (32-86 degrees C) and six pressures (13.78-48.26 MPa). The effect of CO(2) flow rate and volume also was investigated. The results indicated that the percentage of lycopene extracted increased with elevated temperature and pressure until a maximum recovery of 38.8% was reached at 86 degrees C and 34.47 MPa, after which the amount of lycopene extracted decreased. Conditions for the optimum extraction of lycopene from 3 g of raw material were determined to be 86 degrees C, 34.47 MPa, and 500 mL of CO(2) at a flow rate of 2.5 mL/min. These conditions resulted in the extraction of 61.0% of the lycopene (7.19 microg lycopene/g).  相似文献   

7.
Isoflavones are novel nutraceutical constituents of soybeans, but considerable amounts are lost in the whey during conventional tofu manufacturing. In this study, in a small-scale process, 2 mL of koji enzyme extract (soybean koji/deionized water, 1/3, w/v) was combined with 600 mL of soy milk, and 30 mL aliquots were incubated at 35 degrees C for 0, 30, 60, 120, and 300 min, for enzyme pretreatment. After each treatment time, soy milk was heated to 85 degrees C, CaSO4 was added to aggregate protein, and the mixture was centrifuged to separate the solids (tofu) from the whey. The tofu yield and moisture contents from soy milk treated for 30 or 60 min were higher than those from soy milk treated for 0 (control), 120, or 300 min. The protein content of freeze-dried tofu varied in a limited range, and native PAGE and SDS-PAGE patterns revealed slight quantitative and qualitative variations among products. Soy milk daidzein and genistein contents increased while daidzin and genistin contents decreased as the time of enzyme pretreatment of the soy milk increased. After 30 min of pretreatment, daidzin, genistin, daidzein, and genistein contents recovered in tofu products were higher than those of the control. In a pilot-scale process, aliquots (3 L) of soy milk were enzyme-treated for 30 min, aggregated with CaSO4, and hydraulically pressed to remove the whey. As in pretreatments, soy milk daidzein and genistein contents increased while daidzin and genistin contents decreased. In a comparison of the control and enzyme-treated tofu products, the total recoveries of daidzin, genistin, daidzein, and genistein in the tofu products increased from 54.9% to 64.2%. When the tofu products were subjected to a sensory panel test, both products were judged acceptable.  相似文献   

8.
The separation and determination of tocopherols (Ts) and tocotrienols (T3s) by reversed-phase high-performance liquid chromatography with fluorescence detection has been developed and validated after optimization of various chromatographic conditions and other experimental parameters. Analytes were separated on a PerfectSil Target ODS-3 (250 × 4.6 mm, 3 μm) column filled with a novel sorbent material of ultrapure silica gel. The separation of Ts and T3s was optimized in terms of mobile-phase composition and column temperature on the basis of the best compromise among efficiency, resolution, and analysis time. Using a gradient elution of mobile phase composed of isopropanol/water and 7 °C column temperature, a satisfactory resolution was achieved within 62 min. For the quantitative determination, α-T acetate (50 μg/mL) was used as the internal standard. Detection limits ranged from 0.27 μg/mL (γ-T) to 0.76 μg/mL (γ-T3). The validation of the method was examined performing intraday (n = 5) and interday (n = 3) assays and was found to be satisfactory, with high accuracy and precision results. Solid-phase extraction provided high relative extraction recoveries from cereal samples: 87.0% for γ-T3 and 115.5% for δ-T. The method was successfully applied to cereals, such as durum wheat, bread wheat, rice, barley, oat, rye, and corn.  相似文献   

9.
A headspace solid-phase microextraction (HS-SPME) and gas chromatography-selective ion monitoring/mass spectrometry (GC-SIM/MS) method was optimized for analysis of 22 volatile compounds in orujo spirit samples from the Geographic Denomination "Orujo de Galicia/Augardente de Galicia". HS-SPME experimental conditions, such as fiber coating, extraction temperature, extraction and pre-equilibrium time, sample volume, and the presence of salt, were studied to improve the extraction process. The best results were obtained using a 65 microm Carbowax-divinylbenzene fiber during a headspace extraction at 40 degrees C with constant magnetic stirring for 15 min and after a 5 min period of pre-equilibrium time. The sample volume was 6 mL of orujo containing 25% of NaCl, placed in 12 mL glass vials equipped with a screw cap and PTFE/silicone septum. Desorption was performed directly in the gas chromatograph injector port for 5 min at 250 degrees C using the splitless mode. The proposed method is sensible (with detection limits between 0.0045 and 0.2399 mg/L), precise (with coefficients of variation in the range 0.99-8.18%), and linear over more than 1 order of magnitude. The developed method presented recoveries comprised between 76.0 and 112.4%. The applicability of the new method was demonstrated by determining the considered 22 volatile compounds in nine orujo commercial samples with quality and origin brands.  相似文献   

10.
A rapid solid-phase extraction (SPE) method was developed for the determination of bentazone and the phenoxy acids 2,4-D, dichlorprop, MCPA, and mecoprop in Norwegian environmental water samples. Cartridges with a high-capacity cross-linked polystyrene-based polymer were used for off-line preconcentration. The effects of elution solvent, elution volume, sample volume, sorbent mass, pH, and flow rate on the recoveries of the pesticides were investigated using HPLC. Average recovery of >90% was achieved with 500 mg sorbents using 2 mL of methanol with 5% NH3 as elution solvent. The recoveries were independent of sample pH in the tested range of pH 1-7. Using a sample volume of 200 mL, the limits of determination for the phenoxy acids and bentazone are 0.02 microg/L. Sample volumes up to 2000 mL at a flow rate of 60 mL/min could be handled without any loss of analytes, which makes it possible to lower the limits of determination. The SPE method was compared to a routinely used liquid-liquid extraction method. Three different water matrices spiked at 1.0 and 0.05 microg/L were extracted, and the quantification was performed by GC-MS. Both methods permitted the determination of phenoxy acids and bentazone in distilled water, creek water, and well water down to a level of 0.05 microg/L with recoveries >80% for 200 mL samples. Important advantages of the SPE method compared to the liquid-liquid extraction method were the short extraction times, lack of emulsions, use of disposable equipment, and reduced consumption of organic solvents.  相似文献   

11.
A new procedure with supercritical CO2 modified with 0.5 mL of water and 0.75 mL of 0.1 M HCl in situ and 0.75 mL of water on-line at 15 MPa and 50 degrees C for 45 min was applied for the extraction of bioavailable amino acids from soil samples. Total extraction time was 60 min, but more favorable conditions are even possible for selected groups of amino acids. All analytes were trapped into 20 mL of methanol with satisfactory recovery (94-104%) and determined using high-performance liquid chromatography with fluorometric detection on a Zorbax Eclipse column (4.6 x 75 mm, 3.5 microm) with Na2HPO4 and acetonitrile/methanol/water as a mobile phase. Linear calibration curves were obtained (r > 0.999 except 0.99823 for Ile) with lower limits of detection (S/N = 3) in the range from 1.54 pg (Gly) to 13.5 pg (Cy2) or from 18.6 fmol (Ser) to 64.8 fmol (Lys). Validation and repeatability data are also given. Comparable results were obtained with a robust, commonly used extraction method (0.5 M ammonium acetate, 60 min in shaker, followed by filtration and lyophilization). Limiting values of artificial release of amino acids were also determined for each soil sample to eliminate any false results to ensure that all extracted amino acids originate from soil solution and exchangeable bound positions of soil samples.  相似文献   

12.
Possible refining of crude hexane extract (CHE) from pyrethrum flowers and further refining of Pyrethrum Board of Kenya (PBK) pale product is investigated with both liquid and supercritical carbon dioxide. The experiments were carried out in a small pilot plant with a 200 mL extractor and three cyclonic separators in series. To understand the dynamics of pyrethrin extraction, CHE was extracted in a single step; pyrethrin concentration was found to be improved from 0.16 to 0.50 g/g. The effects of temperature and pressure on the quality of the extract were studied at 29 degrees C and 80 bar and at 40 degrees C and 100 bar. Liquid CO(2) processing (29 degrees C, 80 bar) yielded slightly better product quality. A comparison study of CHE and PBK pale processing with supercritical CO(2) (40 degrees C, 100 bar) showed that the final products were similar in terms of pyrethrin content. Extraction of both PBK pale and CHE in two steps with different operating conditions improved their purity.  相似文献   

13.
A small-scale supercritical fluid extraction (SFE) method was developed for the selective extraction of phloroglucinols from St. John's wort (SJW) leaf/flower mixtures using supercritical carbon dioxide (CO(2)). The extraction efficiency was investigated as influenced by pressure, temperature, time, and modifier. The optimized condition of SFE was carried out at 3.80 x 10(4) kpa (5500 psi) and 50 degrees C. Samples were held in static extraction for 10 min, followed by a dynamic extraction for 90 min at the flow rate of 1 mL/min. A simple and sensitive HPLC method was developed for the analysis of hyperforin and adhyperforin, the major phloroglucinols, in the SFE extract of SJW.  相似文献   

14.
Supercritical fluid extraction (SFE) has been utilized by the food industry in many applications to extract, fractionate, and recover compounds from various food matrices. However, little research has been conducted using SFE as an alternative process for producing reduced-fat cheese. Lipids in cheeses may be selectively extracted due to the nonpolar properties of supercritical carbon dioxide (SC-CO2), without leaving residual chemicals as is the case in solvent extraction. The objective of this study was to evaluate the influence on the extraction process due to cheese variety and protein breakdown by age. A Latin square design was utilized to test the extractability of lipids from Parmesan and Cheddar cheeses, aged young (9-10 months) or old (24 months). Extraction took place in a 500 mL SFE vessel using 100 g of grated cheese samples. The SFE parameters of the extraction were 350 bar, 35 degrees C, and supercritical carbon dioxide at a flow rate of 20 g/min for 55 min. Compositional analysis measured all treated samples and controls of total lipids, lipid profiling, total protein, protein/peptide analysis, moisture, ash, and pH. Cheese type was a major variable in fat extraction. The extraction in Cheddar showed an average fat reduction of 53.56% for young cheese, whereas that in old Cheddar was 47.90%. However, young Parmesan was reduced an average of 55.07%, but old Parmesan was reduced at 68.11%, measured on a dry basis. SFE extracted triglycerides and cholesterol, but did not remove phospholipids. This investigation introduces the observations of the effect of Cheddar and Parmesan varieties on SFE, offering data on the important parameters to consider in the design of SFE processes to reduce fat in cheese.  相似文献   

15.
Supercritical carbon dioxide extraction allowed essential oil of Laurus nobilis to be obtained. Extraction conditions were as follows: pressure, 90 bar; temperature, 50 degrees C; and carbon dioxide flow, Phi = 1.0 kg/h. Waxes were entrapped in the first separator set at 90 bar and -10 degrees C. The oil was recovered in the second separator working at 15 bar and 10 degrees C. The main components were 1,8-cineole (22.8%), linalool (12.5%), alpha-terpinyl acetate (11.4%), and methyleugenol (8.1%). Comparison with the hydrodistilled oil did not reveal any significant difference. Collection of samples at different extraction times during supercritical extraction allowed the change of the oil composition to be monitored. Lighter compounds such as hydrocarbon and oxygenated monoterpenes were extracted in shorter times than the heavier hydrocarbon and oxygenated sesquiterpenes.  相似文献   

16.
An efficient supercritical fluid extraction (SFE) process with carbon dioxide (SFE-CO(2)) was developed for the extraction of natural vitamin E (V(E)) from wheat germ. Both the pretreatment of extracted wheat germ and extraction conditions were optimized to ensure maximal V(E) yield. The extraction was undertaken at the extracting pressure of 4000-5000 psi, the extracting temperature of 40-45 degrees C, and the carbon dioxide flow rate of 2.0 mL/min for 90 min. An optimized pretreatment of wheat germ was usually necessary with a particle size of 30 mesh and a moisture content of 5.1%. A yield comparison of V(E) and its isomers extracted by supercritical CO(2) with those by conventional solvent extraction suggested that this SFE process was a practical process prospectively superior to conventional solvent extraction to prepare V(E) from wheat germ.  相似文献   

17.
Large amounts of contaminated process dust remain from the procedure of pesticide treatments applied to seed pellets. A pilot study in analytical-scale supercritical fluid extraction (SFE) was performed to determine the possibility of using supercritical carbon dioxide for the extraction of the nonpolar insecticide carbosulfan and the more polar insecticide imidacloprid present in contaminated dust waste, at concentrations of up to 20% (w/w). The effects of various experimental conditions, such as temperature, flow rate, and addition of modifier, on the recovery of the analytes were evaluated by extracting the pesticides both from spiked support material and from real dust samples. It was found that carbosulfan could easily be extracted from the dust waste within 30 min at 138 bar and 40 degrees C with a recovery of 98.9% (RSD = 2.3%, n = 10), compared to values obtained with a validated liquid extraction method. A sufficient removal of the more polar substance imidacloprid required the addition of a modifier, and the results showed a strong dependence of the extraction efficiency on the choice of modifier. Extractions at 276 bar and 80 degrees C with a solvent consisting of supercritical carbon dioxide modified with methanol (5%) gave a recovery of 97.0% (RSD = 3.6%, n = 10) using a 40 min extraction time. The results indicate that it seems to be possible to use process-scale SFE for the decontamination of pesticides from dust waste. The conditions outlined also permit analytical determinations of the two insecticides based on a combination of SFE and liquid chromatography.  相似文献   

18.
Supercritical carbon dioxide (SCCO2) extraction of lycopene from waste tomato skins was investigated. The experiments were carried out at pressures and temperatures ranging from 20 to 50 MPa and 313 to 373 K, respectively, without any modifiers. The flow rate of CO2 was maintained at 2.5 mL/min for 330 min extraction time. Solvent flow rate effect was examined for CO2 flow rates from 1.5 to 4.5 mL/min. The extracts were analyzed by high-performance liquid chromatography and UV-visible spectroscopy. The results showed that with optimized operating conditions, the maximum yield of lycopene (1.18 mg of lycopene/g of sample) was obtained at 40 MPa, 373 K, and 2.5 mL of CO2/min. Chromatographic analysis indicated that lycopene was extracted from tomato skin with negligible degradation at the optimum conditions and the amount extracted represented more than 94% of the total carotenoid content of the sample. The solubility of lycopene was modeled by use of the Chrastil equation.  相似文献   

19.
The sweep co-distillation technique of Storherr et al. was investigated and simplified. Six organochlorine pesticides in animal fats were cleaned up under various distillation conditions as follows: No solvent was used, or solvent injection rates were 1 mL/min or 2 mL/3 min. Distillation tubes of 6.7 and 9.0 mm id diameter were compared. Distillation temperatures were varied from 150 to 300 degrees C. The complex condenser of Storherr et al. was compared with a simpler pipet condenser. A U-tube condenser which allows direct introduction onto a Florisil column for secondary cleanup was evaluated. The following modifications to the sweep co-distillation technique resulted: no solvent introduction, distillation temperature 230 degrees C, nitrogen flow rate 600 mL/min, 6.7 mm id distillation tubes with simplified packing, and incorporation of the U-tube condenser. The new technique gave recoveries comparable to those of Storherr et al., but it is faster than most bisolvent partition methods and no large volumes of solvent are required.  相似文献   

20.
The formation of mutagens after the heating of sugar-casein model systems at 120 degrees C was examined by the Ames test, using Salmonella typhimurium strain TA100. Several sugars (glucose, fructose, galactose, tagatose, lactose, and lactulose) were compared in their mutagenicities. Mutagenicity could be fully ascribed to Maillard reaction products and strongly varied with the kind of sugar. The differences in mutagenicity among the sugar-casein systems were caused by a difference in reaction rate and a difference in reaction mechanism. Sugars with a comparable reaction mechanism (glucose and galactose) showed a higher mutagenic activity corresponding with a higher Maillard reactivity. Disaccharides showed no mutagenic activity (lactose) or a lower mutagenic activity (lactulose) than their corresponding monosaccharides. Ketose sugars (fructose and tagatose) showed a remarkably higher mutagenicity compared with their aldose isomers (glucose and galactose), which was due to a difference in reaction mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号