首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An amylase corn has been developed that produces an α‐amylase enzyme that is activated in the presence of water at elevated temperatures (>70°C). Amylase corn in the dry‐grind process was evaluated and compared with the performance of exogenous amylases used in dry‐grind processing. Amylase corn (1–10% by weight) was added to dent corn (of the same genetic background as the amylase corn) as treatments and resulting samples were evaluated for dry‐grind ethanol fermentation using 150‐g and 3‐kg laboratory procedures. Ethanol concentrations during fermentation were compared with the control treatment (0% amylase corn addition or 100% dent corn) which was processed with a conventional amount of exogenous α‐amylase enzymes used in the dry‐grind corn process. The 1% amylase corn treatment (adding 1% amylase corn to dent corn) was sufficient to liquefy starch into dextrins. Following fermentation, ethanol concentrations from the 1% amylase corn treatment were similar to that of the control. Peak and breakdown viscosities of liquefied slurries for all amylase corn treatments were significantly higher than the control treatment. In contrast, final viscosities of liquefied slurries for all amylase corn treatments were lower than those of the control. Protein, fat, ash, and crude fiber contents of DDGS samples from the 3% amylase corn treatment and control were similar.  相似文献   

2.
Nonforage byproduct feeds, including distillers dried grains (DDG), corn gluten feed (CGF), wheat bran (WB), beet pulp (BP), soybean hulls (SH), and dried citrus pulp (DCP), were examined for monosaccharide composition and in vitro digestibility by ruminal liquor. The dicotyledonous feeds (BP, SH, and DCP) contained more galactose, pectin, and NDF glucans and less NDF-xylan and NDF-arabinose than the monocotyledonous ones (DDG, CGF, and WB). The lowest values of lignin were found in CGF, SH, and DCP. Digestibility of total carbohydrate was around 90% in CGF, DCP, BP, and SH and around 80% in DDG and WB. Digestibility of total NDF polysaccharides was 86% in CGF and SH, 78--84% in DDG, DCP, and BP, and 56% in WB. In all byproducts, digestibility of NDF glucose and arabinose was higher than that of NDF xylose and uronic acids.  相似文献   

3.
The alpha-amylolysis of potato, corn, waxy corn, and amaranthus starches with porcine pancreatic alpha-amylase upon illumination with visible polarized and nonpolarized light was studied. Samples were illuminated for 1 h either directly after blending the enzyme with starch or the enzyme solutions were illuminated for 1 h prior to the admixture of starch. Independently of the mode of illumination, no significant change in the hydrolysis kinetics was noted for corn, waxy corn, and amaranthus starches. The illumination of potato starch in the presence of alpha-amylase with polarized and nonpolarized light significantly accelerated the hydrolysis. In the first 5-h step the hydrolysis rate increased from 12.0 to 60.0 g x kg(-)(1) h(-)(1). Preillumination of enzyme in solution resulted in an increase in the rate of hydrolysis to 151.6 and 131.4 g x kg(-)(1) h(-)(1) after illumination with polarized and nonpolarized light, respectively. Circular dichroism spectra of alpha-amylase solutions stored in the dark and illuminated with visible polarized and nonpolarized light provided evaluation of the protein conformation, whereas exposure of enzyme solutions to the nonpolarized did not change the secondary structure of the protein. The illumination of the alpha-amylase solutions with polarized light significantly changed the amounts of alpha-helix and beta-form vs unilluminated samples: 42.3% and 25.5% vs 36.6% and 30.2%, respectively.  相似文献   

4.
张帆  周青 《中国农业气象》2010,31(2):240-243
为了探索酸雨胁迫对大豆萌发种子糖代谢动态的影响,试验采用蒸馏水浸泡大豆种子,再以pH2.5、4.5模拟酸雨(AR)处理大豆种子,考察不同强度AR胁迫对大豆萌发种子可溶性糖、还原性糖、蔗糖、淀粉及α、β-淀粉酶含量的影响。结果表明,第1天AR组的可溶性糖含量上升,第2天明显降低,随后稳定降低;AR胁迫下的第1天-第4天,还原糖含量维持较高水平,第3天-第5天呈下降趋势;pH2.5组在第2天-第5天蔗糖含量减少;AR胁迫的第2天-第4天淀粉含量降低;总体上,AR组的α-淀粉酶活性CK,但从第5天起pH2.5组的α-淀粉酶活性CK;β-淀粉酶活性在第1天-第6天高于或接近CK,pH2.5组在第7天低于CK。糖代谢各项指标和淀粉酶活性之间的关系表明,可溶性糖、还原糖、蔗糖含量变化幅度随AR胁迫强度增大而增加,淀粉含量变化与之相反;AR组对淀粉酶活性影响是导致萌发改变的内在因素之一。  相似文献   

5.
Wheat sprouting in the field before harvest is a serious negative quality attribute. Even low levels of preharvest sprouting affect the economic value of the grain. Unreleased test lines of wheat should be screened for resistance to preharvest sprouting. However, screening large numbers of test lines is relatively time‐consuming or expensive, depending on the existing method used. A new screening test for preharvest sprouting was developed and compared with the viscograph and α‐amylase activity (AAA) methods. The new method used the activity of sprout‐related elevation in α‐amylase to partially degrade added pregelatinized starch. The hydrolytic products were centrifuged and the weight of the centrifugate was expressed as a percentage of the original weight of the added pregelatinized starch plus the original meal or flour weight. The result reflected the AAA on pregelatinized starch (AAAPGS) as a measure of the degree of preharvest sprouting. The AAAPGS test had less standard error and was more sensitive at low levels of preharvest sprouting than the AAA method. Three grinders to produce wheat meal were compared for their effect on AAAPGS values. Flours produced slightly lower AAAPGS values than meals, but the coefficients of variation of each were comparable and both were less than that of the AAA method. The lowest levels of sensitivity to preharvest sprouting that could be detected by the AAA and AAAPGS methods were identified as areas of uncertainly, below which very low levels of preharvest sprouting could not be differentiated from sound, unsprouted background values. The new AAAPGS method was equally rapid and will be more economical than the AAA method or the viscograph when used for preharvest sprouting susceptibility of large numbers of samples.  相似文献   

6.
The objective of this study was to evaluate the potential to increase the level of resistant starch (RS) in extruded products by optimizing extruder conditions. Three experiments were conducted as randomized complete block designs with two replicates. In the first experiment, corn starch, wheat starch, and potato starch were added at a level of 30% (w/w) to degerminated yellow corn meal to investigate the influence of starch type. In the second experiment, citric acid (CA) monohydrate was added to corn meal at levels of 0, 2.5, 5, and 7.5% (w/w). The third experiment was a full-factorial arrangement to evaluate the effect of high-amylose corn starch (HACS) level (0, 15, 30%, w/w) and CA level (0, 5, 7.5%, w/w) at two screw speeds (200 and 300 rpm). In the first experiment, the means for RS plus dietary fiber for the different starch formulations ranged from 1.27 to 2.28%. In experiment 2, adding CA increased RS plus dietary fiber content to a maximum of 5.23% at 7.5% CA. In the third experiment, the means for RS plus dietary fiber ranged from a low of 1.75% for 100% corn meal at 300 rpm to 14.38% for 7.5% CA and 30% HACS at 200 rpm. The results indicated a highly significant positive relationship between CA and RS formation and the same for amylose content. The RS formation had a negative relationship with screw speed, but the influence of screw speed was small when compared with that of CA and HACS.  相似文献   

7.
Aqueous dispersions (2 mg/mL) of debranched corn starches of different amylose contents (waxy, normal, and high‐amylose) were subjected to extensive autoclaving and boiling‐stirring, and then the changes in starch chain profile were examined using medium‐pressure, aqueous, size‐exclusion column chromatography. As autoclaving time increased from 15 to 60 min, weight‐average chain length (CLw) of waxy, normal, and high‐amylose corn starches determined using pullulan standards decreased from 46 to 41.2, from 122.1 to 96.3, and from 207.3 to 151.8, respectively. Number‐average chain length (CLn) measured by the Nelson‐Somogyi method also decreased from 23.0 to 18.4, from 26.4 to 21.8, and from 66.5 to 41.5, respectively, indicating that thermal degradation of starch chains occurred. The CLw/CLn ratio for normal corn starch was higher than that for waxy corn starch, indicating an increase in polydispersity of the amylose fraction. Thermal degradation was also observed when the debranched starch was subjected to the boiling‐stirring treatment (0–96 hr). During 96 hr, the CLw and relative proportion of B≥2 chains of amylopectin released by debranching waxy corn starch increased, whereas those of B1 chains decreased. This change may indicate physical aggregation of B1 chains. But branches from normal and high‐amylose corn starches showed increases in CLw and the proportion of both B1 and B≥2 chains, along with substantial decreases in those of amylose chains. Therefore, thermal degradation of amylose was greater than that of amylopectin.  相似文献   

8.
A transgenic corn (amylase corn) has been developed that produces an endogenous α‐amylase that is activated in the presence of water and elevated temperature (>70°C). Wet‐ and dry‐milling characteristics of amylase corn were evaluated using laboratory wet‐ and dry‐milling procedures. Different amounts of amylase corn (0.1–10%) were added to dent corn (with the same genetic background as the amylase corn) as treatments. Samples were evaluated for wet‐ and dry‐milling fraction yields using 1‐kg laboratory procedures. Milling yields for all amylase corn treatments were compared with the control treatment (0% amylase corn or 100% dent corn). No significant differences were observed in wet‐ and dry‐milling yields between the control and the 0.1, 1, and 10% amylase corn treatments. Most of the amylase activity (77%) in wet‐milling fractions was detected in the protein fraction. In dry‐milling, amylase activity (68.8%) was detected in endosperm fractions (fines, small grits, and large grits).  相似文献   

9.
Effects of α‐amylase modification on dough and tortilla properties were determined to establish the role of starch in tortilla staling and elucidate the antistaling mechanism of this enzyme. Control and amylase‐treated tortillas were prepared using a standard bake test procedure, stored at 22°C, and evaluated over four weeks. Amylase improved shelf‐stability of tortillas. The enzyme also produced a significant amount of dextrins and sugars, decreased loss of amylose solubility, and weakened starch granules. Amylopectin crystallinity increased with time, but was similar for the control and treated tortillas. Staling of tortillas appears to mainly involve the starch in the amorphous phase. As such, amylase activity does not significantly interfere with amylopectin crystallization. It is proposed that amylase partially hydrolyzed the dispersed starch (i.e., mostly amylose), starch bridging the crystalline region, and protruding amylopectin branches. Starch hydrolysis decreases the rigid structure and plasticized polymers during storage. The flexibility of tortillas results from the combined functionalities of the amylose gel and amylopectin solidifying the starch granules during storage. Protein functionality may also be involved in tortilla staling, but this needs further research.  相似文献   

10.
Polyphenol-rich extracts from a range of berries inhibited α-amylase in vitro, but the most effective were from raspberry and rowanberry (IC50 values of 21.0 and 4.5 μg/mL, respectively). The inhibitory components were examined by different approaches. Extracts from yellow and red raspberries were equally able to inhibit α-amylase. Because the yellow raspberry extracts effectively lacked anthocyanins, this suggested that they were not crucial for amylase inhibition. Notably, however, higher levels of other phenolic components in yellow raspberries (particularly, ellagitannins) did not increase amylase inhibition. Amylase inhibition in rowanberry was recovered in a fraction enriched in proanthocyanidins (PACs). Inhibition was ameliorated by bovine serum albumin, suggesting that PACs acted by binding to amylase. Co-incubation of rowanberry PACs with acarbose reduced the concentration of acarbose required for effective amylase inhibition. Such synergistic interactions could have implications for the current clinical use of acarbose for postprandial glycaemic control in type-2 diabetics.  相似文献   

11.
The effect of adding lactic acid and sulfur dioxide at different times from the start of batch steeping on corn starch yields was studied. Five commercial hybrids were steeped with 0.5% lactic acid or 0.2% sulfur dioxide added over the first 15 hr of steeping and wet-milled following a 100-g corn wet-milling procedure. No significant differences were observed in starch yields when lactic acid was added to the steep solution (SO2 and water) from 0 hr (start of steeping) to 15 hr. Addition of SO2 to the steep solution (lactic acid and water) resulted in significantly higher average starch yields when SO2 was added between 5 and 15 hr compared with addition at 0 hr (SO2 and lactic acid for full 24 hr of steeping). Based on the results of the first experiment, a second experiment was done in which one of five original hybrids was steeped for 24 hr, during which lactic acid or SO2 was added until 23.9 hr (i.e., 5 min before milling) after the start of steeping. Similar results were found in the second experiment. Residual protein in starch samples did not exceed 0.85%. Steepwater protein content decreased with delays (16–20 hr) in adding either chemical to the steep solution. A significant effect on starch pasting properties of chemicals and duration of chemicals in steep-water was observed. Testing these findings using a larger scale (1,000 g) corn wet-milling procedure produced results similar to those obtained with the 100-g corn wet-milling procedure.  相似文献   

12.
We enzymatically modified rice starch to produce highly branched amylopectin and amylose and analyzed the resulting structural changes. To prepare the highly branched amylopectin cluster (HBAPC), we first treated waxy rice starch with Thermus scotoductus alpha-glucanotransferase (TSalphaGT), followed by treatment with Bacillus stearothermophilus maltogenic amylase (BSMA). Highly branched amylose (HBA) was prepared by incubating amylose with Bacillus subtilis 168 branching enzyme (BBE) and subsequently treating it with BSMA. The molecular weight of TSalphaGT-treated waxy rice starch was reduced from 8.9 x 10(8) to 1.2 x 10(5) Da, indicating that the alpha-1,4 glucosidic linkage of the segment between amylopectin clusters was hydrolyzed. Analysis of the amylopectin cluster side chains revealed that a rearrangement in the side-chain length distribution occurred. Furthermore, HBAPC and HBA were found to contain significant numbers of branched maltooligosaccharide side chains. In short, amylopectin molecules of waxy rice starch were hydrolyzed into amylopectin clusters by TSalphaGT in the enzymatic modification process, and then further branched by transglycosylation using BSMA. HBAPC and HBA showed higher water solubility and stability against retrogradation than amylopectin clusters or branched amylose. The hydrolysis rates of HBAPC and HBA by glucoamylase and alpha-amylase greatly decreased. The k cat/ K m value of glucoamylase acting on the amylopectin cluster was 45.94 s(-1)(mg/mL)(-1) and that for glucoamylase acting on HBAPC was 11.10 s(-1)(mg/mL)(-1), indicating that HBAPC was 4-fold less susceptible to glucoamylase. The k cat/ K m value for HBA was 15.90 s(-1)(mg/mL)(-1), or about three times less than that for branched amylose. The k cat/ K m values of porcine pancreatic alpha-amylase for HBAPC and HBA were 496 and 588 s(-1)(mg/mL)(-1), respectively, indicating that HBA and HBAPC are less susceptible to hydrolysis by glucoamylase and alpha-amylase. HBAPC and HBA show potential as novel glucan polymers with low digestibility and high water solubility.  相似文献   

13.
Influence of botanical source and gelatinization procedure (autoclaving or boiling) on resistant starch (RS) formation was investigated in starches from wheat, corn, rice, and potato. RS yields did not vary within the same sample but differed among samples with different starch botanical sources. Differences also existed in RS contents in native and retrograded starches. Slight or minor variations in RS values were found after both gelatinization procedures, although no clear pattern was found in the behavior of samples based on gelatinization procedure. The degree of polymerization (DP) of retrograded samples was assigned using high-performance anion exchange chromatography with pulsed amperometric detector (average DP 50–60), with no differences between autoclaved and boiled samples.  相似文献   

14.
为探究热敏性饲料原料乳清粉及不同含量乳清粉的仔猪配合饲料的热物理特性,该文以仔猪料配方中的4种主要饲料原料玉米、豆粕、乳清粉和鱼粉为研究对象,采用混料设计的方法得到33种不同含量(0~30%)乳清粉的仔猪配合饲料,并利用差示扫描量热法(differential scanning calorimetry,DSC)测定了4种单一原料在25~120℃范围内以及33种仔猪配合饲料在25~110℃范围内的比热,分析了乳清粉及高含量乳清粉(质量分数≥14.548%)的仔猪配合饲料的热变性过程.结果显示:玉米、豆粕和鱼粉的比热分别与温度(25~120℃)呈线性、对数和二次关系,而乳清粉的比热与温度(25~110℃)遵循三次多项式的关系;当配合饲料中含有≥6.25%的乳清粉时,其比热与温度遵循三次多项式的关系;配合饲料的比热显著受温度、原料配比以及二者交互作用的影响(P<0.001),其中,温度的影响最为显著,而乳清粉含量的影响次之.DSC热焓曲线上,乳清粉在109.79℃会出现吸热峰,为乳清蛋白的热变性导致;而随着温度由20℃升高到110℃,乳清粉颗粒由存在许多凸起与微孔的粗糙表面结构逐渐过渡为光滑、粘结的状态.与乳清粉相似,高含量乳清粉的配合饲料也会在77.95~87.69℃出现吸热峰.在仔猪配合颗粒饲料的加工过程中,为降低乳清蛋白的变性程度、减少环模制粒机的堵机现象,应将调质温度降低至70℃以下为宜.研究结果为高含量乳清粉的仔猪配合饲料的调质、制粒等热处理过程的工艺优化提供理论指导.  相似文献   

15.
The phenolic and oxygen radical absorbance capacity (ORAC) values have been measured in six fresh and frozen vegetables (beet green, spinach, broccoli, carrot, onion, and celery) from the same cultivar by analyzing the whole juice (WJ) and the acetonic extract of the squeezed pulp. To exploit the effect of the acid environment on the stability and recovery of the phenolics, perchloric acid (PCA) was added directly to WJ and to the pulp before the extraction with acetone. In both fresh and frozen vegetables, PCA markedly increased the recovery of phenolics extracted from the pulp, but PCA had no effect on the WJ. Four of six frozen vegetables showed lower phenolic and ORAC values than the fresh vegetables, whereas in the other two cases, values were significantly higher compared to fresh samples. Among the fresh vegetables, beet green showed the highest ORAC and phenolic values; however, when measured in two different cultivars of beet green, the ORAC value showed as much as 4.5-fold variation, whereas total phenolics and flavonoids showed 1.2- and 3.5-fold variations, respectively. The results show that total phenolics and ORAC, compared in fresh and frozen vegetables, represent an index of the mildness of blanching in the industry of frozen vegetables and provide a measure of the gap in antioxidants in the diet of people who consume frozen instead of fresh vegetables. The plant genotype is an important source of variability in the ORAC value, which can be conveniently used to increase the intake of antioxidants from vegetables.  相似文献   

16.
Different corn types were used to compare ethanol production from the conventional dry‐grind process to wet or dry fractionation processes. High oil, dent corn with high starch extractability, dent corn with low starch extractability and waxy corn were selected. In the conventional process, corn was ground using a hammer mill; water was added to produce slurry which was fermented. In the wet fractionation process, corn was soaked in water; germ and pericarp fiber were removed before fermentation. In the dry fractionation process, corn was tempered, degerminated, and passed through a roller mill. Germ and pericarp fiber were separated from the endosperm. Due to removal of germ and pericarp fiber in the fractionation methods, more corn was used in the wet (10%) and dry (15%) fractionation processes than in the conventional process. Water was added to endosperm and the resulting slurry was fermented. Oil, protein, and residual starch in germ were analyzed. Pericarp fiber was analyzed for residual starch and neutral detergent fiber (NDF) content. Analysis of variance and Fisher's least significant difference test were used to compare means of final ethanol concentrations as well as germ and pericarp fiber yields. The wet fractionation process had the highest final ethanol concentrations (15.7% v/v) compared with dry fractionation (15.0% v/v) and conventional process (14.1% v/v). Higher ethanol concentrations were observed in fractionation processes compared to the conventional process due to higher fermentable substrate per batch available as a result of germ and pericarp fiber removal. Germ and pericarp yields were 7.47 and 6.03% for the wet fractionation process and 7.19 and 6.22% for the dry fractionation process, respectively. Germ obtained from the wet fractionation process had higher oil content (34% db) compared with the dry fractionation method (11% db). Residual starch content in the germ fraction was 16% for wet fractionation and 44% for dry fractionation. Residual starch in the pericarp fiber fraction was lower for the wet fractionation process (19.9%) compared with dry fractionation (23.7%).  相似文献   

17.
The falling number (FN) procedure is used worldwide to assess the integrity of the starch stored within wheat seed. As an indirect measurement of the activity level of α‐amylase, FN relies on a dedicated viscometer that measures the amount of time needed for a metal stirring rod of precise geometry to descend a fixed distance through a column of water–flour or water–meal slurry that undergoes enzyme‐activated starch hydrolysis under controlled mixing and heating conditions. For U.S. wheat, FN values of 300 s and above generally indicate soundness in the condition of the seed starches, whereas values less than 300 s often indicate that some seeds have broken dormancy, which deleteriously affects bread‐, cake‐, and noodle‐making quality of products derived from their flour. Domestic and especially overseas sales contracts will often specify a minimum FN value for consignments, thus making it critical to ensure that the FN procedure be highly precise. The study described herein examined the level of repeatability precision of the FN procedure under strictly controlled laboratory conditions as a means to establish precision levels arising alone from the random nature of the viscous properties of starchy meal undergoing mixing and heating. Six representative samples of Pacific Northwest–grown soft white and club wheat, ranging in FN between 168 and 404 s, were repeatedly measured with the conventional FN procedure and three modifications thereof, with the modifications being increased meal and water amounts (8 g of meal + 30 mL of H2O instead of 7 g + 25 mL) or the addition of a polysorbate surfactant (0.1% Tween 20) to the mixture water. Based on 16 FN runs for each sample and treatment, estimated variances and coefficients of variation (CV) were determined for each treatment–sample combination. The results indicated that CVs between 1 and 4% were achieved for all treatments and samples. The treatment modification of an augmented test sample size improved precision, whereas incorporating a surfactant had a negligible effect. Precision and treatment (conventional versus augmented) findings were corroborated by two external laboratories with two of the six original samples and by the main laboratory on an independent set of 14 wheat meal samples of commercial origin. Another possible improvement in precision is in the sequencing of water and meal addition to be half the volume of water, then the meal, followed by the remaining volume of water, all at the conventional levels of meal and water. Preliminary experimental results indicate an improvement in precision by using the “sandwich” approach; however, further testing is warranted to substantiate this discovery.  相似文献   

18.
The use of the Rapid Visco Analyser (RVA) for application in the screening of wheat breeding lines for starch quality and potential noodle quality has been limited by relatively low sample throughput. Current methods generally enable only 20–30 samples to be tested each day. This study sought to develop a more rapid time‐temperature profile that could be applied to whole meal samples. A profile that involved a total analysis time of 7.5 min/sample gave measurements of peak viscosity (PV) and breakdown (BD) on whole meal that were highly correlated with corresponding measurements obtained using a more conventional profile that had been applied to low‐extraction flours. BD and PV were also highly correlated with the total texture score of ramen (Chinese‐style alkaline noodles as manufactured in Japan), but only when 1 mM AgNO3 was used to eliminate the effects of α‐amylase.  相似文献   

19.
Sweetpotato flour (SPF), prepared from 44 genotypes adapted to Philippine conditions, showed wide variation in Rapid Visco-Analyzer (RVA) pasting characteristics due to its variation in composition and endogenous amylase activity. The RVA pasting parameters of peak viscosity determined in water (PV1) and that determined in 0.05 mM AgNO(3) (used as an amylase inhibitor) (PV2) were successfully used to estimate alpha-amylase activity. The correlation of the ratio (PV2-PV1)/PV1 to alpha-amylase activity was 0.96 (p < 0.01, N = 44). Swelling volume measurements were not found to be suitable for prediction of alpha-amylase activity.  相似文献   

20.
Abstract

Environmental regulations and limited storage space compel processors to remove spent limestone and not stockpile it on site. This material is often used as a liming material to control pH on acid soils, but in some cases may have to be applied to alkaline soils. This study was undertaken to evaluate the effect of applying sugar beet processing lime on soils with an alkaline solum. Studies were conducted at seven sites representing four soil series. Lime was applied at rates of 0,1.4, 2.8, and 5.6 magnesium (Mg) ha‐1. Sugar beet (Beta vulgaris L.), soybean (Glycine max L.), cora (Zea mays L.), field bean (Phaseolus vulgaris L.), and wheat (Triticum aestivum L.) were used as test crops. Yield of sucrose and roots of sugar beet as well as yield of soybean, corn, field bean, and wheat were not affected by lime application. Manganese (Mn) and zinc (Zn) concentration in leaves of sugar beet and soybean, and whole field bean plants decreased with increasing lime rates. These results show this lime may be applied at rates up to 5 Mg ha‐1 once every three years on these alkaline soils without negatively affecting the yield of sugar beet, soybean, corn, field bean, and wheat. Nutritional status of these crops should be carefully monitored after lime application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号