首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work analyzes the direct effect of soil management practices on soil microbial communities, which may affect soil productivity and sustainability. The experimental design consisted of two tillage treatments: reduced tillage (RT) and zero tillage (ZT), and three crop rotation treatments: continuous soybean (SS), corn–soybean (CS), and soybean–corn (SC). Soil samples were taken at soybean planting and harvest. The following quantifications were performed: soil microbial populations by soil dilution plate technique on selective and semi-selective culture media; microbial respiration and microbial biomass by chloroform fumigation-extraction; microbial activity by fluorescein diacetate hydrolysis; and fatty acid methyl ester (FAME) profiles. Soil chemical parameters were also quantified. Soil organic matter content was significantly lower in RT and SS sequence crops, whereas soil pH and total N were significantly higher in CS and SC sequence crops. Trichoderma and Gliocladium populations were lower under RTSS and ZTSS treatments. Except in a few cases, soil microbial respiration, biomass and activity were higher under zero tillage than under reduced tillage, both at planting and harvest sampling times. Multivariate analyses of FAMEs clearly separated both RT and ZT management practices at each sampling time; however, separation of sequence crops was less evident. In our experiments ZT treatment had highest proportion of 10Me 16:0, an actinomycetes biomarker, and 16:1ω9 and 18:1ω7, two fatty acids associated with organic matter content and substrate availability. In contrast, RT treatment had highest content of branched biomarkers (i15:0 and i16:0) and of cy19:0, fatty acids associated with cell stasis and/or stress. As cultural practices can influence soil microbial populations, it is important to analyze the effect that they produce on biological parameters, with the aim of conserving soil richness over time. Thus, in a soybean-based cropping system, appropriate crop management is necessary for a sustainable productivity without reducing soil quality.  相似文献   

2.
Our aim was to determine whether the smaller biomasses generally found in low pH compared to high pH arable soils under similar management are due principally to the decreased inputs of substrate or whether some factor(s) associated with pH are also important. This was tested in a soil incubation experiment using wheat straw as substrate and soils of different pHs (8.09, 6.61, 4.65 and 4.17). Microbial biomass ninhydrin-N, and microbial community structure evaluated by phospholipid fatty acids (PLFAs), were measured at 0 (control soil only), 5, 25 and 50 days and CO2 evolution up to 100 days. Straw addition increased biomass ninhydrin-N, CO2 evolution and total PLFA concentrations at all soil pH values. The positive effect of straw addition on biomass ninhydrin-N was less in soils of pH 4.17 and 4.65. Similarly total PLFA concentrations were smallest at the lowest pH. This indicated that there is a direct pH effect as well as effects related to different substrate availabilities on microbial biomass and community structure. In the control soils, the fatty acids 16:1ω5, 16:1ω7c, 18:1ω7c&9t and i17:0 had significant and positive linear relationships with soil pH. In contrast, the fatty acids i15:0, a15:0, i16:0 and br17:0, 16:02OH, 18:2ω6,9, 17:0, 19:0, 17:0c9,10 and 19:0c9,10 were greatest in control soils at the lowest pHs. In soils given straw, the fatty acids 16:1ω5, 16:1ω7c, 15:0 and 18:0 had significant and positive linear relationships with pH, but the concentration of the monounsaturated 18:1ω9 PLFA decreased at the highest pHs. The PLFA profiles indicative of Gram-positive bacteria were more abundant than Gram-negative ones at the lowest pH in control soils, but in soils given straw these trends were reversed. In contrast, straw addition changed the microbial community structures least at pH 6.61. The ratio: [fungal PLFA 18:2w6,9]/[total PLFAs indicative of bacteria] indicated that fungal PLFAs were more dominant in the microbial communities of the lowest pH soil. In summary, this work shows that soil pH has marked effects on microbial biomass, community structure, and response to substrate addition.  相似文献   

3.
The influence of inoculation of olive trees with arbuscular mycorrhizal (AM) fungi, Glomus (G) intraradices, on microbial communities and sugar concentrations, were examined in rhizosphere of olive trees (Olea europaea L.). Analyses of phospholipid and neutral lipid fatty acids (PLFA and NLFA, respectively) were then used to detect changes in microbial community structure in response to inoculation of plantlets with G. intraradices.Microscopic observations studies revealed that the extraradical mycelium of the fungus showed formation of branched absorbing structures (BAS) in rhizosphere of olive tree. Root colonization with the AM fungi G. intraradices induced significant changes in the bacterial community structure of olive tree rhizosphere compared to non-mycorrhizal plants. The largest proportional increase was found for the fatty acid 10Me18:0, which indicated an increase in the number of actinomycetes in mycorrhizal rhizosphere soil, whereas the PLFAs i15:0, a15:0, i16:0, 16:1ω7 and cy17:0 which were used as indicators of bacteria decreased in mycorrhizal treatment compared to non-mycorrhizal control treatment. A highest concentration of glucose and trehalose and a lowest concentration of fructose, galactose, sucrose, raffinose and mannitol were detected in mycorrhizal rhizosphere soil. This mycorrhizal effect on rhizosphere communities may be a consequence of changes in characteristics in the environment close to mycorrhizal roots.  相似文献   

4.
《Applied soil ecology》2011,48(3):176-183
Land use effects on microbial communities may have profound impacts on agricultural productivity and ecosystem sustainability as they are critical in soil quality and health. The main aim of this study was to characterize the microbial communities of pristine and agricultural soils in the central Yungas region in Northwest Argentina. As a first step in the development of biological indicators of soil quality in this region, a comprehensive approach involving a structural and functional evaluation of microbial communities was used to detect changes in soil as consequence of land use. The sites selected included two pristine montane forest sites (MF1 and MF2), two plots under sugarcane monoculture for 40 and 100 years (SC40 and SC100), one plot under 20 years of soybean monoculture (SB20), a recently deforested and soybean cropped site (RC), and two reference sites of native forest adjacent to the sugarcane and soybean plots (PF1 and PF2). We used three microbial community profiling methods: denaturing gradient gel electrophoresis (DGGE) analysis of PCR amplified 16S rRNA genes, community-level physiological profiling (CLPP) using a BD oxygen biosensor system (BDOBS-CLPP) and phospholipid fatty acid (PLFA) analysis. Deforestation and agriculture caused expected increases in pH and decreases in organic carbon and microbial biomass. Additionally, shifts in the microbial community structure and physiology were detected with disturbance, including reduced diversity based on PLFA data. The higher respiratory response to several carbon substrates observed in agricultural soils suggested the presence of microbial communities with lower growth yield efficiency that could further reduce carbon storage in these soils.Using an integrated multivariate analysis of all data measured in this study we propose a minimum data set of variables (organic carbon, pH, sucrose and valeric acid utilizations, a17:0 and a15:0 PLFA biomarkers and the value of impact on microbial diversity) to be used for future studies of soil quality in Northwest Argentina.  相似文献   

5.
Rhizodeposits have received considerable attention, as they play an important role in the regulation of soil carbon (C) sequestration and global C cycling and represent an important C and energy source for soil microorganisms. However, the utilization of rhizodeposits by microbial groups, their role in the turnover of soil organic matter (SOM) pools in rice paddies, and the effects of nitrogen (N) fertilization on rhizodeposition are nearly unknown. Rice (Oryza sativa L.) plants were grown in soil at five N fertilization rates (0, 10, 20, 40, or 60 mg N kg?1 soil) and continuously labeled in a 13CO2 atmosphere for 18 days during tillering. The utilization of root-derived C by microbial groups was assessed by 13C incorporation into phospholipid fatty acids. Rice shoot and root biomass strongly increased with N fertilization. Rhizodeposition increased with N fertilization, whereas the total 13C incorporation into microorganisms, as indicated by the percentage of 13C recovered in microbial biomass, decreased. The contribution of root-derived 13C to SOM formation increased with root biomass. The ratio of 13C in soil pools (SOM and microbial biomass) to 13C in roots decreased with N fertilization showing less incorporation and faster turnover with N. The 13C incorporation into fungi (18:2ω6,9c and 18:1ω9c), arbuscular mycorrhizal fungi (16:1ω5c), and actinomycetes (10Me 16:0 and 10Me 18:0) increased with N fertilization, whereas the 13C incorporation into gram-positive (i14:0, i15:0, a15:0, i16:0, i17:0, and a17:0) and gram-negative (16:1ω7c, 18:1ω7c, cy17:0, and cy19:0) bacteria decreased with N fertilization. Thus, the uptake and microbial processing of root-derived C was affected by N availability in soil. Compared with the unfertilized soil, the contribution of rhizodeposits to SOM and microorganisms increased at low to intermediate N fertilization rates but decreased at the maximum N input. We conclude that belowground C allocation and rhizodeposition by rice, microbial utilization of rhizodeposited C, and its stabilization within SOM pools are strongly affected by N availability: N fertilization adequate to the plant demand increases C incorporation in all these polls, but excessive N fertilization has negative effects not only on environmental pollution but also on C sequestration in soil.  相似文献   

6.
Microbial colonization of soil-incorporated, 13C-labeled, crimson clover and ryegrass straw residues was followed under western Oregon field conditions from late summer (September) to the following early summer (mid-June) by measuring the 13C content of phospholipid fatty acid (PLFA) extracted from residues recovered from soil. Residue type influenced the rate of appearance of specific PLFA during early decomposition, with branch chain bacterial PLFA (i15:0, a15:0, i16:0) appearing on clover and ryegrass residues in October and November, respectively. By April, additional PLFA (16:1ω5, 16:1ω7, cy17:0, 18:0, 18:1ω9) had appeared on both residues. Between April and June, microbial community structure shifted again with significant increases (cy17:0, 18:0, 18:1ω9), and decreases (18:1ω7+10Me18:0) detected in the quantities of specific PLFA on both residue types. In the case of clover, the PLFA-C was derived primarily from residue C (85-100%), whereas in the case of ryegrass, both residue C (57-66%), and soil C contributed substantially to the PLFA-C.  相似文献   

7.
Phospholipid fatty acid (PLFA) patterns were used to describe the composition of the soil microbial communities under 12 natural forest stands including oak and beech, spruce-fir-beech, floodplain and pine forests. In addition to the quantification of total PLFAs, soil microbial biomass was measured by substrate-induced respiration and chloroform fumigation-extraction. The forest stands possess natural vegetation, representing an expression of the natural site factors, and we hypothesised that each forest type would support a specific soil microbial community. Principal component analysis (PCA) of PLFA patterns revealed that the microbial communities were compositionally distinct in the floodplain and pine forests, comprising azonal forest types, and were more similar in the oak, beech and spruce-fir-beech forests, which represent the zonal vegetation types of the region. In the nutrient-rich floodplain forests, the fatty acids 16:1ω5, 17:0cy, a15:0 and a17:0 were the most prevalent and soil pH seemed to be responsible for the discrimination of the soil microbial communities against those of the zonal forest types. The pine forest soils were set apart from the other forest soils by a higher abundance of PLFA 18:2ω6,9, which is typical of fungi and may also indicate ectomycorrhizal fungi associated with pine trees, and high amounts of PLFA 10Me18:0, which is common in actinomycetes. These findings suggest that the occurrence of azonal forest types at sites with specific soil conditions is accompanied by the development of specific soil microbial communities. The study provides information on the microbial communities in undisturbed forest soils which may facilitate interpretation of data derived from managed or even damaged or degraded forests.  相似文献   

8.
Soil management practices affect soil microbial communities, which in turn influence soil ecosystem processes. In this study, the effects of conventional- (fall disking, chiseling and spring disking, field cultivation) and no-tillage practices on soil microbial communities were examined under long-term continuous cotton (Gossypium hirsutum L.) systems on a Decatur silt loam soil. Soil samples were taken in February, May, and October of 2000 at depths of 0-3, 3-6, 6-12, and 12-24 cm. Compared to the conventional-till treatment, the no-till treatment increased soil organic carbon and total nitrogen contents in the surface layer by 130 and 70%, respectively. Microbial biomass C content under no-till treatment was 60, 140, and 75% greater than under conventional-till treatment in February, May, and October, respectively. Principal components analysis of phospholipid ester-linked fatty acid (PLFA) profile indicated soil microbial communities shifted over time and with soil depth. This change appeared to be driven primarily by soil bacterial populations as indicated by the major PLFA contributors (i.e. fatty acids 16:0, 10Me16:0, cy19:0, 16:1 2OH, and i15:0) to the first two principal components. Tillage treatment differences were revealed by analysis of variance on the first principal components (PC 1), which accounted for 62% of the total sample variance, and by the relative abundance of selected PLFAs and PLFA ratios. The impact of tillage practices was significant in February and May, but not in October. During the growing season, changes in the microbial community may be primarily determined by soil conditions responding to cotton growth and environmental variables such as moisture and temperature; during fallow or prior to cotton establishment, community changes associated with tillage practices become more pronounced. These findings have implications for understanding how conservation tillage practices improve soil quality and sustainability in a cotton cropping system.  相似文献   

9.
Comparative quality assessment of cultured and wild sea bream stored in ice for up to 23 days was achieved by the monitoring of sensory quality, levels of nucleotide, nucleotide breakdown products, and texture by a texturometer. The changes in sensory quality of both raw and cooked fish were assessed using the modified Tasmanian and Torry schemes, respectively. K and related values (freshness indicators), namely, K, K(i), G, P, H, and F(r), were calculated. Linear increases (r(2) > or = 0.99) in K, K(i), G, and P (and a decrease in F(r)) values for cultured sea bream and in the H value for wild sea bream with increasing storage periods were observed. The limit for acceptability of cultured and wild sea bream stored in ice was approximately 16-18 days (average K, K(i), G, and P values: approximately 35-40%; H values: approximately 5% for cultured and 10% for wild; and F(r ) values: approximately 65-70%). The texture of cultured and wild sea bream decreased throughout the storage period, and they were not significantly (p > 0.05) different until after day 16 when the wild sea bream was significantly softer than the cultured. The sensory score of both cultured and wild raw fish showed a good relationship with some freshness and texture indicators over the entire storage period (r(2) values > or = 0.99). These indicators were K, K(i), G, P, and F(r) values for cultured and H value for wild fish.  相似文献   

10.
Like all other living organisms, microorganisms depend on nutrients, carbon and energy. Since microorganisms are central to most soil processes, the sustainable management of agricultural soils may need to consider the impact of soil fertility management on the soil microbial community. We tested the hypothesis that different rates of N and P fertilizers, and cropping frequency (modifying C input to soil) influence the size, structure and physiological condition of soil microbial populations residing in the plough layer (top 7.5 cm). For this study, we used a 37-yr old long-term wheat-based rotation experiment located in the semiarid Brown soil zone of Saskatchewan. The experiment included (1) four input treatments: (i) no N or (ii) no P fertilizer application to wheat (Triticum aestivum L.) grown in fallow-wheat-wheat (F-W-W) rotations, and (iii) recommended rates of both N and P fertilizer applied to fallow-wheat (F-W) and (iv) to F-W-W; (2) two rotation phases: fallow and wheat-after-fallow; and (3) four sampling times: 8 June, 4 July, 5 August and 16 September 2003. Increased partitioning into storage lipids of the arbuscular mycorrhizal fungi (AMF) fatty acid methyl ester (FAME) biomarker 16:1ω5 (P=0.04), suggested the accumulation of storage material under low soil N availability. Discriminant analysis detected modifications in soil microbial community structure due to cropping frequency (P=0.001) and sampling time, the effect of which was different in the fallow (P<0.0001) and wheat-after-fallow (P<0.0001) phases of the rotations. Correlation analysis of soil variables conducted in plots growing wheat revealed a dual effect of plants, which stimulated active soil microbial biomass (SMB), possibly through the release of soluble extractable C (Csol−ext) in soil and, at the same time, SMB competed with wheat for soil water and N. The 37 y of different nutrient input treatments had no effect upon the active soil microbial biomass according to PLFA measurements, despite changes in soil resource-related variables (soil water potential, soil PO4-P and NO3-N fluxes, and Csol−ext concentrations) (P?0.003). The biomass of each of three microbial populations monitored was lowest on 4 July, when the amounts of the soil resources monitored were average, and greatest on 5 August, when N, P and soil moisture availability was lowest. The temporal effect on the biomass of microbial populations seemed unrelated to variation in nutrient or water availability. We conclude that the soil microbial community is adaptable to a wide range of soil conditions. We propose therefore that the occurrence of sudden and dramatic events, such as a heavy rainfall on a dry soil, is the most important determinant of seasonal variation in active soil microbial biomass.  相似文献   

11.
Rhizodeposit-carbon (rhizo-C) serves as a primary energy and C source for microorganisms in the rhizosphere. Despite important progress in understanding the fate of rhizo-C in upland soils, little is known about microbial community dynamics associated with rhizo-C in flooded soils, especially depending on water regimes in rice systems. In this study, rice grown under non-flooded, continuously flooded and alternating water regimes was pulse labeled with 13CO2 and the incorporation of rhizo-C into specific microbial groups was determined by 13C in phospholipid fatty acids (PLFAs) at day 2 and 14 after the labeling.A decreased C released from roots under continuously flooded condition was accompanied with lower total 13C incorporation into microorganisms compared to the non-flooded and alternating water regimes treatments. Continuous flooding caused a relative increase of 13C incorporation in Gram positive bacteria (i14:0, i15:0, a15:0, i16:0, i17:0, a17:0). In contrast, Gram negative bacteria (16:1ω7c, 18:1ω7c, cy17:0, cy 19:0) and fungi (18:2ω6, 9c, 18:1ω9c) showed greater rhizo-C incorporation coupled with a higher turnover under non-flooded and alternating water regimes treatments. These observations suggest that microbial groups processing rhizo-C differed among rice systems with varying water regimes. In contrast to non-flooded and alternating water regimes, there was little to no temporal 13C change in most microbial groups under continuous flooding condition between day 2 and 14 after the labeling, which may demonstrate slower microbial processing turnover. In summary, our findings indicate that belowground C input by rhizodeposition and its biological cycling was significantly influenced by water regimes in rice systems.  相似文献   

12.
Root mucilage modulates soil-plant-water dynamics, but its interactions with microbial community functioning remain poorly understood. The aims of this study were to estimate (I) the impacts of mucilage and soil water content on the microbial community composition and (II) the mucilage consumption by individual microbial groups. C4 root mucilage from maize (at 40 and 200 μg C per gram dry soil, corresponding to 10 and 50% of soil microbial biomass, respectively) was added in single pulses to a C3 soil at two moisture levels: optimum (80% of water-holding capacity (WHC)) and drought (30% of WHC). After 15 days of incubation, the microbial community composition was studied by phospholipid fatty acids (PLFA) analysis and incorporation of mucilage-derived 13C into individual microbial groups was determined by compound-specific isotope analysis. Microbial community composition remained largely unaffected by mucilage addition but was affected by moisture. Whereas an increase in water content reduced mucilage 13C recovery in PLFA for the low-dose mucilage amendment from 19 to 9%, it had no effect under the high-dose amendment (11–12%). This suggests that the role of mucilage for microbial functioning is especially pronounced under drought conditions. The fungal PLFA 18:2ω6,9 was present only under drought conditions, and fungi profited in their mucilage C utilisation from the lower competitiveness of many bacterial groups under drought. In this study, Gram-negatives (G?, characterised by PLFA 18:1ω9c, 18:1ω7c, 16:1ω7c and cy17:0) showed the highest mucilage-derived 13C in PLFA, especially at the high-dose amendment, suggesting them to be the major decomposers of mucilage, especially when the availability of this C source is high. Gram-positives (G+) included different sub-groups with distinct responses to moisture: G+ 1 (a15:0) were only competitive for mucilage C under drought, whereas G+ 3 (i17:0) were only able to utilise mucilage-derived C under optimal moisture conditions. During the 15-day incubation, they built up more than 40% of their membranes from mucilage-derived C, suggesting that in the case of high availability, mucilage can act as an important C source for this microbial group. However, under drought, G? 1 and fungi were incorporating the most mucilage C into their membranes (approx. 20% of PLFA-C). The observation that, for some groups, the high-dose mucilage amendments under drought led to higher 13C incorporation into PLFA than under optimum moisture suggests that mucilage can compensate drought effects for particular microbial groups. Thus, mucilage may not only act as a C source for microorganisms but may also mitigate drought effects for specific rhizosphere microbial groups.  相似文献   

13.
Soil incubations are often used to investigate soil organic matter (SOM) decomposition and its response to increased temperature, but changes in the activity and community composition of the decomposers have rarely been included. As part of an integrated investigation into the responses of SOM components in laboratory incubations at elevated temperatures, fungal and bacterial phospholipid fatty acids (PLFAs) were measured in two grassland soils contrasting in SOM quality (i.e. SOM composition), and changes in the microbial biomass and community composition were monitored. Whilst easily-degradable SOM and necromass released from soil preparation may have fuelled microbial activity at the start of the incubation, the overall activity and biomass of soil microorganisms were relatively constant during the subsequent one-year soil incubation, as indicated by the abundance of soil PLFAs, microbial respiration rate (r), and metabolic quotient (qCO2). PLFAs relating to fungi and Gram-negative bacteria declined relative to Gram-positive bacteria in soils incubated at higher temperatures, presumably due to their vulnerability to disturbance and substrate constraints induced by faster exhaustion of available nutrient sources at higher temperatures. A linear correlation was found between incubation temperatures and the microbial stress ratios of cyclopropane PLFA-to-monoenoic precursor (cy17:0/16:1ω7c and cy19:0/18:1ω7c) and monoenoic-to-saturated PLFAs (mono/sat), as a combined effect of temperature and temperature-induced substrate constraints. The microbial PLFA decay patterns and ratios suggest that SOM quality intimately controls microbial responses to global warming.  相似文献   

14.
Photosynthetically derived rhizodeposits are an important source of carbon (C) for microbes in root vicinity and can influence the microbial community dynamics. Pulse labeling of carbon dioxide (13CO2) coupled with stable isotope probing techniques have potential to track recently fixed photosynthate into rhizosphere microbial taxa. Therefore, the present investigation assessed the microbial community change associated with the rhizosphere and bulk soil in Jatropha curcas L. (a biofuel crop) by combining phospholipid fatty acid (13C-PLFA) profiling using a stable isotope 13CO2 labeling approach. The labeling (13C) took place after 45 days of germination, PLFAs were extracted from both soils (rhizosphere and bulk) after 1 and 20 days pulse labeling and analyzed by gas chromatography-isotope ratio mass spectrometry. There was no significant temporal effect on the PLFA profiles in the bulk soil, but significantly increased abundance of Gram positive (i15:0) and Gram negative (16:1ω7c and 16:1ω5c) biomarkers was observed in the rhizosphere soil from day 1 to day 20 after labeling. The Gram negative (16:1ω7c) decreased and fungal (18:2ω6,9c) increased significantly in rhizospheric soil compared to bulk soil after day 1 of labeling. Whereas, after 20 days of labeling, the Gram negative biomarker (16:1ω7c and 18:1ω7c) decreased and Gram positive (a15:0) increased significantly in rhizospheric soil compared to bulk soil. One day following labeling, i15:0, a15:0, i16:0, 16:1ω5c, 16:0, i17:0, a17:0, 18:2ω6,9c, 18:1ω9c, and 18:0 PLFAs were significantly more enriched in δ13C in the rhizosphere than in the bulk soil. Twenty days after labeling, 16:1ω5c (Gram negative) and 18:2ω6,9c (fungal) were significantly more enriched in δ13C in the rhizosphere than in the bulk soil. These results shows the effectives of PLFA coupled using the pulse chase labeling technique to examine the microbial community changes in response to recently fixed photosynthetic C flow in rhizodeposits.  相似文献   

15.
The overall processes by which carbon is fixed by plants in photosynthesis then released into the soil by rhizodeposition and subsequently utilized by soil micro-organisms, links the atmospheric and soil carbon pools. The objective of this study was to determine the plant derived 13C incorporated into the phospholipid fatty acid (PLFA) pattern in paddy soil, to test whether utilization of rice rhizodeposition carbon by soil micro-organisms is affected by soil water status. This is essential to understand the importance of flooded conditions in regulating soil microbial community structure and activity in wetland rice systems. Rice plants were grown in soil derived from a paddy system under controlled irrigation (CI), or with continuous waterlogging (CW). Most of the 13C-labelled rice rhizodeposition carbon was distributed into the PLFAs 16:0, 18:1ω7 and 18:1ω9 in both the CW and CI treatments. The bacterial PLFAs i15:0 and a15:0, both indicative of gram positive bacteria, were relatively more abundant in the treatments without rice plants. When rice plants were present rates of 13C-incorporation into i15:0 and a15:0 was slow; the microbes containing these PLFAs may derive most of their carbon from more recalcitrant C (soil organic matter). PLFAs, 18:1ω7 and 16:1ω7c, indicative of gram negative bacteria showed a greater amount incorporation of labelled plant derived carbon in the CW treatment. In contrast, 18:2ω6,9 indicative of fungi and 18:1ω9 indicative of aerobes but also potentially fungi and plant roots had greater incorporation in the CI treatment. The greater root mass concomitant with lower incorporation of 13C into the total PLFA pool in the CW treatment suggests that the microbial communities in wetland rice soil are limited by factors other than substrate availability in flooded conditions. In this study differing soil microbial communities were established through manipulating the water status of paddy soils. Steady state 13C labelling enabled us to determine that the microbial community utilizing plant derived carbon was also affected by water status.  相似文献   

16.
Bulk and rhizosphere soil of rape and barley grown in a calcareous soil were pre-incubated for 7 days at 20 °C with Na235SO4 to partially label soil organic S. The soils were then incubated for 7 days more with increasing levels of two C sources as organic acids (succinic and malic acids) and as glucose (from 0 to 640 mg C kg−1 soil) with or without increasing levels of N (from 0 to 15 mg N kg−1 soil) in the form of ammonium nitrate, in order to mimic rhizodeposition inputs into soil. A second incubation experiment with a single highest dose of the used substrates was undertaken and two destructive soil samplings on days 17 and 35 were carried out. Both incubation experiments showed the intensities of S immobilization in the order: barley rhizosphere>rape rhizosphere>bulk soil. Glucose addition generated positive S priming effects in all studied soils after one week of incubation. Significant correlation coefficients were observed between immobilized-S and microbial biomass-S (r=0.95,p<0.001), arylsulfatase activity (ARS) and microbial biomass-S (r=0.65,p<0.05) on day 17 but not on day 35, whereas significant correlation coefficients were found between arylsulfatase activity and immobilized-S at both days 17 (r=0.79,p<0.01) and 35 (r=0.75,p<0.01). A marked decline of biomass-S noted in substrate-amended treatments at day 35 suggests a quick turnover of this compartment followed by its incorporation into the organic S. Finally, with organic acids high values of ARS per unit of biomass-S were recorded over the two studied dates in the rhizosphere soil of rape. It is concluded that the rhizosphere microbial biomass under rape exhibited more efficient arylsulfatase activity and hence greater turnover of organic S than that under the barley rhizosphere soil.  相似文献   

17.
This study compared the toxic effects of adding chromium (Cr), zinc (Zn), lead (Pb), molybdenum (Mo), nickel (Ni), and cadmium (Cd) at three dose levels to mor layer samples in laboratory experiments. Microbial activity in the form of soil respiration was monitored for 64 days. At the end of the experimental period, the composition of the soil microbial community structure was analysed by phospholipid fatty acid (PLFA) analysis. The metals added induced changes in the microbial community structure and affected respiration negatively, indicating toxicity. The microbial community structure (principal component analysis of the PLFA pattern) for all metals was significantly related to microbial activity (cumulative respiration), indicating intimate links between microbial community structure and activity. The most striking result in this study was that the shift in the microbial community because of metal stress was similar for all metals. Thus, the PLFA i16:0 increased most in relative abundance in metal-polluted soils, followed by other PLFAs indicative of Gram-positive bacteria (10Me16:0, 10Me17:0, 10Me18:0, a17:0 and br18:0). The PLFA 16:1ω5 was consistently negatively affected by metal stress, as were the PLFAs 18:1, 18:1ω7 and 19:1a. However, a significant separation between Cr- and Cd-polluted soils was observed in the response of the PLFA cy19:0, which decreased in abundance with Cr stress, and increased with Cd stress. Furthermore, the PLFA 18:2w6, indicating fungi, only increased with Cr and Zn stress. The effective doses of the metals, ranked with regard to background metal concentrations, decreased in the order: Zn > Cr > Pb > Mo > Ni > Cd. We concluded that interpretation of results of microbial activity from experiments of metal toxicity should include microbial structural patterns and background metal concentrations.  相似文献   

18.
铜污染土壤微生物群落结构及酶活性研究   总被引:2,自引:0,他引:2  
The microbial community structure and enzyme activities of seven paddy soils with different Cu concentrations were investigated in the vicinity of a Cu smelter in Fuyang County,Zhejiang Province in Southeast China.The microbial community structure was analyzed using the phospholipid fatty acid (PLFA) and multiplex-terminal restriction fragment length polymorphism (M-TRFLP) techniques.There was no clear dose-response relationship between Cu pollution and soil enzyme activity except for urease.Both PLFA and M-TRFLP methods showed that Cu contamination had a large effect on the soil microbial community structure.PLFA indicators of Gram-positive bacteria (16:0i,15:0i) and fungi (18:2w6,9) relatively decreased with increasing Cu concentration,whereas indicators of Gram-negative bacteria (19:0cy,16:1w7) increased.The M-TRFLP results suggested that there was a dose-dependent response between Cu pollution and bacterial community or fungal community.The fungal community was more sensitive to Cu pollution than the bacterial community.There were no significant differences in archaeal community structure between the different Cu pollution plots and archaea might be more tolerant to Cu pollution than both bacteria and fungi.  相似文献   

19.
水分条件对水稻土微生物群落多样性及活性的影响   总被引:10,自引:0,他引:10  
采用BIOLOG碳素利用法、磷脂脂肪酸(PLFA)法和土壤酶活性测定等方法比较了三种水分条件(淹育、淹育晾干、非淹育)对水稻土微生物群落多样性及活性的影响。结果表明,淹育处理水稻土的脱氢酶、蔗糖酶活性明显高于淹育晾干和非淹育处理,并导致该土壤的基础呼吸升高。BIOLOG碳素利用法表明,非淹育处理的微生物群落平均吸光值(AWCD)显著低于淹育和淹育晾干处理。磷脂脂肪酸(PLFA)实验发现,淹育水稻土的真菌特征脂肪酸(18:2w6,9c)所占比例减少,真菌特征脂肪酸(18:2w6,9c)与细菌特征脂肪酸(15:0i+15:0a+16:0i+16:1w5c+17:0i+17:0a+17:0cy+17:0+18:1w7c+19:0cy)的比值下降;水分条件变化没有改变土壤微生物环丙基脂肪酸19:0cy的相对丰度,但非淹育处理的环丙基脂肪酸17:0cy相对丰度明显高于另外二种处理。BIOLOG碳素利用法的群落水平生理剖面(CLPP)和磷脂脂肪酸(PLFA)测定结果经聚类分析后,发现淹育和淹育晾干处理的土壤微生物多样性在较低的距离尺度可聚成一类,且与非淹育土壤具有明显差异。淹育水稻土与淹育晾干相比,尽管土壤微生物群落结构和功能多样性有一定的相似性,但微生物的种群组成和活性仍发生了较大的变化。  相似文献   

20.
This study examined (1) the effects of seasonal and annual environmental characteristics (temperature, chlorophyll content, salinity, microbial water quality, and algal lipid composition) in four aquaculture locations on the quality (meat content, shell size, and microbial and lipid compositions) of cultivated blue mussels and (2) the optimum harvest time for premium-quality mussels. Seasonal and annual temperature fluctuation of the seawater in the aquaculture sites significantly (P < 0.05) affected their salinity, microbial content, and algal fatty acid compositions, which in turn affected the quality attributes of cultivated mussels. The optimum growth period in terms of meat content (4-5 g) and shell size (50-60 mm) can be achieved within 1 year of cultivation. Because the cultivated mussels examined in this study never reached the maximum microbial load limits (10(5) or log 5 colony-forming units/g of meat), they can be harvested throughout the year. Meanwhile, no significant (P > 0.05) annual changes were observed in total omega-3 polyunsaturated fatty acids content of cultivated mussels. Nonetheless, the optimum harvest time may be April-June for eicosapentaenoic acid (EPA) rich mussels and September-October for docosahexaenoic acid (DHA) rich mussels in terms of fatty acid proportions; however, June may be the best month for the highest concentrations of both EPA and DHA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号