首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Trichoderma viride was proved as an effective biocontrol agent against two fungal pathogens, Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes, infecting soybean. During an in vitro biocontrol test, Trichoderma showed mycoparasitism and destructive control against the tested fungal pathogens. Both the pathogens significantly influence the germination and P. arrhenomanes had a severe effect (only 5% germination). The root system of the soybean plant was poorly developed due to the infection and it exerted a negative influence on the nodulation and further growth phases of the plant. During pot assay along with biocontrol activity, Trichoderma showed growth promoting action on the soybean plant. Trichoderma enhanced growth of shoot and root systems and fruit yield after 12 weeks of growth. Pythium and Fusarium infected plants treated with Trichoderma had ∼194% and 141% more height than pathogens alone. The fruit yield treated with Trichoderma was ∼66 per plant whereas the yield was only 41 for a control plant. The plants infected with Pythium and Fusarium and treated with Trichoderma had fruit yields of 43 and 53 respectively and those were 5 and 1.6 times higher than plants infected with pathogens.  相似文献   

2.
The aim of this study was to evaluate water and organic solvent of plant extracts for protection of lupine plants against damping-off and wilt diseases caused by Fusarium oxysporum f. sp. lupini, F. oxysporum f. sp. lupini Snyder & Hansen was isolated from diseased lupine roots collected from different locations of Minia, Assiut and New Valley governorates. Water leaf extracts of Calotropis procera, Nerium oleander, Eugenia jambolana, Citrullus colocynthis, Ambrosia maritime, Acacia nilotica and Ocimum basilicum and fruit extracts of C. colocynthis, C. procera and E. jambolana reduced damping-off and wilt diseases caused by F. oxysporum f. sp. lupini. Water extracts of E. jambolana leaves, C. colocynthis fruits and N. oleander leaves were the most effective ones for controlling such diseases. In contrast, A. nilotica and O. basilicum extracts were the least effective ones. Organic solvent extracts of tested plants reduced damping-off and wilt diseases than water extracts. Butanolic and ethereal extracts were highly effective in reduction of diseases than the other tested extracts. Under field conditions, during winter growing seasons 2008/09 and 2009/10, ethereal and butanolic extracts of N. oleander and E. jambolana leaves and C. colocynthis fruits significantly reduced the percentage of wilt severity as well as improved growth parameters (plant height, number of branches, pods and seeds per plant) and increased seed index, total seed yield/hectare compared with control treatment, while protein content in seeds was not effected. In conclusion, our study demonstrated that some plant extracts can be used for biocontrol of lupine damping-off and wilt diseases.  相似文献   

3.
Fusarium basal rot caused by Fusarium oxysporum f.sp. cepae is an economic disease of shallot. Field experiments were conducted at Debre Zeit during 2006 and 2007 cropping seasons to determine effective fungicides and their method of application for the management of fusarium basal rot of shallot. The field was naturally infested with F. oxysporum f. sp. cepae and treatments were arranged in randomized complete block design in four replications. Five fungicides, Mirage 50 WP, Folicur 25 EC, Seed plus 30 WS, Penncozeb 80 WP and Ridomil Gold 68 WG were evaluated as seed bulb dressing and bulb dip treatments against basal rot in the field and storage. Bulb dressing with Mirage, and dip treatment in Seed plus reduced the disease incidence by 40% and 43%, respectively over control. These fungicides also resulted in a significant reduction in severity, basal rot affected cull bulbs on shallot. Bulb rot during three months of storage on concrete ground floor and on wire mesh shelves was also reduced by seed bulb treatment over control. The highest increase in yield was obtained from bulb dressing with Mirage (42%) and Seed plus (45%) and from bulb dip treatment in Seed plus (44%) over control. Fusarium basal rot caused 45% loss in yield and 12-30% of bulb loss in the storage. The study showed that basal rot of shallot can be managed effectively by seed bulb dressing or dip treatment in Mirage or Seed plus.  相似文献   

4.
Five bacterial strains (TR1 to TR5) isolated from root nodules of fenugreek (Trigonella foenum-graecum) were tested for their plant growth promotory traits and biocontrol potential against Fusarium oxysporum. On the basis of morphological, physiological, biochemical and molecular characteristics, strains TR1 and TR3 - TR5 were identified as Ensifer meliloti, and TR2 as Rhizobium leguminosarum. All bacterial isolates utilized phosphate in vitro. Except TR5, all isolates produced IAA and none of them showed volatile cyanogens production. Except TR3, all isolates produced in vitro siderophore. Isolate TR1 and TR4 showed chitinase production while only TR2 showed β-1,3-glucanase activity. Isolates TR1, TR2 and TR5 exhibited ACC deaminase activity. Isolates TR1, TR2 and TR4 inhibited the growth of F. oxysporum, causing loss of structural integrity of the mycelium, hyphal perforation, lysis, fragmentation and degradation. The potential for nodulation and nitrogen fixation of the strains were confirmed by amplification of 500 bp nodC and 781 bp nifH fragments. The application of the TR1 + TR2 combination resulted in increased grain yield by 35% and 36% of fenugreek in two consecutive field trials, respectively as compared to control. Maximum increments in vigour index, nodule number and root and shoot biomass were recorded with seed inoculated with consortium (TR1 + TR2) followed by single inoculation as compared to control. The antibiotic resistant marker strain of E. meliloti TR1strep+ and R. leguminosarum TR2tet+ confirmed the efficient colonization of fenugreek roots. This study showed that these rhizobial isolates have properties of biocontrol agents and may be applied to promote the growth of fenugreek.  相似文献   

5.
F. Kobayashi 《Crop Protection》2011,30(11):1514-1518
To establish a method for disinfecting hydroponic culture solutions using ozone microbubbles (OMB), we examined the disinfectant activity of OMB against Fusarium oxysporum f. sp. melonis and Pectobacterium carotovorum subsp. carotovorum in infected plant roots. OMB had a higher solubility and remained in the water for a longer period than ozone millibubbles, resulting in extremely high disinfecting activity against both phytopathogens. Furthermore, disinfectant activity and durability of OMB-treated water against both phytopathogens increased with an increase in the initial concentration of dissolved ozone. Therefore, these results suggest that OMB may be suitable for use as a new disinfectant against phytopathogens in hydroponic culture solutions.  相似文献   

6.
The legume pod borer Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) has developed high levels of resistance to conventional insecticides, and therefore, efforts are being made to develop transgenic chickpea expressing toxin genes from the bacterium Bacillus thuringiensis (Bt) for controlling this pest. However, there is an apprehension that acid exudates in chickpea might interfere with the biological activity of Bt. Therefore, we studied the biological activity of Bt (BiolepR) on four chickpea genotypes with different levels of resistance to H. armigera under field conditions, and by incorporating lyophilized leaf and pod tissue into the artificial diet with and without Bt. The pH of the acid exudates varied from 2.1 to 2.9, and malic and oxalic acids were the major components of the acid exudates in different chickpea genotypes. There was no survival of H. armigera larvae in chickpea plants sprayed with 0.1, 0.2 and 0.5% Bt. There was a significant reduction in larval survival, larval and pupal weights and fecundity, and prolongation of larval and pupal periods in chickpea plots sprayed with Bt (0.05%) as compared to the unsprayed plots. Biological activity of Bt was lower on artificial diets with leaf or pod powder of chickpea genotypes, which might be because of a low intake of Bt toxins due to the antifeedant effects of acid exudates in the chickpea or reduction in biological activity of Bt due to the interaction of biochemical constituents in chickpea with the Bt toxins. Larval survival, larval and pupal weights, pupation and adult emergence were significantly lower on diets with leaf or pod powder of the H. armigera-resistant genotypes than on the susceptible check. Chickpea genotypes with resistance to H. armigera acted in concert with Bt to cause adverse effects on the survival and development of this insect. The results suggested that development of transgenic chickpeas expressing toxin genes form Bt will be quite effective for controlling of the pod borer, H. armigera.  相似文献   

7.
In a search for alternatives to methyl bromide for controlling carnation vascular wilt caused by Fusarium oxysporum f. sp. dianthi (Fod), poultry manure plus soil solarization was studied in soil under greenhouse conditions in four 2-year experiments. These were conducted in naturally infested soil to compare the effects of this treatment with soil solarization alone and methyl bromide. Soil treatments were performed during June 2000 for Experiment 1, from July to mid-August 2002 for Experiment 2, from late July to late August 2006 for Experiment 3 and from late May to late June 2008 for Experiment 4. Additionally, a treatment with commercial poultry manure pellet plus soil solarization was included in the two latter experiments. Poultry manure caused reductions of Fod viability in soil samples at depths of 15 and 30 cm, ranging respectively from 93 to 100% and 89 to 100% for Experiments 1, 2 and 3. Carnations planted in plots treated either with poultry manure, methyl bromide or soil solarization had lower final disease incidences, smaller areas under their disease progress curves and higher yields in comparison with untreated plots in Experiments 2, 3 and 4. In Experiment 1, soil solarization was performed under suboptimal conditions, and it provided disease levels and yields similar to those of the untreated control plots. Nevertheless, under the same conditions, previous amendment of Fod-infested soil with poultry manure increased disease control over soil solarization alone, improved carnation yield and quality and also increased plant vigor, thus providing a satisfactory alternative to methyl bromide. The application of organic amendment to the same plot before every crop cycle is recommended to ensure continuous disease control, but the rates of application could be reduced to half for the third and fourth crop cycles, thereby reducing undesirable environmental effects.  相似文献   

8.
Talaromyces flavus a fungal antagonist, was isolated from soil samples collected from potato fields in Varamin and Karaj districts, Tehran province, Iran. Antagonistic effects of T. flavus isolates against Verticillium albo-atrum, the causal agent of potato wilt disease were investigated in the laboratory and greenhouse conditions. T. flavus colonies were recovered after three weeks from soil samples cultured on selective medium. Antagonistic effects of volatile and non-volatile extracts of T. flavus isolates on V. albo-atrum growth were investigated in the laboratory and five that caused higher growth inhibition of V. albo-atrum, were selected for greenhouse experiments. Infection index was compared in the greenhouse in a split plot trial with five isolates applied to soil, seed, or both arranged in a randomized complete block design with four replications. The minimum infection index was observed when seed were treated with T. flavus with the most effective isolate being Tf-Po-V-52. On seed, the minimum infection index was observed with Tf-Po-V-50. The most effective T. flavus isolate was also evaluated in a field experiment. Results indicated that infection index in seed treatment contained this isolate was 0.15 whereas that of control was 3.5. The overall results of this study showed that it may be possible to manage potato Verticillium wilt disease effectively by using T. flavus, a biocontrol fungus.  相似文献   

9.
The fungus Fusarium guttiforme (Syn. F. subglutinans f. sp. ananas) is responsible for fusariosis, one of the main phytosanitary threats to pineapple (Ananas comosus var. comosus). A structural study comparing epidermal differences in pineapple cultivars resistant and susceptible to fusariosis was performed, relating properties of the epidermis to known susceptibility to the disease. The basal, non-chlorophylled, portions of mature leaves of pineapple plants were analyzed by light and electron microscopy. All cultivars showed common morpho-anatomic aspects characteristic of Bromeliaceae, such as scutiform scales and unstratified epidermis. However, cultivar Vitoria (resistant) had less scales than cultivars Smooth Cayenne (susceptible, intermediate severity) and Perola (susceptible, with extreme severity of fusariosis symptoms). Inoculation of conidia suspension (105 conidia ml−1) of the fungus F. guttiforme to leaves and harvesting 24 h later yielded numbers of viable colonies related to the density of leaf scales. This suggests that scales can act as havens for fungal conidia and favour the epiphytic stage of the fungus on pineapple plants, and are involved in the interaction of plant and pathogen. A reduction in scale numbers was related to lower infection levels and is relevant to the future breeding programme for development of new pineapple cultivars resistant to fusariosis and their involvement in integrated control strategies.  相似文献   

10.
Elicitors of systemic acquired resistance are well known to reduce severity of several plant pathogenic diseases caused by fungi, bacteria and viruses. Their field applications for management of plant diseases are, however, limited because of yield penalties. Our studies on affect of Benzo (1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), an elicitor of systemic acquired resistance, on chickpea blight caused by a fungal pathogen Didymella rabiei showed that multiple foliar applications of the chemical were effective in management of the disease under economic threshold levels. Multiple applications, however, affected chickpea grain yield adversely. The BTH induced yield penalties could be prevented by foliar spray schedule comprised of BTH and a contact fungicide mancozeb. One spray of BTH (50 ppm) followed by another of mancozeb (0.2%) was less effective (8.3% severity) than three sprays of BTH (4.2% severity) in blight control, however, this treatment enhanced grain yield significantly (1.241 t ha−1) over three sprays of BTH (0.922 t ha−1).  相似文献   

11.
Risks associated with mycotoxin contamination of cereals, that are included in the ten major staple foods and greatly contribute to the dietary energy intake, are of worldwide relevance. In small grain cereals, mycotoxins are produced by fungi such as Aspergillus, Penicillium, Alternaria and Fusarium that colonize the plant in the field and can grow during the post-harvest period, producing several classes of mycotoxins. The identification of mycotoxigenic fungal species and strains is essential for developing effective strategies for control. For this purpose, genetic traceability has proved to be a valuable tool that can be applied along the whole production chain, starting in the field for early diagnosis of FHB (Fusarium Head Blight) disease to the final processing steps, such as malting or pasta making. In this paper, DNA-based analytical tools that are currently available for the identification and quantification of mycotoxigenic fungal species and strains are reviewed, with particular emphasis on Fusarium, and their possible applications in mycotoxin control in small grain cereal chains are discussed.  相似文献   

12.
Sudden death syndrome, caused by Fusarium virguliforme, and the soybean cyst nematode, Heterodera glycines, combined cause the highest yield losses in soybean. The objective of this study was to determine the effectiveness of corn rotated annually with soybean on reducing severity of sudden death syndrome (SDS) and if such crop rotation is beneficial to soybean root health and thus improves disease management strategies. Experiments were conducted from 2003 to 2006 through two cycles of a corn–soybean rotation on two commercial fields in Indiana. With one exception, the rotation of soybean with corn did not provide yield benefits compared to monoculture of soybean. Severity of foliar and root symptoms of SDS in rotation plots were never less than in soybean monoculture plots. At one location, soybean monoculture resulted in suppression of SDS compared to the corn–soybean rotation, while H. glycines reproduced freely. At the other location, monoculture of soybean resulted in suppressiveness against H. glycines, while SDS was limited in all treatments. The data suggest that soil suppressiveness can independently impact the pathogens that are important in SDS development. Because H. glycines can increase SDS symptoms, its suppression may also reduce severity of SDS. Current production systems consisting of yearly rotation of soybean with corn are highly vulnerable to the development of severe soil-borne disease complexes. The simple year-to-year rotation of corn and soybean is not considered sustainable. While monoculture of soybean resulted in some disease suppression in these trials, reliance on monoculture may be detrimental due to other environmental considerations beyond the scope of these trials. Including other crops may be beneficial in improving the sustainability of soybean and corn production systems.  相似文献   

13.
Augmentative release of biocontrol agents has been largely successful for the management of insect pests but it has not been a common approach for weed management. Augmentation methods need to be developed for weed management, especially for pernicious weeds like Parthenium hysterophorus L., commonly known as pathenium or carrot weed. The leaf beetle Zygogramma bicolorata is a potential biocontrol agent of P. hysterophorus. Initial release of biocontrol agents is subject to uncertainties as to whether timely population built-up will take place in sufficient numbers. Several augmentative releases may be required to ensure early establishment of the biocontrol agents, for successful biological control of noxious weeds including pathenium. We made augmentative releases of larvae or adults of Z. bicolorata each to three sites, severely infested with pathenium at Jabalpur, India consecutively for a period of three years. Initially 10 larvae or adults per sq m were released in each plot, followed by a second, third and fourth release of 3, 1.5 and 1.5 larvae or adults per sq m at an intervals of 3, 7 and 14 days after the first augmentation. The pathenium at augmented sites were completely defoliated in 45 and 60 days by larvae and adults respectively. There was also a reduction in the pathenium density and plant height in the augmented sites as compared to the non-augmented sites. Over a period of 3 years augmentation resulted in a noteworthy negative effect on the weed.  相似文献   

14.
Sixty-three chitinase producing rhizobacteria (CRB) were isolated from 57 rhizospheric soil samples of tomato (Lycopersicon esculentum Mill.) growing in different regions of Karnataka, India. Among these, 13 CRB isolates were selected based on their ability to produce chitinase, colonize roots of tomato seedlings and reduce Fusarium wilt incidence. Four of these isolates produced statistically higher levels of chitinase and also zone of clearance/colony size (CZ/CS) ratios. One Bacillus subtilis isolate (CRB20) substantially reduced the severity of Fusarium wilt under greenhouse conditions. Combined application of chitin or crude fungal cell wall (CFCW) along with this isolate, substantially enhanced the ability of the isolate to colonize tomato roots and reduced the severity of Fusarium wilt. Under greenhouse conditions, amendments of chitin and CFCW along with isolate CRB20 significantly enhanced plant height, fresh weight, number of fruits per plant and average weight of fruit compared to the untreated control. The study clearly established the significance of CRB isolates and chitin/CFCW amendment in promoting plant growth and suppression of Fusarium oxysporum, and indicated the possibility of their use for Fusarium wilt management in tomato cultivation.  相似文献   

15.
Summary In artificial inoculations it was found thatFusarium oxysporum f.sp.tuberosi is able to penetrate through potato leaves. The fungus was isolated from the stem of infected plants from all inoculated cultivars. Tubers were completely destroyed if they were inoculated before sprouting. Not any destruction was observed if inoculation was made before young sprouts are longer than 1–3 cm; plants from these sprouts were infected. Lesioned tubers were more sensitive than unlesioned ones, and tuber rot and sprout damage were increased significantly.  相似文献   

16.
This work aimed to study the induction of defence proteins in cowpea seedlings during the first days after infection with the fungi Fusarium oxysporum f. sp. cubenses and F. oxysporum f. sp. phaseoli. Cowpea seeds, after disinfection, were transferred to Petri dishes containing 0.5% agar and, after germination, were infected with a drop of a suspension containing 0.5 × 104 spores ml−1. Seedlings were collected at 24, 48, 72 and 96 h after infection and were dissected into leaves, hypocotyls, roots, cotyledons and teguments, which were measured and weighed for morphometric analysis. The agar medium was also analyzed. Enzymatic assays of proteic extracts yielded antimicrobial peptides detected by Western blotting. The cowpea seedlings showed a complex pattern of induction and repression of defence proteins in response to infection by both pathogens. Furthermore, morphometric analysis showed differences between infected and control seedlings. Infected samples did not at any time exhibit chitinase activity, but did exhibit different β-1,3-glucanase and peroxidase activities. Western blotting for lipid transfer protein (LTP) demonstrated its presence in all parts of the infected seedlings. Exuded proteins, also obtained from cowpea seeds in the germination medium, were separated by SDS-PAGE and tricine gel electrophoresis. The analysis showed that some proteins were exuded from moistened cowpea seeds, particularly after F. oxysporum infection.  相似文献   

17.
从8种培养液中筛选出能诱导香蕉枯萎病菌4号小种(Fusarium oxysporum f.sp.cubense race4)FOCAAA315菌株高产毒素的改良CzapekB培养液,FOCAAA315菌株在该培养液中培养第15d,镰刀菌酸(FA)产量高达669.2mg/L,蔗糖为诱导产毒的最佳碳源。采用伤根浸渍法接种,测定枯萎病菌和病菌发酵粗毒素对香蕉组培苗的致病性。结果表明,粗毒素接种可诱发与病原菌类似的病害症状。受侵染的植物组织在细胞水平上发生一系列形态结构和生理生化代谢的病理变化,包括细胞壁消解、侵填体堵塞气腔、粘胶质减少、淀粉量减少、细胞木质化和黄褐色胶状物堵塞导管等。香蕉枯萎病菌的粗毒素是重要的致病化学物质;利用病菌孢子悬浮液在香蕉苗期接种,可以作为室内快速鉴定香蕉品种抗病性的方法。  相似文献   

18.
In a 2-year assessment carried out on tomato crops of Central and Southern Italy, a high incidence of Rhizoctonia solani and Sclerotium rolfsii was found. These fungal pathogens attack horticultural crops and are responsible for severe crown and stem rot. Because of technical, economical and environmental issues their chemical control is an arduous task. To find alternative and eco-compatible control methods, the effectiveness of two new antagonistic bacterial isolates (Burkholderia cepacia, T1A-2B, and Pseudomonas sp., T4B-2A), previously selected from suppressive organic amendments, were tested on tomato plants grown under both growth chamber and field conditions. The potential antagonists were compared with two commercial biofungicides, based on Bacillus subtilis (BSF4) and Trichoderma asperellum (TV1), and four synthetic fungicides (tolclofos-methyl, azoxystrobin, fosetyl-Al and fosetyl-Al + propamocarb). In 2-year field experiments carried out on tomato plants, the biocontrol bacteria as well as the other treatments were applied to the soil, proximal to the plant crowns and main roots, by means of an effective and specific system of drip irrigation. In all the experiments the novel selected biocontrol bacteria significantly reduced both incidence and severity of the diseases caused by S. rolfsii or R. solani, with results demonstrating effectiveness equal to TV1, better than BSF4 and comparable with the synthetic fungicides, except for tolclofos-methyl which was the most effective treatment. In field experiments, carried out for two consecutive years, isolate T1A-2B reduced up to 58.33% and up to 63.8% the severity of the diseases caused by S. rolfsii and R. solani respectively; whereas isolate T4B-2A gave reduction of S. rolfsii and R. solani diseases severity up to 73.2% and up to 62.7%, respectively.  相似文献   

19.
Root nodulating Sinorhizobium fredii KCC5 and Pseudomonas fluorescens LPK2 were isolated from nodules of Cajanus cajan and disease suppressive soil of tomato rhizosphere, respectively. Both strains produced IAA, siderophore, solubilized insoluble phosphate, showed chitinase and β-1,3-glucanase activities, and strongly inhibited the growth of Fusarium udum. It also caused degradation and digestion of cell wall components, resulting in hyphal perforations, empty cell (halo) formation, shrinking and lysis of fungal mycelia along with significant degeneration of conidia. LPK2 produced volatile cyanogen (HCN). Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers showed a significant increase in seed germination (94%) while seed germination with co-inoculated strains (KCC5 + LPK2), KCC5 and LPK2 alone was 90, 84 and 82% respectively as compared to control 77%. After 120 days of sowing, per plant number of pods, nodules, shoot length, root length, shoot weight and root weight were greater for the combination with half dose of chemical fertilizers compared to the control. Combinations of S. fredii KCC5 and P. fluorescens LPK2 with half dose of chemical fertilizers resulted in an 82% increase in grain yield per hectare compared to the control. Both strains KCC5 and LPK2 led to proto-cooperation as evidenced by synergism, aggressive colonization of the roots, and enhanced growth, suggesting potential biocontrol efficacy against Fusarium wilt in C. cajan.  相似文献   

20.
Ritu Mawar  Satish Lodha   《Crop Protection》2009,28(10):812-817
In a two year field study, the effect of varying intensities of sub-lethal heating on the efficiency of Brassica amendments in controlling viable populations of Macrophomina phaseolina and Fusarium oxysporum f sp. cumini was determined in an arid region of India. After 30 d of dry summer exposure of pathogen infested soil, incorporation of mustard residues and oil cake (0.18% and 0.04% w/w) and then applying one irrigation caused significant reduction by 75.3–81.3% in viable counts of M. phaseolina that causes dry root rot of legumes and by 93.9% in counts of F.o. f. sp. cumini causing wilt of cumin (Cuminum cyminum L.) at 0–15 and 16–30 cm depths. Increasing duration of summer exposure to 60 d improved the reductions in viable propagules of M. phaseolina by 83.6–90.4% and in F.o. f. sp. cumini by 78.2–94.8% at same soil depths. At certain heat levels, reduction in viable population of Fusarium due to amendments and irrigation was greater than that recorded in Macrophomina. Significantly low levels of reduction in pathogenic propagules of Macrophomina (63.9–71.4%) and Fusarium (48.0–57.2%) under shade compared to unshaded conditions indicated that mild heating did not cause discernible weakening effect. In second season also, 89.2–91.5% and 78.5–95.8% reduction in counts of Macrophomina and Fusarium, respectively was achieved by the application of amendments after 60 d of summer exposure at 0–30 cm soil depth. These results suggested a new approach to improve the control of soil-borne plant pathogens in hot arid regions by combining prolonged sub-lethal heating, effective naturally available on-farm wastes as soil amendments and one summer irrigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号