首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Infrared spectra of material captured from comet 81P/Wild 2 by the Stardust spacecraft reveal indigenous aliphatic hydrocarbons similar to those in interplanetary dust particles thought to be derived from comets, but with longer chain lengths than those observed in the diffuse interstellar medium. Similarly, the Stardust samples contain abundant amorphous silicates in addition to crystalline silicates such as olivine and pyroxene. The presence of crystalline silicates in Wild 2 is consistent with mixing of solar system and interstellar matter. No hydrous silicates or carbonate minerals were detected, which suggests a lack of aqueous processing of Wild 2 dust.  相似文献   

2.
Organics found in comet 81P/Wild 2 samples show a heterogeneous and unequilibrated distribution in abundance and composition. Some organics are similar, but not identical, to those in interplanetary dust particles and carbonaceous meteorites. A class of aromatic-poor organic material is also present. The organics are rich in oxygen and nitrogen compared with meteoritic organics. Aromatic compounds are present, but the samples tend to be relatively poorer in aromatics than are meteorites and interplanetary dust particles. The presence of deuterium and nitrogen-15 excesses suggest that some organics have an interstellar/protostellar heritage. Although the variable extent of modification of these materials by impact capture is not yet fully constrained, a diverse suite of organic compounds is present and identifiable within the returned samples.  相似文献   

3.
Measurements of excess Ar(36) + Ar(38) ( released mainly at 1200 degrees C) in magnetic concentrates of Pacific sediments and in a dense concentrate of Greenland dust agree within an order of magnitude with expected concentrations implanted by solar-flare ion streams of energy less than 10 Mev per atomic-mass unit. The agreement implies that more than 10 percent of each concentrate may be extraterrestrial, depending on size distribution and flare spectra. Rare-gas measurements on fine-grained dust can provide data on: solar-flare "paleo-ion" fluxes, energy spectra, and isotopic abundances; identification, mineralogy, and chemistry of interplanetary dust; influx rates to Earth and sedimentation rates of oceanic cores; and lunar-surface residence and mixing times.  相似文献   

4.
Singer SF 《Science (New York, N.Y.)》1967,156(3778):1080-1083
The recent detection of radioactive Al(26) in marine sediments has led to the conclusion that it is brought into the earth's atmosphere by micrometeorites which have been exposed, in interplanetary space, to solar high-energy protons. The Al(26) method is not precise enough to yield directly a reliable value for the mass accretion rate to the earth to better than about 3 orders of magnitude, but is sufficiently accurate to allow a crucial decision between two widely differing of interplanetary dust which have been proposed to explain observations of the zodiacal light. The two models lead to Al(26) concentrations which would differ by about 5 orders of magnitude. Thus, the presence of Al(26) is consistent with the zodiacal dust model with particles of some tens of microns rather then with submicron particles. From this model a mass accretion to the earth then be calculated which is set at 1250 (upper limit, 2500; lower limit, 250) tons per day, or 2.8 x 10(-15) g/cm(2) sec, or 4.5 x 10(11) g over the earth per This value does not depend on the flux of the solar high-energy particles, which may be uncertain by an order of magnitude or more. The presence of Al(26) supports the idea that an important fraction of the dust is stony in composition material density, and thus eliminates some more exotic dust models, as such one consisting entirely of carbon grains. We may also conclude that the accreted dust particles have been in the solar system and exposed to protons from solar high-energy particles for a time interval which is greater than a significant of the Al(26) half-life (0.74 x 10(6) years).  相似文献   

5.
The Stardust mission returned the first sample of a known outer solar system body, comet 81P/Wild 2, to Earth. The sample was expected to resemble chondritic porous interplanetary dust particles because many, and possibly all, such particles are derived from comets. Here, we report that the most abundant and most recognizable silicate materials in chondritic porous interplanetary dust particles appear to be absent from the returned sample, indicating that indigenous outer nebula material is probably rare in 81P/Wild 2. Instead, the sample resembles chondritic meteorites from the asteroid belt, composed mostly of inner solar nebula materials. This surprising finding emphasizes the petrogenetic continuum between comets and asteroids and elevates the astrophysical importance of stratospheric chondritic porous interplanetary dust particles as a precious source of the most cosmically primitive astromaterials.  相似文献   

6.
Organic matter in extraterrestrial materials has isotopic anomalies in hydrogen and nitrogen that suggest an origin in the presolar molecular cloud or perhaps in the protoplanetary disk. Interplanetary dust particles are generally regarded as the most primitive solar system matter available, in part because until recently they exhibited the most extreme isotope anomalies. However, we show that hydrogen and nitrogen isotopic compositions in carbonaceous chondrite organic matter reach and even exceed those found in interplanetary dust particles. Hence, both meteorites (originating from the asteroid belt) and interplanetary dust particles (possibly from comets) preserve primitive organics that were a component of the original building blocks of the solar system.  相似文献   

7.
Single-particle analyses of stratospheric aerosol show that about half of the particles contain 0.5 to 1.0 weight percent meteoritic iron by mass, requiring a total extraterrestrial influx of 8 to 38 gigagrams per year. The sodium/iron ratio in these stratospheric particles is higher and the magnesium/iron and calcium/iron ratios are lower than in chondritic meteorites, implying that the fraction of material that is ablated must lie at the low end of previous estimates and that the extraterrestrial component that resides in the mesosphere and stratosphere is not of chondritic composition.  相似文献   

8.
Nonstoichiometric grains with depletions of magnesium and silicon (relative to oxygen) and inclusions of iron-nickel metal and iron-rich sulfides have been identified in interplanetary dust particles from comets. These chemical anomalies accumulate in grains exposed to ionizing radiation. The grains, known as GEMS (glass with embedded metal and sulfides), were irradiated before the accretion of comets, and their inferred exposure ages, submicrometer sizes, and "amorphous" silicate structures are consistent with those of interstellar silicate grains. The measured compositional trends suggest that chemical (as well as isotopic) anomalies can be used to identify presolar interstellar components in primitive meteoritic materials.  相似文献   

9.
Particles emanating from comet 81P/Wild 2 collided with the Stardust spacecraft at 6.1 kilometers per second, producing hypervelocity impact features on the collector surfaces that were returned to Earth. The morphologies of these surprisingly diverse features were created by particles varying from dense mineral grains to loosely bound, polymineralic aggregates ranging from tens of nanometers to hundreds of micrometers in size. The cumulative size distribution of Wild 2 dust is shallower than that of comet Halley, yet steeper than that of comet Grigg-Skjellerup.  相似文献   

10.
Because hydrogen and nitrogen isotopic anomalies in interplanetary dust particles have been associated with carbonaceous material, the lack of similar anomalies in carbon has been a major conundrum. We report here the presence of a 13C depletion associated with a 15N enrichment in an anhydrous interplanetary dust particle. Our observations suggest that the anomalies are carried by heteroatomic organic compounds. Theoretical models indicate that low-temperature formation of organic compounds in cold interstellar molecular clouds can produce carbon and nitrogen fractionations, but it remains to be seen whether the specific effects observed here can be reproduced.  相似文献   

11.
Criteria are described by which refractory interplanetary dust particles (IDPs) can be differentiated from the products of spacecraft debris. These criteria have been used to discover and characterize IDPs that are composed predominantly of refractory phases. Two of these particles contain hibonite, perovskite, spinel, refractory glass, and a melilite; only hibonite was identified within a third. The grain size for all particles ranges from 0.05 to 1 micrometer, so that they are much finer grained than the refractory calcium- and aluminum-rich inclusions in meteorites. The glass-containing refractory IDPs may be primitive nebular condensates that never completely crystallized and thus have been preserved extant.  相似文献   

12.
Our current knowledge of the composition of the cormetary nucleus is largely inferred from observations of the gas and dust comae that are produced by sublimation of cometary ice when a comet is near the sun. During the past decade, far-ultraviolet spectroscopy from above the terrestrial atmosphere has shed new light on the physics and chemistry of the gaseous component of the coma. The advent of interplanetary missions to Halley's comet in 1986 and the development of a new generation of earth-orbiting observatories promise further insights into the nature of these frozen remnants of the primordial solar system.  相似文献   

13.
The passage of a comet shower approximately 35 million years ago is generally advocated to explain the coincidence during Earth's late Eocene of an unusually high flux of interplanetary dust particles and the formation of the two largest craters in the Cenozoic, Popigai and the Chesapeake Bay. However, new platinum-group element analyses indicate that Popigai was formed by the impact of an L-chondrite meteorite. Such an asteroidal projectile is difficult to reconcile with a cometary origin. Perhaps instead the higher delivery rate of extraterrestrial matter, dust, and large objects was caused by a major collision in the asteroid belt.  相似文献   

14.
The oxygen and magnesium isotopic compositions of five individual particles that were collected from the stratosphere and that bear refractory minerals were measured by secondary ion mass spectrometry. Four of the particles exhibit excesses of oxygen-16 similar to those observed in anhydrous mineral phases of carbonaceous chondrites and thus are extraterrestrial. The oxygen and magnesium isotopic abundances of one corundum-rich particle are consistent with a terrestrial origin. Magnesium in the four extraterrestrial particles is isotopically normal. It is unlikely that these particles are derived from carbonaceous chondrites and thus such particles probably represent a new type of collected extraterrestrial material.  相似文献   

15.
Aluminum-26 has been detected in a sample of sediment from the South Pacific. The disintegration rate of 0.8 disintegration per minute per kilogram of dry sediment is considerably higher than that expected from cosmic-ray spallation of atmospheric argon; it appears to result mainly from accretion of activity induced in interplanetary dust by solar-flare particles. This finding is in keeping with Wasson's published estimates regarding the magnitude of this effect, and confirms the order-of-magnitude correctness of the solar-particle flux and terrestrial accretion rate of interplanetary dust used in that calculation.  相似文献   

16.
We present measurements of the dust particle flux and mass distribution from the Stardust Dust Flux Monitor Instrument (DFMI) throughout the flyby of comet 81P/Wild 2. In the particle mass regime from 10(-14) to 10(-7) kilograms, the spacecraft encountered regions of intense swarms of particles, together with bursts of activity corresponding to clouds of particles only a few hundred meters across. This fine-scale structure can be explained by particle fragmentation. We estimate that 2800 +/- 500 particles of diameter 15 micrometers or larger impacted the aerogel collectors, the largest being approximately 6 x 10(-7) kilograms, which dominates the total collected mass.  相似文献   

17.
Large silicon carbide (SiC) particles extracted from acid-insoluble residues of carbonaceous chondrites are isotopically anomalous in both silicon and carbon and contain isotopically extreme noble gases. These particles are thought to have originated in mass outflows from red giant stars and to have existed in the interstellar medium at the time the solar system formed from an interstellar cloud. Calculations show that the silicon isotope correlations in those large SiC particles can be generated only in the most massive carbon stars. Consequently, the almost pure neon-22 ((22)Ne) in those particles must be interpreted as the condensation of radioactive sodium-22 ((22)Na) in the particles as they flowed away from the stars. The (22)Na is produced through proton capture by (21)Ne at the base of the surface convection zone. Neon-22 does not exist abundantly in helium shells hot enough to burn magnesium, which is necessary to establish the measured silicon isotopic composition.  相似文献   

18.
We have identified six circumstellar silicate grains within interplanetary dust particles (IDPs). Their extrasolar origins are demonstrated by their extremely anomalous oxygen isotopic compositions. Three 17O-rich grains appear to originate from red giant or asymptotic giant branch stars. One 16O-rich grain may be from a metal-poor star. Two 16O-poor grains have unknown stellar sources. One of the grains is forsterite, and two are amorphous silicate "GEMS" (glass with embedded metal and sulfides), which is consistent with astronomical identifications of crystalline and amorphous silicates in the outflows of evolved stars. These observations suggest cometary origins of these IDPs and underscore the perplexing absence of silicates among circumstellar dust grains from meteorites.  相似文献   

19.
Discovery of nucler tracks in interplanetary dust   总被引:1,自引:0,他引:1  
Nuclear tracks have been identified in interplanetary dust particles (IDP's) collected from the stratosphere. The presence of tracks unambiguously confirms the extraterrestrial nature of IDP's, and the high track densities (10(10) to 10(11) per square centimeter) suggest an exposure age of approximately 10(4) years within the inner solar system. Tracks also provide an upper temperature limit for the heating of IDP's during atmospheric entry, thereby making it possible to distinguish between pristine and thermally modified micrometeorites.  相似文献   

20.
Seventeen stratospherically collected particles-eight of which are classified as interplanetary dust particles (IDPs), seven of which are classified as probable terrestrial contaminants, and two of which have uncertain origins-were studied with a microprobe two-step laser mass spectrometer. Many polycyclic aromatic hydrocarbons(PAHs) and their alkylated derivatives were identified in two of the eight IDPs. The PAHs observed include a high-mass envelope not found in meteorites or terrestrial contaminants and prominent odd-mass peaks suggestive of nitrogen-containing functional groups attached to aromatic chromophores. In addition, the complexity of the IDP mass spectra has no precedence in previous studies of meteorite samples or their acid residues. Extensive checks were performed to demonstrate that the PAH signals are not caused by terrestrial contaminants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号