首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ten strains of Pseudomonas aeruginosa (PN1 ˜ PN10) isolated from rhizosphere of chir-pine were tested for their plant growth promontory properties and antagonistic activities against Macrophomina phaseolina in vitro and in vivo. P. aeruginosa PN1 produced siderophore, IAA, cyanogen and solubilized phosphorus, besides producing chitinase and β-1,3-glucanase. In dual culture, P. aeruginosa PN1 caused 69% colony growth inhibition. However, cell free culture filtrate also posed inhibitory effect but to a lesser extent. After 90 days, P. aeruginosa PN1 increased plant growth and biomass in pots trial containing M. phaseolina-infested soil. PN1 showed the strong chemotaxis toward root exudates resulting in effective root colonization. Moreover, increased population in rhizosphere of these bacteria was also recorded after 90 days of treatment. Thus, chemotactic fluorescent P. aeruginosa PN1 exhibited strong antagonistic property against M. phaseolina, suppressed the disease and improved plant growth of the seedlings of chir-pine proving potential biocontrol agent.  相似文献   

2.
Root nodulating Sinorhizobium fredii KCC5 and Pseudomonas fluorescens LPK2 were isolated from nodules of Cajanus cajan and disease suppressive soil of tomato rhizosphere, respectively. Both strains produced IAA, siderophore, solubilized insoluble phosphate, showed chitinase and β-1,3-glucanase activities, and strongly inhibited the growth of Fusarium udum. It also caused degradation and digestion of cell wall components, resulting in hyphal perforations, empty cell (halo) formation, shrinking and lysis of fungal mycelia along with significant degeneration of conidia. LPK2 produced volatile cyanogen (HCN). Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers showed a significant increase in seed germination (94%) while seed germination with co-inoculated strains (KCC5 + LPK2), KCC5 and LPK2 alone was 90, 84 and 82% respectively as compared to control 77%. After 120 days of sowing, per plant number of pods, nodules, shoot length, root length, shoot weight and root weight were greater for the combination with half dose of chemical fertilizers compared to the control. Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers resulted in an 82% increase in grain yield per hectare compared to the control. Both strains KCC5 and LPK2 led to proto-cooperation as evidenced by synergism, aggressive colonization of the roots, and enhanced growth, suggesting potential biocontrol efficacy against Fusarium wilt in C. cajan.  相似文献   

3.
Five bacterial strains (TR1 to TR5) isolated from root nodules of fenugreek (Trigonella foenum-graecum) were tested for their plant growth promotory traits and biocontrol potential against Fusarium oxysporum. On the basis of morphological, physiological, biochemical and molecular characteristics, strains TR1 and TR3 - TR5 were identified as Ensifer meliloti, and TR2 as Rhizobium leguminosarum. All bacterial isolates utilized phosphate in vitro. Except TR5, all isolates produced IAA and none of them showed volatile cyanogens production. Except TR3, all isolates produced in vitro siderophore. Isolate TR1 and TR4 showed chitinase production while only TR2 showed β-1,3-glucanase activity. Isolates TR1, TR2 and TR5 exhibited ACC deaminase activity. Isolates TR1, TR2 and TR4 inhibited the growth of F. oxysporum, causing loss of structural integrity of the mycelium, hyphal perforation, lysis, fragmentation and degradation. The potential for nodulation and nitrogen fixation of the strains were confirmed by amplification of 500 bp nodC and 781 bp nifH fragments. The application of the TR1 + TR2 combination resulted in increased grain yield by 35% and 36% of fenugreek in two consecutive field trials, respectively as compared to control. Maximum increments in vigour index, nodule number and root and shoot biomass were recorded with seed inoculated with consortium (TR1 + TR2) followed by single inoculation as compared to control. The antibiotic resistant marker strain of E. meliloti TR1strep+ and R. leguminosarum TR2tet+ confirmed the efficient colonization of fenugreek roots. This study showed that these rhizobial isolates have properties of biocontrol agents and may be applied to promote the growth of fenugreek.  相似文献   

4.
Six actinomycetes isolates, namely Streptomyces toxytricini vh6, Streptomyces flavotricini vh8, S. toxytricini vh22, Streptomyces avidinii vh32, Streptomyces tricolor vh85 and vh41, an isolate of an unknown species of Actinomycetales, were tested for their efficacy in protecting tomato (Solanum lycopersicum) against Rhizoctonia solani under green house conditions. Actinomycetes treated plants showed better growth in terms of high chlorophyll content, higher phenylalanine ammonia lyase (PAL) activity and high total phenolic content. Qualitative and quantitative estimation of phenolic compounds from tomato leaves showed significant accumulation of six phenolic acids, gallic (29.02 μg g−1 fresh leaf wt), ferulic (11.44 μg g−1 fresh wt), cinnamic (56.84 μg g−1 fresh wt), gentisic (24.19 μg g−1 fresh wt), chlorogenic acid (1.72 μg g−1 fresh wt) and salicylic (0.39 μg g−1 fresh wt) acid, in actinomycetes treated plants. Biochemical profiling, when correlated with plant mortality in actinomycetes treated and untreated plants, indicated that isolates vh6 and vh8 offered 44.55% and 40.14% disease reductions, respectively compared to the control. These results established that these organisms have the potential to act as biocontrol agents.  相似文献   

5.
6.
Plant growth promoting bacteria can enhance and promote plant growth and development in different ways. These mechanisms include solubilization of phosphorus, nitrogen fixation and biocontrolling effects on phytopathogenic microorganisms. Suppression of phytopathogenic fungi by 47 different bacteria, isolated from different monocotyledonic plants rhizosphere and soil, was tested against Fusarium oxysporum radicis-lycopersici, Sclerotium bataticola, Pythium ultimum, Fusarium graminearum, and Alternaria spp. The antifungal activity of these isolates was described based on the comparison of the growth rate inhibition. As the production of iron-chelating compounds is one of the mechanisms responsible for the antimycotic effect, we tested the siderophore producing capacity of the isolated strains. Also, we assayed the ammonia production of these bacteria. This secondary metabolite compound contributes to the biocontrolling property of these bacteria. Our examinations also include the inorganic phosphate solubilization capacity of these isolates, which may improve the phosphorus uptake of plants. The results indicate that 17 bacterial isolates are able to produce siderophores and 30 from them possess capacity of calcium-phosphate mobilization. The majority of the cultures were found to have highly inhibitory effects against the mycelium growth of P. ultimum, F. oxysporum radicis-lycopersici and F. graminearum, whereas others showed little activity. Only twelve bacteria showed no activity against the S. bataticola plant pathogen fungus.  相似文献   

7.
The legume pod borer Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) has developed high levels of resistance to conventional insecticides, and therefore, efforts are being made to develop transgenic chickpea expressing toxin genes from the bacterium Bacillus thuringiensis (Bt) for controlling this pest. However, there is an apprehension that acid exudates in chickpea might interfere with the biological activity of Bt. Therefore, we studied the biological activity of Bt (BiolepR) on four chickpea genotypes with different levels of resistance to H. armigera under field conditions, and by incorporating lyophilized leaf and pod tissue into the artificial diet with and without Bt. The pH of the acid exudates varied from 2.1 to 2.9, and malic and oxalic acids were the major components of the acid exudates in different chickpea genotypes. There was no survival of H. armigera larvae in chickpea plants sprayed with 0.1, 0.2 and 0.5% Bt. There was a significant reduction in larval survival, larval and pupal weights and fecundity, and prolongation of larval and pupal periods in chickpea plots sprayed with Bt (0.05%) as compared to the unsprayed plots. Biological activity of Bt was lower on artificial diets with leaf or pod powder of chickpea genotypes, which might be because of a low intake of Bt toxins due to the antifeedant effects of acid exudates in the chickpea or reduction in biological activity of Bt due to the interaction of biochemical constituents in chickpea with the Bt toxins. Larval survival, larval and pupal weights, pupation and adult emergence were significantly lower on diets with leaf or pod powder of the H. armigera-resistant genotypes than on the susceptible check. Chickpea genotypes with resistance to H. armigera acted in concert with Bt to cause adverse effects on the survival and development of this insect. The results suggested that development of transgenic chickpeas expressing toxin genes form Bt will be quite effective for controlling of the pod borer, H. armigera.  相似文献   

8.
We studied the possibility that the antagonistic saprobe fungi Coriolopsis rigida, Trametes versicolor, Fusarium lateritium, Penicillium chrysogenum and Verticillium dahliae-2379 may control V. dahliae disease through the inhibition of the activity of hydrolytic enzymes produced by the pathogen. These saprobe fungi were able to decrease the growth in vitro of V. dahliae. The exudates produced by these fungi seemed to be the main factor responsible for their antagonistic effect. The exudates of all the fungi tested had endopolymethylgalacturonase, endoglucanase and endoxyloglucanase activities. Exudates of P. chrysogenum and V. dahliae-2379 had higher hydrolytic activities than those of V. dahliae. The saprobe V. dahliae-2379 did not decrease the growth of the pathogen V. dahliae but decreased its harmful effect on the growth of tomato. However, no inhibition of the activities of the hydrolytic enzyme of the pathogenic V. dahliae by the no pathogenic V. dahliae-2379 or by the other saprobe fungi was observed. Nevertheless, the protection of tomato by the five antagonistic saprobe fungi against V. dahliae disease could be carried out by the induction of plant defense by the hydrolytic enzymes produced by these fungi.  相似文献   

9.
Ascochyta rabiei causes Ascochyta blight, a yield-limiting disease of chickpea (Cicer arietinum) world-wide. In 2007, fungal populations of A. rabiei resistant to the QoI group of fungicides were detected in the Northern Great Plains of the United States. Assays were conducted to determine fungal sensitivity for two alternative fungicidal modes of action. A total of 78 isolates of A. rabiei collected between 1983 and 2007 were screened to determine baseline sensitivity to the demethylation-inhibiting foliar fungicide, prothioconazole, and 100 isolates collected between 1987 and 2007 were screened for sensitivity to the methyl benzimidazole carbamate (MBC) fungicide, thiabendazole. Isolates were tested using an in vitro mycelial growth assay to determine the effective fungicide concentration at which 50% of fungal growth was inhibited (EC50) for each isolate-fungicide combination. Baseline EC50 values of prothioconazole ranged from 0.0526 to 0.2958 μg/ml, with a mean of 0.1783 μg/ml. Isolates of A. rabiei collected from 2007 to 2009 from North Dakota chickpea fields exposed to prothioconazole, were screened for prothioconazole sensitivity using the same assay. Mean EC50 values for these isolates were 0.3544 μg/ml, 0.3746 μg/ml, and 0.7820 μg/ml, respectively. These values represent an approximate 2.0 (2007-2008) and 4.4-fold (2009) decrease in sensitivity from the baseline mean. EC50 values of thiabendazole ranged from 1.192 to 3.819 μg/ml, with a mean of 2.459 μg/ml. No significant decrease in fungicide sensitivity was observed for thiabendazole. To date, no loss of Ascochyta blight control has been observed with the use of either prothioconazole or thiabendazole.  相似文献   

10.
The objectives of this study were (1) to assess the bacteriocinogenic potential of bacteria derived mainly from seaweed, but also sand and seawater, (2) to identify at least some of the bacteriocins produced, if any and (3) to determine if they are unique to the marine environment and/or novel. Fifteen Bacillus licheniformis or pumilus isolates with antimicrobial activity against at least one of the indicator bacteria used were recovered. Some, at least, of the antimicrobials produced were bacteriocins, as they were proteinaceous and the producers displayed immunity. Screening with PCR primers for known Bacillus bacteriocins revealed that three seaweed-derived Bacillus licheniformis harbored the bli04127 gene which encodes one of the peptides of the two-peptide lantibiotic lichenicidin. Production of both lichenicidin peptides was then confirmed by mass spectrometry. This is the first definitive proof of bacteriocin production by seaweed-derived bacteria. The authors acknowledge that the bacteriocin produced has previously been discovered and is not unique to the marine environment. However, the other marine isolates likely produce novel bacteriocins, as none harboured genes for known Bacillus bacteriocins.  相似文献   

11.
A disease survey was conducted on sweet potato in the major production areas of South Africa in 2006-2008 to determine the importance of wilt disease (WD) and Alternaria blight (AB) caused by Alternaria bataticola. The disease prevalence, incidence and severity were assessed for both WD and AB in 58 sweet potato fields in seven provinces, and included both commercial and resource-poor growers. The prevalence of WD in commercial fields was significantly higher than in resource-poor fields; while disease incidence and severity were very low in both commercial and resource-poor fields. Soil pH showed a moderate negative linear correlation to WD severity. WD is at present considered a minor disease of sweet potato in South Africa, although local outbreaks can be damaging. AB had very low disease prevalence, incidence and severity levels in both commercial and resource-poor fields countrywide. However, one of the fields had moderately high disease incidence and severity levels, showing that the disease can be destructive if not controlled. AB should be considered a potentially destructive disease of sweet potato in South Africa. Fusarium oxysporum was consistently isolated from WD plants, with F. oxysporum f. sp. batatas identified, but other formae speciales were also associated with the disease.  相似文献   

12.
New isolates of Streptomyces champavatii were isolated from marine sediments of the Gotland Deep (Baltic Sea), from the Urania Basin (Eastern Mediterranean), and from the Kiel Bight (Baltic Sea). The isolates produced several oligopeptidic secondary metabolites, including the new octapeptide champacyclin (1a) present in all three strains. Herein, we report on the isolation, structure elucidation and determination of the absolute stereochemistry of this isoleucine/leucine (Ile/Leu = Xle) rich cyclic octapeptide champacyclin (1a). As 2D nuclear magnetic resonance (NMR) spectroscopy could not fully resolve the structure of (1a), additional information on sequence and configuration of stereocenters were obtained by a combination of multi stage mass spectrometry (MSn) studies, amino acid analysis, partial hydrolysis and subsequent enantiomer analytics with gas chromatography positive chmical ionization/electron impact mass spectrometry (GC-PCI/EI-MS) supported by comparison to reference dipeptides. Proof of the head-to-tail cyclization of (1a) was accomplished by solid phase peptide synthesis (SPPS) compared to an alternatively side chain cyclized derivative (2). Champacyclin (1a) is likely synthesized by a non-ribosomal peptide synthetase (NRPS), because of its high content of (d)-amino acids. The compound (1a) showed antimicrobial activity against the phytopathogen Erwinia amylovora causing the fire blight disease of certain plants.  相似文献   

13.
A new actinomycete strain Micromonospora sp. K310 was isolated from Ghanaian mangrove river sediment. Spectroscopy-guided fractionation led to the isolation of two new compounds from the fermentation culture. One of the compounds is butremycin (2) which is the (3-hydroxyl) derivative of the known Streptomyces metabolite ikarugamycin (1) and the other compound is a protonated aromatic tautomer of 5′-methylthioinosine (MTI) (3). Both new compounds were characterized by 1D, 2D NMR and MS data. Butremycin (2) displayed weak antibacterial activity against Gram-positive S. aureus ATCC 25923, the Gram-negative E. coli ATCC 25922 and a panel of clinical isolates of methicillin-resistant S. aureus (MRSA) strains while 3 did not show any antibacterial activity against these microbes.  相似文献   

14.
A study was conducted to investigate the most common fungal and oomycete pathogens introduced into farms in Oman via potting mixtures and organic manures. A total of 37 commercial types of potting mixtures (2 local and 35 imported from overseas), 4 commercial types of organic manures and 11 non-commercial types of organic manures were included in the study. Identification of the isolated species was based on morphological characteristics, except for the most common species which were further identified using sequences of the internal transcribed spacer region of the ribosomal DNA (ITS rDNA). Fusarium spp. (14%), Pythium aphanidermatum (3%), Alternaria spp. (5%), Helminthosporium spp. (5%) and Cladosporium spp. (3%) were recovered at different frequencies from samples of potting mixtures. Fusarium solani (40%) and Fusarium equiseti (47%) were recovered at high frequencies from samples of organic manures. Isolations from organic manures also yielded Pythium periplocum (7%), Rhizoctonia solani (7%), Fusarium lichenicola (7%), Helminthosporium spp. (27%) and Alternaria spp. (27%). Trichoderma spp., Penicillium spp., Aspergillus spp. and Rhizopus spp. were found to be common in samples of potting mixtures and organic manures. Investigating sensitivity to hymexazol among 9 isolates of F. equiseti and 13 isolates of F. solani revealed variations among different isolates. The EC50 values ranged from 1 to over 1200 (avg. 192 μg ml−1) for F. equiseti isolates and from 135 to 789 (avg. 324 μg ml−1) for F. solani isolates, indicating presence of resistance to this important fungicide among some Fusarium isolates. This appears to be the first report of contamination with R. solani, P. periplocum, F. solani, F. equiseti and F. lichenicola of organic manures. This study appears to report for the first time F. lichenicola in Oman and appears to be the first report of occurrence of resistance to hymexazol among F. equiseti and F. solani isolates.  相似文献   

15.
The occurrence of Bacillus entomopathogenic bacteria on a Tunisian biodynamic farm was determined by examining 75 samples from olive tree (Olea europaea L.) habitats. A total of 40 Bacillus isolates were characterized according to their phenotypic, physiological and biochemical parameters. Isolates of the species Bacillus subtilis, Bacillus mycoides, Brevibacillus brevis, Paenibacillus polymyxa, Bacillus licheniformis, Bacillus sp. (1), Bacillus sp. (2) and a standard strain Btk HD-1 were used separately in feeding bioassays on fresh artificial diet against larvae of lepidopterans Prays oleae (Bernard) and Palpita unionalis (Hübner) and coleopterans Hylesinus oleiperda (F.) and Phloeotribus scarabaeoides (Bernard), which are olive tree pests. Larvae were successfully reared on an artificial diet with 25 g powdered olive tree leaves. Compared to the control data, only Btk and the isolates of B. licheniformis, P. polymyxa and B. brevis were entomopathogenic. Larval mortality assessed 7 days post-treatment showed high mortality rates with Btk to lepidopteran larvae (86.6% for P. oleae and 80.9% for P. unionalis) and low mortality against coleopteran pests. B. brevis isolates showed high mortality rates against P. oleae (up to 67.9%). B. licheniformis isolates caused up to 59.2% larval mortality for P. oleae and 43.6% for P. unionalis. Highest coleopteran mortality was achieved by P. polymyxa isolates (up to 55%). According to the 16S rDNA results, isolates of each of the three entomopathogenic strains were similar. Proteins in the strain supernatants were toxic to P. oleae larvae with LC50 values of 10.0 (B. brevis), 12.5 (B. licheniformis) and 37.6 μg/ml (P. polymyxa). Also, P. polymyxa showed an LC50 of 12.4 mg/l against P. scarabaeoides. Our results suggest that entomopathogenic Bacillus present locally in the biodynamic farm could be used in biological control programmes of olive tree pests.  相似文献   

16.
The wblAso gene functions as a global regulatory gene in a negative manner in deepsea-derived Streptomyces somaliensis SCSIO ZH66. A new dioic acid (1) as well as two known butenolides (2 and 3) were isolated from the ΔwblAso mutant strain of S. somaliensis SCSIO ZH66. The structure of 1 was elucidated by a combination of spectroscopic analyses, including MS and NMR techniques. In the cell growth inhibitory evaluation, compound 3 exhibited moderate activity against the human hepatic carcinoma cell line (Huh7.5) with an IC50 value of 19.4 μg/mL, while compounds 1 and 2 showed null activity up to 100 μg/mL.  相似文献   

17.
Elicitors of systemic acquired resistance are well known to reduce severity of several plant pathogenic diseases caused by fungi, bacteria and viruses. Their field applications for management of plant diseases are, however, limited because of yield penalties. Our studies on affect of Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), an elicitor of systemic acquired resistance, on chickpea blight caused by a fungal pathogen Didymella rabiei showed that multiple foliar applications of the chemical were effective in management of the disease under economic threshold levels. Multiple applications, however, affected chickpea grain yield adversely. The BTH induced yield penalties could be prevented by foliar spray schedule comprised of BTH and a contact fungicide mancozeb. One spray of BTH (50 ppm) followed by another of mancozeb (0.2%) was less effective (8.3% severity) than three sprays of BTH (4.2% severity) in blight control, however, this treatment enhanced grain yield significantly (1.241 t ha−1) over three sprays of BTH (0.922 t ha−1).  相似文献   

18.
The fungus Fusarium guttiforme (Syn. F. subglutinans f. sp. ananas) is responsible for fusariosis, one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). A structural study comparing epidermal differences in pineapple cultivars resistant and susceptible to fusariosis was performed, relating properties of the epidermis to known susceptibility to the disease. The basal, non-chlorophylled, portions of mature leaves of pineapple plants were analyzed by light and electron microscopy. All cultivars showed common morpho-anatomic aspects characteristic of Bromeliaceae, such as scutiform scales and unstratified epidermis. However, cultivar Vitoria (resistant) had less scales than cultivars Smooth Cayenne (susceptible, intermediate severity) and Perola (susceptible, with extreme severity of fusariosis symptoms). Inoculation of conidia suspension (105 conidia ml−1) of the fungus F. guttiforme to leaves and harvesting 24 h later yielded numbers of viable colonies related to the density of leaf scales. This suggests that scales can act as havens for fungal conidia and favour the epiphytic stage of the fungus on pineapple plants, and are involved in the interaction of plant and pathogen. A reduction in scale numbers was related to lower infection levels and is relevant to the future breeding programme for development of new pineapple cultivars resistant to fusariosis and their involvement in integrated control strategies.  相似文献   

19.
Talaromyces flavus a fungal antagonist, was isolated from soil samples collected from potato fields in Varamin and Karaj districts, Tehran province, Iran. Antagonistic effects of T. flavus isolates against Verticillium albo-atrum, the causal agent of potato wilt disease were investigated in the laboratory and greenhouse conditions. T. flavus colonies were recovered after three weeks from soil samples cultured on selective medium. Antagonistic effects of volatile and non-volatile extracts of T. flavus isolates on V. albo-atrum growth were investigated in the laboratory and five that caused higher growth inhibition of V. albo-atrum, were selected for greenhouse experiments. Infection index was compared in the greenhouse in a split plot trial with five isolates applied to soil, seed, or both arranged in a randomized complete block design with four replications. The minimum infection index was observed when seed were treated with T. flavus with the most effective isolate being Tf-Po-V-52. On seed, the minimum infection index was observed with Tf-Po-V-50. The most effective T. flavus isolate was also evaluated in a field experiment. Results indicated that infection index in seed treatment contained this isolate was 0.15 whereas that of control was 3.5. The overall results of this study showed that it may be possible to manage potato Verticillium wilt disease effectively by using T. flavus, a biocontrol fungus.  相似文献   

20.
In a 2-year assessment carried out on tomato crops of Central and Southern Italy, a high incidence of Rhizoctonia solani and Sclerotium rolfsii was found. These fungal pathogens attack horticultural crops and are responsible for severe crown and stem rot. Because of technical, economical and environmental issues their chemical control is an arduous task. To find alternative and eco-compatible control methods, the effectiveness of two new antagonistic bacterial isolates (Burkholderia cepacia, T1A-2B, and Pseudomonas sp., T4B-2A), previously selected from suppressive organic amendments, were tested on tomato plants grown under both growth chamber and field conditions. The potential antagonists were compared with two commercial biofungicides, based on Bacillus subtilis (BSF4) and Trichoderma asperellum (TV1), and four synthetic fungicides (tolclofos-methyl, azoxystrobin, fosetyl-Al and fosetyl-Al + propamocarb). In 2-year field experiments carried out on tomato plants, the biocontrol bacteria as well as the other treatments were applied to the soil, proximal to the plant crowns and main roots, by means of an effective and specific system of drip irrigation. In all the experiments the novel selected biocontrol bacteria significantly reduced both incidence and severity of the diseases caused by S. rolfsii or R. solani, with results demonstrating effectiveness equal to TV1, better than BSF4 and comparable with the synthetic fungicides, except for tolclofos-methyl which was the most effective treatment. In field experiments, carried out for two consecutive years, isolate T1A-2B reduced up to 58.33% and up to 63.8% the severity of the diseases caused by S. rolfsii and R. solani respectively; whereas isolate T4B-2A gave reduction of S. rolfsii and R. solani diseases severity up to 73.2% and up to 62.7%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号