首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
热带印度洋大眼金枪鱼渔场时空分布与温跃层关系   总被引:1,自引:0,他引:1       下载免费PDF全文
为了解印度洋大眼金枪鱼(Thunnus obesus)温跃层参数适宜分布区间及季节变化,采用Argo浮标剖面温度数据重构热带印度洋各月平均温跃层特征参数,并结合印度洋金枪鱼委员会(IOTC)大眼金枪鱼延绳钓渔业数据,本文绘制了月平均温跃层特征参数和月平均CPUE的空间叠加图,用于分析热带印度洋大眼金枪鱼渔场CPUE时空分布和温跃层特征参数的关系。结果表明,热带印度洋温跃层上界深度、温度和下界深度都具有明显的季节性变化,大眼金枪鱼中心渔场分布和温跃层季节性变化有关。夏季季风期间,高CPUE渔区温跃层上界深度在30~50 m,浅于冬季的50~70 m;温跃层上界温度范围为24~30℃。在冬季季风期间,高CPUE区域对应的温跃层上界温度范围为27~30℃;从马达加斯加岛北部沿非洲大陆至索马里附近海域,温跃层下界深度在170~200 m时的渔区CPUE普遍较高;当深度超过300 m时,CPUE值均非常低。采用频次分析和经验累积分布函数计算其最适温跃层特征参数分布,得出大眼金枪鱼最适温跃层的上界、下界温度范围分别是26~29℃和13~15℃;其上界、下界深度范围分别是30~60 m和140~170 m。文章初步得出印度洋大眼金枪鱼中心渔场温跃层各特征参数的适宜分布区间及季节变化特征,为金枪鱼实际生产作业和资源管理提供理论参考。  相似文献   

2.
冯波  许柳雄  田思泉 《海洋渔业》2004,26(3):161-166
数值分析得出大眼金枪鱼的渔获适宜环境参数值范围:温度14~17℃,盐度34.5~35.4.溶解氧浓度1.5~4.5mg/L,温跃层深度80~160m,营养盐氮、磷、硅浓度分别大于12-μg/L,09μg/L,14μg/L。聚类分析表明,钓获率与营养盐关系最为密切。另外,通过因子分析,深化了对钓获率和渔获环境因子两者间关系的理解。  相似文献   

3.
ABSTRACT:   Taiwanese longline (LL) fisheries operating in the Indian Ocean usually target albacore tuna (ALB), swordfish (SWO) and yellowfin tuna (YFT) using regular LL. Bigeye tuna (BET), however, is targeted using deep LL. Thus, these two types of LL are considered to be different gears as they target different tuna species. Regular or deep LL fishing is defined by number of hooks per basket (NHB): regular LL if 6 ≤ NHB ≤ 10 and deep LL if 11 ≤ NHB ≤ 20. However, NHB information was available in only some of the recent LL data (1995–1999). This situation had caused problems of biased results in stock analysis in the past. Thus, the objective of our study was to explore an effective method to separate the two types of LL fishing by considering species composition. Some intervals of BET catch ratios were found to be effective in separating the regular and deep LL catches, i.e. 0.0 ≤ BET/(BET + ALB + SWO) ≤ 0.4 and 0.8 ≤ BET/(BET + ALB) ≤ 1.0, respectively. Using these two separators, the LL known data set (1995–1999) (learning data set) was classified. Correct classification occurred in 67.7% of the data, while 23.1% of the data were unclassified (11.9% due to zero catches and 11.2% due to classification into both LL types), and 9.2% were misclassifications. Then, using the methods developed, the LL unknown data set in the historical data (1979–1999) was classified and nominal CPUE values were calculated for four species. The CPUE trends based on this study were likely to be more reliable than those of previous studies.  相似文献   

4.
根据 2003年 1~6月大洋性延绳钓作业中测定的数据,对印度洋大眼金枪鱼的生物学特性进行了初步分析。印度洋大眼金枪鱼的饵料种类较杂,鱼的优势叉长为 121~180cm,优势体重在 41~90kg, 雌雄比例为 1∶1.3。原条鱼重量与加工后重量之间的关系为 y=1.1345x+1.4879,相关系数 R= 0.9969;原条鱼重量与叉长的关系为 y=6×10-5 x2.7781 ,相关系数 R=0.9829。  相似文献   

5.
    
Yellowfin stock structure in the Indian Ocean was studied by using industrial tuna longline fishery data. Three types of test variables were used to detect stock structure, i.e., CPUE, age-specific CPUE, and coefficient of variation for size. Time-series data of test variables were compiled for six sub-areas that were arranged by dividing the whole region systematically along longitude lines every 20 degrees. Then time-series data were smoothed by moving averages, and regressed by simple models. Patterns of time-series trends were graphically and statistically compared to classify homogeneous sub-area groups. Two assumptions were (a) that homogeneous stocks exist longitudinally and overlap in adjacent waters, and (b) that test variables within homogeneous sub-area groups are equally affected, and hence patterns of the time-series trends are similar. After graphical screening for significant sub-area groups, analysis of covariance was applied to test homogeneity of regression parameters representing patterns of the time-series trends. By classifying homogeneous sub-area groups, stock structures were determined at the P <0.05 and P <0.50 levels. The P<0.50 level was recognized as a useful criterion for ‘weak’ test variables since masked or vague structures at the P <0.05 level were likely cleared at this level in many cases. Results of this study and past stock structure studies were reviewed and compared. It was concluded that there are two major and two minor stocks of yellowfin tuna. The two major stocks (the western and the eastern) are located at 40o-90oE and 70o-130oE respectively. The minor stocks are the far western and the far eastern stocks (the latter possibly being a part of the Pacific stock), which are located westward of 40oE and eastward of 110oE respectively. Neighboring stocks are intermingled in adjacent waters.  相似文献   

6.
基于2008年9月至2009年4月在印度洋中南部水域金枪鱼延绳钓渔场收集的数据,研究分析和比较了3种钓钩钩型(传统金枪鱼钩、“J”形钩和圆形钩)的渔获效益及对钓捕对象的选择性。结果表明:(1) 从渔获种类上看,大眼金枪鱼和大青鲨金枪鱼钩钓获比例最高,“J”形钩和圆形钩的钓获比例相当;而长鳍金枪鱼则为金枪鱼钩钓获比例最高,其次为“J”形钩和圆形钩。(2) 大眼金枪鱼存活率以金枪鱼钩最高,“J”形钩最低;长鳍金枪鱼则为“J”形钩稍高于圆形钩,金枪鱼钩最低;大青鲨则以圆形钩最高,“J”形钩最低。(3) “J”形钩钓获的长鳍金枪鱼和鲨鱼平均叉长较金枪鱼钩和圆形钩稍大;而金枪鱼钩钓获的大眼金枪鱼平均叉长较圆形钩和“J”形钩稍大。(4) 3种钩型钓获的长鳍金枪鱼、大眼金枪鱼和大青鲨叉长分布均不存在显著性差异。  相似文献   

7.
Stomach contents of yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tuna caught by trolling and purse seining in the tropical western Indian Ocean, together with those of the prey-fish found in their stomachs, have been analysed. Epipelagic fish are the main prey of these tunas, whereas no vertically migrating fish, which inhabit subsurface layers at night, have been found in their stomachs. These tunas are thus considered day-feeders. Purse-seine-caught tunas, which belong to large schools, have a much higher number of prey-fish in their stomachs than tunas caught by trolling on small schools. Similarly, prey-fish from purse-seine tunas have a much higher number of plank-tonic prey in their stomachs than those from troll-caught tunas. Therefore, these tunas adopt a wandering strategy in small schools when food resources are scarce and form large schools when they are abundant. The planktonic organisms found in the stomachs of prey-fish are described by taxa and sizes; they represent the fraction of the planktonic biomass actually supporting the stock of tuna. Size ratios between the three links tuna-prey-fish-plankton are very high, suggesting that these tunas benefit from a short food chain which is probably efficient from the energetic point of view.  相似文献   

8.
西北印度洋大眼金枪鱼渔场预报模型建立与模块开发   总被引:1,自引:0,他引:1  
根据1990—2003年印度洋大眼金枪鱼延绳钓渔业数据和美国国家海洋和大气管理局提供的海表温度、叶绿素-a历史环境数据,应用环境因子叠加方法,构建了西印度洋大眼金枪鱼渔场预报模型,用于金枪鱼渔场预报。分析得出各月适宜海表温度、叶绿素-a浓度范围和历史高产区空间位置;导入实时海表温度、叶绿素-a等遥感栅格数据,分别提取适宜海表温度、适宜叶绿素-a浓度和历史高产区的空间栅格数据集,最后在空间上对3种栅格数据进行空间叠加并取交集。交集所指空间区域即为大眼金枪鱼潜在渔场位置。通过精度检验,表明该模型渔场预报精度为60.5%。并以VC++6.0工具为开发平台,对此模型进行了设计开发,实现了模块预报西北印度洋大眼金枪鱼渔场。  相似文献   

9.
基于贝叶斯概率的印度洋大眼金枪鱼渔场预报   总被引:1,自引:0,他引:1  
本文采用贝叶斯概率为模型基础框架,利用来自印度洋金枪鱼管理委员会(IOTC)的大眼金枪鱼延绳钓历史渔获统计数据和美国国家海洋大气管理局(NOAA)的海温最优插值再分析数据,进行适用于印度洋金枪鱼延绳钓渔场的模型参数估算与预报模型构建。模型回报精度验证结果表明,印度洋大眼金枪鱼延绳钓渔场综合预报的准确率达到了65.96%。模型预报结果用概率百分比来表示,符合渔业资源分布的客观特点。利用中分辨率成像光谱仪MODIS提供的SST产品进行业务化运行的渔场预报,利用模型结果每周生成印度洋大眼金枪鱼延绳钓渔场概率预报图,用不同大小的圆形来表示渔场概率的高低,可以为印度洋区域的远洋渔业生产提供信息支持。  相似文献   

10.
Natural floating objects (e.g., logs) have always been a component of the habitat of tropical tunas. However, the introduction of fish aggregating devices (FADs) modifies this environment. To assess the changes due to the deployment of FADs, we compared the spatial distribution of natural and artificial floating objects (FADs), using data from observers onboard tuna purse seine vessels in the Indian Ocean from December 2006 to December 2008. Although natural objects occur more commonly in waters south of 7°S and FADs are more common in waters north of 7°S, all types of floating objects can be found everywhere. Using different spatial scales (quadrats of size 1° × 1°, 2° × 2°, 5° × 5°, and 10° × 10°), we computed the proportion of FADs observed in quadrats without natural objects. The scale of 2° × 2° quadrats represented a threshold: distributions of the two types of objects were different at scales smaller than this threshold. The strongest change that has occurred since the introduction of FADs (besides the increased catches) has been the dramatic increase in the total number of floating objects. Since the introduction of FADs, the number of objects has at least doubled everywhere (except in the Mozambique Channel and Chagos) and in some areas (e.g., Somalia area) the multiplication factor has reached as high as 20 or 40. Our study sets the ranges of values of key parameters of the floating object environment, which are crucial in the design of future experimental studies aimed at investigating the impacts of FADs on the ecology of tunas.  相似文献   

11.
Yellowfin tuna are currently considered by the member nations of the Indian Ocean Tuna Commission to constitute a single stock in the Indian Ocean due to a lack of knowledge about yellowfin tuna population structure in this region. Previous studies of Indian Ocean yellowfin tuna based on morphology and fisheries data have hinted at the presence of multiple stocks in the region, and further, that stocks may mix in the north western Indian Ocean around Sri Lanka. To better understand the genetic stock structure of yellowfin tuna in the north western Indian Ocean, we examined genetic variation in 285 yellowfin individuals collected over a period of 4 years from six fishing grounds around Sri Lanka and a single fishing ground in the Maldive Islands. We screened variation in both the mitochondrial ATPase 6 and 8 region (498 bp) and three microsatellite loci. Significant genetic differentiation was detected among sites for mitochondrial DNA (ΦST = 0.1285, P < 0.001) and at two microsatellite loci (FST = 0.0164, P < 0.001 and FST = 0.0064, P < 0.001), while spatial analysis of molecular variance of mtDNA data identified three genetically heterogenous groups namely; western, south eastern and all remaining sites. These results suggest the possibility that genetically discrete yellowfin tuna populations may be present in the north western Indian Ocean.  相似文献   

12.
    
In this study, catch and effort data of southern bluefin tuna (SBT) from Taiwan longliners operating in the Central Indian Ocean (CIO) during 1982 to 2003 were compiled and their catch per unit effort (CPUE) was standardized using the generalized linear model (GLM). The GLM includes factors such as year, season, by-catch, latitude, sea surface temperature (SST) and the interactive effects among factors. The standardized CPUE and its relationship with SST fluctuation were then analyzed to understand the effects of fishing ground SST variations on CPUE of SBT, as well as their connection to El Niño-Southern Oscillation (ENSO) events. The standardized CPUE in the CIO seemed to oscillate with the sea surface temperature anomalies (SSTA) between 30 and 50°S where SSTA fluctuations were prolonged and slower than the ENSO cycle. It is then very likely that fishing conditions at the CIO fishing ground were influenced by the expansion of the cold water mass from the Southern Ocean, and the colder SST is beneficial to increasing SBT catch rate.  相似文献   

13.
Population structure of bigeye tuna (Thunnus obesus) in the Indian Ocean, Western Pacific Ocean and Eastern Atlantic Ocean were investigated using mitochondrial (mt) DNA sequence data. A total of 380 specimens were sampled from four regions in the Indian Ocean (Cocos Islands, Southeastern Indian Ocean, Southwestern Indian Ocean and Seychelles), and one region each from the Atlantic (Guinea) and the Western Pacific Oceans, respectively. The reconstructed neighbor-joining phylogeny based on the first hypervariable region (HVR-1) of the mitochondrial control region sequence data showed that haplotypes from the Indian and the Western Pacific Oceans could be grouped into two clades (Clades I and III), whereas in the Atlantic Ocean, two divergent clades (Clades I and II) coexisted. A single stock of bigeye tuna in the Indian Ocean was supported by hierarchical AMOVA tests and pairwise ΦST analyses. Clade I was the dominant population in the Indian and the Western Pacific Oceans which consisted of more than 96% of the specimens and Clade II was a specific group exclusively restricted to the Atlantic Ocean which made up 77% of its specimens. A new minor Clade, Clade III was discovered in the Indian and the Western Pacific Ocean. Overall, these analyses indicated that bigeye tuna of the Indian Ocean constituted a single panmictic population.  相似文献   

14.
ENSO与中西太平洋金枪鱼围网资源丰度及其渔场变动的关系   总被引:11,自引:3,他引:11  
郭爱  陈新军 《海洋渔业》2005,27(4):338-342
中西太平洋是世界金枪鱼围网的重要作业渔场之一,主要捕捞鲣鱼(Katsuwonus pelamis)、黄鳍金枪鱼(Thunnus albacares)和大眼金枪鱼(Thunnus obesus)等.  相似文献   

15.
大西洋金枪鱼延绳钓主要渔获种类及其分布   总被引:1,自引:1,他引:1  
樊伟  周甦芳  沈建华 《海洋渔业》2003,25(3):130-135
根据收集的有关文献和海上调查资料,分析了大西洋金枪鱼延绳钓生产的主要渔获品种的生物学特性、捕捞生产情况及管理措施等。此外,还根据FAO建立的金枪鱼生产数据库,采用GIS软件制作了大西洋金枪鱼延绳钓主要渔获种类捕捞产量的地理空间分布图。并分析了其资源的空间分布特征。  相似文献   

16.
    
  • 1. Surveys of coral reefs in northern Tanzania were conducted in 2004/5 with the aim of comparing them over an~8‐year period during a time of increased efforts at fisheries management and the 1998 El Niño Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD) coral mortality event that caused 45% mortality in northern Tanzania and much of the Indian Ocean.
  • 2. Changes associated with both management, its absence, and the ENSO were found but changes were generally small and ecological measures indicated stability or improvements over this period, particularly when compared with reports from much of the northern Indian Ocean.
  • 3. Fisheries management in two areas increased the biomass of fish and benthic communities. A small fisheries closure (0.3 km2) displayed little change in the coral community but ecological conditions declined as measured by sea urchins and fish abundances. This change may be associated with its small size because similar changes were not measured in the large closure (28 km2).
  • 4. The few sites without any increased management were still degraded and one site had experienced a population explosion of a pest sea urchin, Echinometra mathaei.
  • 5. The lack of significant changes across this disturbance indicates that these reefs are moderately resilient to climate change and, therefore, a high priority for future conservation actions.
Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
    
Electronic tagging provides unprecedented information on the habitat use and behaviour of highly migratory marine predators, but few analyses have developed quantitative links between animal behaviour and their oceanographic context. In this paper we use archival tag data from juvenile southern bluefin tuna ( Thunnus maccoyii , SBT) to (i) develop a novel approach characterising the oceanographic habitats used throughout an annual migration cycle on the basis of water column structure (i.e., temperature-at-depth data from tags), and (ii) model how the vertical behaviour of SBT altered in relation to habitat type and other factors. Using this approach, we identified eight habitat types occupied by juvenile SBT between the southern margin of the subtropical gyre and the northern edge of the Subantarctic Front in the south Indian Ocean. Although a high degree of variability was evident both within and between fish, mixed-effect models identified consistent behavioural responses to habitat, lunar phase, migration status and diel period. Our results indicate SBT do not act to maintain preferred depth or temperature ranges, but rather show highly plastic behaviours in response to changes in their environment. This plasticity is discussed in terms of the potential proximate causes (physiological, ecological) and with reference to the challenges posed for habitat-based standardisation of fishery data used in stock assessments.  相似文献   

18.
    
Albacore tuna are widespread in the North Pacific Ocean and the basis of an important commercial fishery. These fish live mainly within a fairly narrow thermal niche range defined by sea surface temperature (SST) isotherms between 14 and 19°C. Because the fish's thermal range coincides with strong latitudinal temperature gradients off the northwest coast of North America, there is a great deal of seasonal and interannual variability in the distribution of these fish, and a significant potential for a new habitat in this region with anthropogenic climate change. We use historical catch and effort data from the Canadian troll fleet to define the fish's thermal niche, and document observed shifts in distribution associated with interannual climate variability. We then use an ensemble of climate model simulations from the Coupled Model Intercomparison Project to estimate northward extension of the potential habitat under anthropogenic warming scenarios. A potential new habitat is about half a million square kilometres even under a moderate mitigation scenario. Estimates are smaller for some months of the year in which the fishery is conducted, but as well as opening up new regions, the length of season in which the fishery is active may be extended in the northern part of the range. However, much of the potential new habitat will be in oceanic waters with relatively low productivity. Our estimated area of potential habitat is based on the fish's thermal niche and assumes that other biologically important factors such as food will not be limiting.  相似文献   

19.
    
The morphological variation of Penaeus monodon was studied based on the morphometric analyses of samples collected throughout Banda Aceh, Khanom, Mozambique and Sanya. A total of 470 samples were investigated using eight measurements. Multivariate analyses [principal components (PCA), discriminant function (DFA) and cluster analyses (CA)] revealed obvious morphometric differences among the four geographical populations. PCA indicated that the first three components of the females and the first two components of the males accounted for 75.17% and 71.84% of the total morphological variability respectively. In DFA, the overall assignment of female and male individuals into their original population was 78.95% and 84.37% respectively. For females, the proportion of individuals correctly classified into their original population was 76.0%, 92.8%, 92.6% and 54.5% for population 1, 2, 3 and 4 respectively. For males, the proportion was 97.2%, 68.1%, 100% and 72.2% respectively. For females and males, CA showed that the four populations could be divided into two main clusters of morphological characteristics. CA also indicated that the morphological variation of population 3 was greater, whereas the morphology of population 2 was strikingly similar to that of population 4.  相似文献   

20.
    
We evaluated the behavior of skipjack (Katsuwonus pelamis), yellowfin (Thunnus albacares) and bigeye tuna (T. obesus) associated with drifting fish aggregating devices (FADs) in the equatorial central Pacific Ocean. A total of 30 skipjack [34.5–65.0 cm in fork length (FL)], 43 yellowfin (31.6–93.5 cm FL) and 32 bigeye tuna (33.5–85.5 cm FL) were tagged with coded transmitters and released near two drifting FADs. At one of the two FADs, we successfully monitored the behavior of all three species simultaneously. Several individuals remained around the same FAD for 10 or more days. Occasional excursions from the FAD were observed for all three species, some of which occurred concurrently for multiple individuals. The detection rate was higher during the daytime than the nighttime for all the species, and the detection rate for bigeye tuna was higher than for yellowfin or skipjack tuna. The swimming depth was deeper during the daytime than nighttime for all species. The fish usually remained shallower than 100 m, but occasionally dived to around 150 m or deeper, most often for bigeye and yellowfin tuna during the daytime. The swimming depth for skipjack tuna was shallower than that for bigeye and yellowfin tuna, although the difference was not large, and is probably not sufficient to allow the selective harvest of skipjack and yellowfin tuna by the purse seine fishery. From the detection rate of the signals, bigeye tuna is considered to be more vulnerable to the FAD sets than yellowfin and skipjack tuna.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号