首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three simultaneous observations of atomic chlorine (Cl) and the chlorine monoxide radical (ClO) are reported which encompass the altitude interval between 25 and 45 kilometers. Together, Cl and ClO form a gas-phase catalytic cycle potentially capable of depleting stratospheric ozone. Observed Cl and C1O densities, although variable, imply that chlorine compounds constitute an important part of the stratospheric ozone budget. The results are compared with recent models of stratospheric photochemistry which have been used as a basis for predicting ozone depletion resulting from fluorocarbon release.  相似文献   

2.
This article reports measurements of the column density of stratospheric chlorine monoxide and presents a complete diurnal record of its variation (with 2-hour resolution) obtained from ground-based observations of a millimeter-wave spectral line at 278 gigahertz. Observations were carried out during October and December 1982 from Mauna Kea, Hawaii. The results reported here indicate that the mixing ratio and column density of chlorine monoxide above 30 kilometers during the daytime are approximately 20 percent lower than model predictions based on 2.1 parts per billion of total stratospheric chlorine. The observed day-to-night variation of chlorine monoxide is, however, in good agreement with recent model predictions, confirms the existence of a nighttime reservoir for chlorine, and verifies the predicted general rate of its storage and retrieval. From this evidence, it appears that the chlorine chemistry above 30 kilometers is close to being understood in current stratospheric models. Models based on this chemistry and measured reaction rates predict a reduction in the total stratospheric ozone content in the range of 3 to 5 percent in the final steady state for an otherwise unperturbed atmosphere, although the percentage decrease in the upper stratosphere is much higher.  相似文献   

3.
Polar stratospheric clouds (PSCs) play a key role in stratospheric ozone depletion. Surface-catalyzed reactions on PSC particles generate chlorine compounds that photolyze readily to yield chlorine radicals, which in turn destroy ozone very efficiently. The most prevalent PSCs form at temperatures several degrees above the ice frost point and are believed to consist of HNO(3) hydrates; however, their formation mechanism is unclear. Results of laboratory experiments are presented which indicate that the background stratospheric H(2)SO(4)/H(2)O aerosols provide an essential link in this mechanism: These liquid aerosols absorb significant amounts of HNO(3) vapor, leading most likely to the crystallization of nitric acid trihydrate (NAT). The frozen particles then grow to form PSCs by condensation of additional amounts of HNO(3) and H(2)O vapor. Furthermore, reaction probability measurements reveal that the chlorine radical precursors are formed readily at polar stratospheric temperatures not just on NAT and ice crystals, but also on liquid H(2)SO(4) solutions and on solid H(2)SO(4) hydrates. These results imply that the chlorine activation efficiency of the aerosol particles increases rapidly as the temperature approaches the ice frost point regardless of the phase or composition of the particles.  相似文献   

4.
The nature of the Arctic polar stratosphere is observed to be similar in many respects to that of the Antarctic polar stratosphere, where an ozone hole has been identified. Most of the available chlorine (HCl and ClONO(2)) was converted by reactions on polar stratospheric clouds to reactive ClO and Cl(2)O(2) throughout the Arctic polar vortex before midwinter. Reactive nitrogen was converted to HNO(3), and some, with spatial inhomogeneity, fell out of the stratosphere. These chemical changes ensured characteristic ozone losses of 10 to 15% at altitudes inside the polar vortex where polar stratospheric clouds had occurred. These local losses can translate into 5 to 8% losses in the vertical column abundance of ozone. As the amount of stratospheric chlorine inevitably increases by 50% over the next two decades, ozone losses recognizable as an ozone hole may well appear.  相似文献   

5.
Stratospheric chlorine oxide, a significant intermediate product in the catalytic destruction of ozone by atomic chlorine, has been detected and measured by a ground-based 204-gigahertz, millimeter-wave receiver. Data taken at latitude 42 degrees N on 17 days between 10 January and 18 February 1980 yield an average chlorine oxide column density of approximately 1.05 x 10(14) per square centimeter or approximately 2/3 that of the average of eight in situ balloon flight measurements (excluding the anomalously high data of 14 July 1977) made over the past 4 years at 32 degrees N. We find less chlorine oxide below 35 kilometers and a larger vertical gradient than predicted by theoretical models of the stratospheric ozone layer.  相似文献   

6.
Simultaneous global measurements of nitric acid (HNO(3)), water (H(2)O), chlorine monoxide (CIO), and ozone (O(3)) in the stratosphere have been obtained over complete annual cycles in both hemispheres by the Microwave Limb Sounder on the Upper Atmosphere Research Satellite. A sizeable decrease in gas-phase HNO(3) was evident in the lower stratospheric vortex over Antarctica by early June 1992, followed by a significant reduction in gas-phase H(2)O after mid-July. By mid-August, near the time of peak CIO, abundances of gas-phase HNO(3) and H(2)O were extremely low. The concentrations of HNO(3) and H(2)O over Antarctica remained depressed into November, well after temperatures in the lower stratosphere had risen above the evaporation threshold for polar stratospheric clouds, implying that denitrification and dehydration had occurred. No large decreases in either gas-phase HNO(3) or H(2)O were observed in the 1992-1993 Arctic winter vortex. Although CIO was enhanced over the Arctic as it was over the Antarctic, Arctic O(3) depletion was substantially smaller than that over Antarctica. A major factor currently limiting the formation of an Arctic ozone "hole" is the lack of denitrification in the northern polar vortex, but future cooling of the lower stratosphere could lead to more intense denitrification and consequently larger losses of Arctic ozone.  相似文献   

7.
A ground-based search for stratospheric chlorine monoxide was carried out during May and October 1981 with an infrared heterodyne spectrometer in the solar absorption mode. Lines due to stratospheric nitric acid and tropospheric carbonyl sulfide were detected at about 0.2 percent absorptance levels, but the expected 0.1 percent lines of chlorine monoxide in this same region were not seen. Stratospheric chlorine monoxide is less abundant by at least a factor of 7 than is indicated by in situ measurements, and the upper limit for the integrated vertical column density of chlorine monoxide is 2.3 x 10(13) molecules per square centimeter at the 95 percent confidence level. These results imply that the release of chlorofluorocarbons may be significantly less important for the destruction of stratospheric ozone than is currently thought.  相似文献   

8.
The stratospheric concentration of trace gases released in the atmosphere as a result of human activities is increasing at a rate of 5 to 8 percent per year in the case of the chlorofluorocarbons (CFCs), 1 percent per year in the case of methane (CH(4)), and 0.25 percent per year in the case of nitrous oxide (N(2)O). The amount of carbon dioxide (CO(2)) is expected to double before the end of the 21st century. Even if the production of the CFCs remains limited according to the protocol for the protection of the ozone layer signed in September 1987 in Montreal, the abundance of active chlorine (2 parts per billion by volume in the early 1980s) is expected to reach 6 to7 parts per billion by volume by 2050. The impact of these increases on stratospheric temperature and ozone was investigated with a two-dimensional numerical model. The model includes interactive radiation, wave and mean flow dynamics, and 40 trace species. An increase in CFCs caused ozone depletion in the model, with the largest losses near the stratopause and, in the vertical mean, at high latitudes. Increased CO(2) caused ozone amounts to increase through cooling, with the largest increases again near 45 kilometers and at high latitudes. This CO(2)-induced poleward increase reduced the CFC-induced poleward decrease. Poleward and downward ozone transport played a major role in determining the latitudinal variation in column ozone changes.  相似文献   

9.
Vaida V  Simon JD 《Science (New York, N.Y.)》1995,268(5216):1443-1448
Determining the detailed photoreactivity of radicals that are of importance in atmospheric processes requires information from both laboratory and field measurements and theoretical calculations. Laboratory experiments and quantum calculations have been used to develop a comprehensive understanding of the photoreactivity of chlorine dioxide (OCIO). The photoreactivity is strongly dependent on the medium (gas phase, liquid solution, or cryogenic matrix). These data reveal details of the complex chemistry of OCIO. The potential role of this radical in stratospheric ozone depletion is discussed in accord with these laboratory measurements.  相似文献   

10.
Calculations indicate that chlorofluoromethanes produced by man can greatly affect the concentrations of stratospheric ozone in future decades. This effect follows the release of chlorine from these compounds in the stratosphere. Present usage levels of chlorofluoromethanes can lead to chlorine-catalyzed ozone destruction rates that will exceed natural sinks of ozone by 1985 or 1990.  相似文献   

11.
The current understanding of stratospheric chemistry is reviewed with particular attention to the influence of human activity. Models are in good agreement with measurements for a variety of species in the mid-latitude stratosphere, with the possible exception of ozone (O(3)) at high altitude. Rates calculated for loss of O(3) exceed rates for production by about 40 percent at 40 kilometers, indicating a possible but as yet unidentified source of high-altitude O(3). The rapid loss of O(3) beginning in the mid-1970s at low altitudes over Antarctica in the spring is due primarily to catalytic cycles involving halogen radicals. Reactions on surfaces of polar stratospheric clouds play an important role in regulating the abundance of these radicals. Similar effects could occur in northern polar regions and in cold regions of the tropics. It is argued that the Antarctic phenomenon is likely to persist: prompt drastic reduction in the emission of industrial halocarbons is required if the damage to stratospheric O(3) is to be reversed.  相似文献   

12.
Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO(2)) with H(2)0 and hydrogen chloride (HCl) on surfaces that simulate polar stratospheric clouds [ice and nitric acid (HNO(3))-ice and sulfuric acid] are studied at temperatures relevant to the Antarctic stratosphere. The reaction of ClONO(2) on ice and certain mixtures of HNO(3) and ice proceeded readily. The sticking coefficient of ClONO(2) on ice of 0.009 +/- 0.002 was observed. A reaction produced gas-phase hypochlorous acid (HOCl) and condensed-phase HNO(3); HOC1 underwent a secondary reaction on ice producing dichlorine monoxide (Cl(2)O). In addition to the reaction with H(2)0, ClONO(2) reacted with HCl on ice to form gas-phase chlorine (Cl(2)) and condensed-phase HNO(3.) Essentially all of the HCl in the bulk of the ice can react with ClONO(2) on the ice surface. The gaseous products of the above reactions, HOCl, Cl(2)0, and Cl(2), could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the formation of condensed-phase HNO(3) could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.  相似文献   

13.
Simultaneous in situ measurements of hydrochloric acid (HCl) and chlorine monoxide (ClO) in the Arctic winter vortex showed large HCl losses, of up to 1 part per billion by volume (ppbv), which were correlated with high ClO levels of up to 1.4 ppbv. Air parcel trajectory analysis identified that this conversion of inorganic chlorine occurred at air temperatures of less than 196 +/- 4 kelvin. High ClO was always accompanied by loss of HCI mixing ratios equal to (1/2)(ClO + 2Cl(2)O(2)). These data indicate that the heterogeneous reaction HCl + ClONO(2) --> Cl(2) + HNO(3) on particles of polar stratospheric clouds establishes the chlorine partitioning, which, contrary to earlier notions, begins with an excess of ClONO(2), not HCl.  相似文献   

14.
The global distribution of fluorocarbon-12 and fluorocarbon-11 is used to establish a relatively fast interhemispheric exchange rate of 1 to 1.2 years. Atmospheric residence times of 65 to 70 years for fluorocarbon-12 and 40 to 45 years for fluorocarbon-l1 best fit the observational data. These residence times rule out the possibility of any significant missing sinks that may prevent these fluorocarbons from entering the stratosphere. Atmospheric measurements of methyl chloroform support an 8-to 10-year residence time and suggest global average hydroxyl radical (HO) concentrations of 3 x 10(5) to 4 x 10(5) molecules per cubic centimeter. These are a factor of 5 lower than predicted by models. Additionally, methyl chloroform global distribution supports Southern Hemispheric HO levels that are a factor of 1.5 or more larger than the Northern Hemispheric values. The long residence time and the rapid growth of methyl chloroform cause it to be a potentially significant depleter of stratospheric ozone. The oceanic sink for atmospheric carbon tetrachloride is about half as important as the stratospheric sink. A major source of methyl chloride (3 x 10(12)grams per year), sufficient to account for nearly all the atmospheric methyl chloride, has been identified in the ocean.  相似文献   

15.
A comprehensive investigation of polar stratospheric clouds was performed on 25 January 2000 with instruments onboard a balloon gondola flown from Kiruna, Sweden. Cloud layers were repeatedly encountered at altitudes between 20 and 24 kilometers over a wide range of atmospheric temperatures (185 to 197 kelvin). Particle composition analysis showed that a large fraction of the cloud layers was composed of nitric acid trihydrate (NAT) particles, containing water and nitric acid at a molar ratio of 3:1; this confirmed that these long-sought solid crystals exist well above ice formation temperatures. The presence of NAT particles enhances the potential for chlorine activation with subsequent ozone destruction in polar regions, particularly in early and late winter.  相似文献   

16.
Bromine is, per atom, far more efficient than chlorine in destroying stratospheric ozone, and methyl bromide is the single largest source of stratospheric bromine. The two main previously known sources of this compound are emissions from the ocean and from the compound's use as an agricultural pesticide. Laboratory biomass combustion experiments showed that methyl bromide was emitted in the smoke from various fuels tested. Methyl bromide was also found in smoke plumes from wildfires in savannas, chaparral, and boreal forest. Global emissions of methyl bromide from biomass burning are estimated to be in the range of 10 to 50 gigagrams per year, which is comparable to the amount produced by ocean emission and pesticide use and represents a major contribution ( approximately 30 percent) to the stratospheric bromine budget.  相似文献   

17.
Observations at Thule, Greenland, that made use of direct light from the moon on 2,3, 4,5, and 7 February 1988 revealed nighttime chlorine dioxide (OClO) abundances that were less than those obtained in Antarctica by about a factor of 5, but that exceeded model predictions based on homogeneous (gas-phase) photochemistry by about a factor of 10. The observed time scale for the formation of OClO after sunset strongly supports the current understanding of the diurnal chemistry of OClO. These data suggest that heterogeneous (surface) reactions due to polar stratospheric clouds can occur in the Arctic, providing a mechanism for possible Arctic ozone depletion.  相似文献   

18.
T Rahn  M Wahlen 《Science (New York, N.Y.)》1997,278(5344):1776-1778
Nitrous oxide is a greenhouse gas that also plays a role in the cycling of stratospheric ozone. Air samples from the lower stratosphere exhibit 15N/14N and 18O/16O enrichment in nitrous oxide, which can be accounted for with a simple model describing an irreversible destruction process. The observed enrichments are quite large and incompatible with those determined for the main stratospheric nitrous oxide loss processes of photolysis and reaction with excited atomic oxygen. Thus, although no stratospheric source needs to be invoked, the data indicate that present understanding of stratospheric nitrous oxide chemistry is incomplete.  相似文献   

19.
Highly vibrationally excited O(2)(X(3)sigmag(-), v >/= 26) has been observed from the photodissociation of ozone (O(3)), and the quantum yield for this reaction has been determined for excitation at 226 nanometers. This observation may help to address the "ozone deficit" problem, or why the previously predicted stratospheric O(3) concentration is less than that observed. Recent kinetic studies have suggested that O(2)(X(3)sigmag(-), v >/= 26) can react rapidly with O(2) to form O(3) + O and have led to speculation that, if produced in the photodissociation of O(3), this species might be involved in resolving the discrepancy. The sequence O(3) + hv --> O(2)(X(3)sigmag(-), v >/= 26) + O; O(2)(X(3)sigmag(-), v >/= 26) + O(2) --> O(3) + O (where hv is a photon) would be an autocatalytic mechanism for production of odd oxygen. A two-dimensional atmospheric model has been used to evaluate the importance of this new mechanism. The new mechanism can completely account for the tropical O(3) deficit at an altitude of 43 kilometers, but it does not completely account for the deficit at higher altitudes. The mechanism also provides for isotopic fractionation and may contribute to an explanation for the anomalously high concentration of heavy O(3) in the stratosphere.  相似文献   

20.
Freons are a potential source of stratospheric chlorine and may indirectly cause serious reductions in the concentration of ozone. The reduction could be as large as 3 percent by 1980, or 16 percent by 2000, if Freon consumption were to grow at 10 percent per year. Even if Freon use were terminated as early as 1990, it could leave a significant effect which might endure for several hundred years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号