首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Mexican rice borer, Eoreuma loftini (Dyar), attacks crops including corn, Zea mays L., rice, Oryza sativa L., sorghum, Sorghum bicolor (L.) Moench, and sugarcane, Saccharum spp. Strongly resistant varieties of any kind, native or otherwise, have not been identified. A field plot corn variety test using two transgenic Bt varieties, Pioneer 31G71, expressing the Cry1F insecticidal protein, and Golden Acres 28V81, expressing the Cry1A.105, Cry2Ab2, and Cry3Bb1 insecticidal proteins, and two non-Bt controls, Dekalb DKC 69-72 and BH Genetics 9050, all four commonly grown in the Lower Rio Grande Valley of Texas, showed that, although oviposition preference was not affected, 28V81 resisted larval stalk boring to the extent that Mexican rice borer injury was almost non-existent. Pioneer 31G71 was infested nearly as much as the controls, but larval development to adulthood was reduced by ≈70%. Rearing larvae on 5, 50, 500, and 5000 μg of corn leaf tissue per ml of artificial diet showed that, while the three lowest concentrations did not affect larval growth and development, the high concentration of 28V81 reduced survivorship to the pupal stage, decreased weight of 4-wk-old larvae, and prolonged development to pupation. Lower numbers of pheromone trap-captured adults at the edges of commercial Bt and non-Bt corn fields showed that populations were lower at the Bt cornfields, suggesting a lesser rate of adult production. Because corn is a preferred host plant over sugarcane, sorghum or rice, use of resistant transgenic Bt corn varieties will likely protect the crop from the substantial injury that can be caused by the pest. This study also suggests that Bt genes might result in similarly strong resistance when inserted in other vulnerable crops such as sugarcane.  相似文献   

2.
The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is a serious pest of sugarcane (Saccharum spp.), sorghum (Sorghum bicolor (L.) Moench), corn (Zea mays L.), rice (Oryza sativa L.), and related graminaceous bioenergy crops. A two-year field study was conducted in Jefferson County, TX to examine the impact of nitrogen (N) fertilization on E. loftini infestations and subsequent yields in cultivars of high-biomass and sweet sorghum. In 2013, percentage of bored internodes and number of adult emergence holes per stalk increased with higher N rates; however, only the percentage of bored internodes was impacted by N in 2014. Yields from both years indicated that N rate was positively associated with increases in stalk weight and ethanol productivity, but not sucrose concentration. Because higher N rates were associated with increased yields despite having greater levels of E. loftini injury, our data suggest that increases in yield from additional N outweigh decreases from additional E. loftini injury. Fertilization rates maintained between the recommended 45 and 90 kg N/ha minimize risks of negative area-wide impacts from increased production of E. loftini adults, while still allowing for optimum yields.  相似文献   

3.
Renewable energy sources are necessary to reduce the U.S. dependence on foreign oil. Sorghum (Sorghum bicolor L.) may be a reasonable alternative as an energy crop in the southern U.S. because it could easily fit into existing production systems, it is drought resistant, and it has large biomass production potential. An experiment was conducted to evaluate several types of sorghum as bioenergy crops in Alabama: grain sorghum - NK300 (GS), forage sorghum - SS 506 (FS), and photoperiod sensitive forage sorghum - 1990 (PS). These sorghum crops were compared to forage corn (Zea mays L.) - Pioneer 31G65 in 2008 and 2009 with and without irrigation, and under conventional (total disked area, 0.15 m deep) and conservation tillage (in-row subsoiling, 0.30 m deep) in a strip-split-plot design. The parameters evaluated were: plant population (PP), plant height (PH), sorghum/corn aboveground dry matter (ADM), biomass moisture content (ABMC), and biomass quality (holocellulose, lignin, and ash). Sorghum had greater ADM than corn; however, corn had lower ABMC than sorghum. Lodging was observed in PS and FS, probably due to high plant populations (>370,000 plants ha−1). Irrigation affected ADM positively in both years, but conservation systems improved ADM production only in 2009. Holocellulose, lignin, and ash variation differed significantly among crops but were lower than 8.3%, 2.0% and 1.9%, respectively, for both years and considered minor. Under conditions of this study, PS was considered the best variety for ADM production as it yielded 26.0 and 30.1 Mg ha−1 at 18 and 24 weeks after planting (WAP).  相似文献   

4.
Sorghum (Sorghum bicolor (L.) Moench) is a starch-rich grain similar to maize (Zea mays L.), but sorghum has been underutilized for biobased products and bioenergy. This study was designed to investigate the effects of supercritical-fluid-extrusion (SCFX) of sorghum on ethanol production. Morphology, chemical composition, and thermal properties of extruded sorghum were characterized. Analysis of extruded sorghum showed increased measurable starch content, free sugar content, and high levels of gelatinized starch. SCFX cooked and non-extruded sorghum were further liquefied, saccharified, and fermented to ethanol by using Saccharomyces cervisiae. The ethanol yield increased as sorghum concentration increased from 20 to 40% for both extruded and non-extruded sorghum. Ethanol yields from SCFX cooked sorghum were significantly greater than that from non-extruded sorghum (>5%).  相似文献   

5.
Harvesting products from plants for conversion into renewable resources is increasing in importance. Determination of nutrition requirements for the applicable crops is necessary, especially in regions where the biofuel feedstock crops have not been historically grown. Sunflower (Helianthus annuus L.), two hybrids and one variety; sweet and grain (milo) sorghums (both Sorghum bicolor L.), one variety each, and sweet corn (Zea mays var. rugosa Bonaf.), four cultivars, were provided the recommended and twice the recommended rate of fertilizer. Biomass, expressed liquid volumes and sugar contents of sweet sorghum and sweet corn were determined. Grain yields of milo and sunflower and oil content of sunflower were determined. Sweet corn stalk sugar levels were below what is expected from field corn (maize), and were not affected by fertilizer rate. Sweet sorghum biomass and sugar content were within expected ranges and not affected by fertilizer rate. Milo grain yields were higher with increased fertilizer. Seed yield in Sunflower, which was below expected levels, was inconsistently affected by fertilizer rate, years or varieties. Overall crops year and cultivar/variety had more effect on results than did fertilizer. There does not appear to be a reason to provide fertilizer above recommended rates in production of these crops.  相似文献   

6.
Sorghum [Sorghum bicolor (L.) Moench] is a C4 cereal grain crop grown primarily in arid and semi-arid regions in the world with limited or no irrigation. Sorghum production fluctuates and largely depends on the amount and distribution of rainfall. Transpiration efficiency (TE), the biomass produced per unit water transpired, could be a potential trait to improve sorghum yield in areas where irrigation is limited. We have developed a mini-lysimetric method that directly measures whole plant TE in sorghum during an early vegetative stage under greenhouse conditions. The method was evaluated with 11 inbred lines and three hybrids under two greenhouse environments. In general, TE determined with the gravimetric method was higher under lower vapor pressure deficit conditions; however, similar rankings in TE were obtained across the experiments. The method described in this report offers a simple, high-throughput, and affordable way to determine the integrated TE in sorghum at an early vegetative stage.  相似文献   

7.
Both fall- and spring-planted grasses were evaluated for weed-suppressing ability after desiccation by freezing, glyphosate or paraquat. Populations of Portulaca oleracea L. and Digitaria ischaemum (Schreb.) Muhl. were reduced by 70% and 98%, respectively, by residues of sorghum (Sorghum bicolor L.). Total weed biomass and weight of several indicator species were also consistently reduced with residues of barley (Hordeum vulgare L.), oats (Avena sativa L.), wheat (Triticum aestivum L.) and rye (Secale cereale L.), as well as the sorghums. In general, the larger-seeded vegetables, particularly legumes, grew normally or were sometimes stimulated by the cover-crop residues, whereas several species of smaller-seeded vegetables were severely injured. The use of Populus wood shavings as a control mulch allowed separation of physical and chemical aspects of the residues. Glasshouse experiments with two soils confirmed both weed-suppressing and crop-stimulating effects of sorghum residues. Water extracts of sorghum herbage were toxic to indicator species in sterile bioassays: this suggests that phytotoxins are directly released by the plant residues.  相似文献   

8.
《Field Crops Research》1987,16(4):337-348
Increasing awareness of drought tolerance in pearl millet [Pennisetum americanum (L.) Leeke.] has stimulated research into pearl millet as a potential U.S. crop. Objectives of this study were to compare yield and yield components of pearl millet and grain sorghum [Sorghum bicolor (L.) Moench] and evaluate pearl millet response to a range of grain sorghum environments.Yield and yield component comparisons were made using 24 millet hybrids and six grain sorghum hybrids at seven Kansas locations, from 1980 to 1982. To compare pearl millet production in grain sorghum environments, millet hybrid mean yields were regressed on sorghum location means. A desirable millet hybrid would have a high yield and a regression coefficient not significantly different from 1.0.Average grain sorghum yields were greater than millet yields in all three years. Millet hybrid yields ranged from 350 to 5400 kg ha−1. Over all locations and years, millet yield averaged 63% of sorghum yield.In unfavorable environments, pearl millet yield and response to changing environments were not significantly different from those of grain sorghum. As environmental conditions improved, sorghum significantly yielded more than millet. Lower millet yields could be attributed to significantly smaller seed size and head sterility. The small seed also reduced plant establishment; however millet's tillering ability compensated for reduced population.  相似文献   

9.
《Field Crops Research》1988,18(4):279-286
Java citronella (Cymbopogon winterianus Jowitt), a perennial, aromatic grass which yields an essential oil used in perfumery and in manufacture of soaps, deodorants and mosquito-repellent creams, has a long initial lag phase. To utilize the crop growth resources more efficiently during this phase, studies were made to explore the possibility of intercropping some food crops with Java citronella. An experiment conducted during 1982–1984 showed that the legumes cowpea (Vigna unguiculata (L) Walp), blackgram (Vigna mungo (L) Hepper) or greengram (Vigna radiata (L) Wilez) could be intercropped in the initial stages of Java citronella, to give extra yields over and above that of Java citronella, which remained unaffected by the presence of the intercrops. Another experiment (1984–1985) showed that a two-crop rotation system could be intercropped in Java citronella without affecting the yields of the main crop. The crop rotation systems tested were cowpea, blackgram, or greengram, followed by fodder sorghum (Sorghum bicolor (L) Moench), fingermillet (Eleusine coracana (L) Gaertn.) or groundnut (Arachis hypogea L).  相似文献   

10.
Sweet sorghum (Sorghum bicolor (L.) Moench) is particularly suitable as a feedstock for a variety of bioprocesses, largely because of its high yields of both lignocellulosic biomass and fermentable saccharides. Sweet sorghum is less economically important for refined sugar production than other sugar crops, e.g., sugar beet and sugarcane, but can produce more raw fermentable sugar under marginal conditions than those crops. In this review, the agronomic requirements of sorghum (viz., water, soil, and nutrient requirements), cultural practices, and plant morphology are discussed from a bioprocessing perspective. Historically, sugar extraction from the plant in the form of juice has been of primary interest; these methods, along with modern developments are presented. Recently, the direct yeast fermentation of sorghum juice for ethanol production has been studied. Additionally, the bagasse resulting from the juice extraction has been used for a variety of potential products: forage, silage, combustion energy, synthesis gas, and paper. The bagasse contains high levels of relatively low crystallinity cellulose, along with relatively labile lignin, and so is itself of interest as a fermentation feedstock. Whole sorghum stalk, and its bagasse, have been subjected to studies of a wide array of pretreatment, enzymatic hydrolysis, and fermentation processes. The potential fermentation products of sweet sorghum are wide ranging; those demonstrated include ethanol, acetone, butanol, various lipids, lactic acid, hydrogen, and methane. Several potential native products of the plant, in addition to cellulose for paper production, are also identified: waxes, proteins, and allelopathic compounds, such as sorgoleone.  相似文献   

11.
《Field Crops Research》1999,61(3):193-199
The prominent effects of a soil surface crust on crop production, impedance to seedling emergence and reduced infiltration rate, were examined using a quantitative land evaluation model under the Sahelian environmental and soil conditions of north-central Burkina Faso. The model integrated data from climate, soil and crop for quantifying potential grain yield of sorghum (Sorghum bicolor), grown on a sandy loam soil for 14 production years (1977–1990). Crust development was induced using `simulated rainfall' with an intensity of 75 mm h−1 from a 2 m height. Results revealed that seeding sorghum in small holes without sufficiently breaking the surface crust depressed grain yield. Observed and potential yield correlated closely over a 7-year period (r = 0.79, p < = 0.05). Substantial yield gap was found between estimated potential yield (crust broken scenario set to 75% of the predicted yield) and observed, indicating however, the possibility of significantly improving yield by using appropriate tillage to break the crust before seeding.  相似文献   

12.
Two sugarcane, Saccharum hybrids, varieties were grown in the greenhouse under well watered or drought conditions to examine the influences of stress on Mexican rice borer, Eoreuma loftini (Dyar), oviposition preference and selected nutritional components without impinging factors common to field conditions that alter responses. Our research revealed that, under controlled conditions, drought induced a wider range and greater uniformity of free amino acid (FAA) accumulations than have been previously reported. Drought stress resulted in increased dry leaf tissue and elevated concentrations of 7 of 9 detectable free essential (for insect health) amino acids in stalks, the chief food of Mexican rice borer larvae. Stressed sugarcane was preferred for oviposition, likely related to greater numbers of dry leaves and heightened host plant nutritional quality. Dry leaf tissue, which is not consumed, may be a cue for improving chances of larvae encountering nutrient-enhanced living tissue, and for concealing eggs in folds. Excised dry leaf tissue from the treatments was indistinguishable for oviposition preference; therefore, biochemical status of living tissue may provide oviposition cues. Varieties exhibited no major genotypic differences in FAA accumulations or oviposition preference.  相似文献   

13.
《Field Crops Research》1987,16(2):177-191
Vigna trilobata (L.) Verdc. and Medicago scutellata L. are short herbaceous legumes that help to reduce soil erosion when grown in association with row crops in the sub-humid/semi-arid subtropics. Soil water use and root distribution beneath sorghum (Sorghum bicolor (L.) Moench) and sunflower (Helianthus annuus L.) with and without V. trilobata were measured on a vertisol in South East Queensland. Sorghum was sown in October and January at densities of 10 and 5 plants m−2 and sunflower at densities of 5 and 2.5 plants m−2. V. trilobata seed was broadcast at 150 seeds m−2. Pure stands of V. trilobata and M. scutellata were also sown.Soil profiles were uniformly wet to at least 2 m depth at each sowing date and remained so for the first 40 days of each growth cycle. Thereafter profiles dried rapidly over the next 40 days, providing opportunities for assessing soil water use. Subsequent rain restored and sustained profile water content until crop maturity.Undersown V. trilobata hastened soil drying, resulting in the extraction of 21 mm more water by maturity of the October sown crops. In pure stands, V. trilobata extracted water at the same rate as sunflower from the top 1.0 m of the soil profile, but not from the deeper layers. However, pure stands of M. scutellata extracted much less soil water than V. trilobata, with negligible extraction from below 0.8 m. Sunflower extracted 48 mm more water than sorghum in the January sowing because it had more roots and extracted more water from below 1.4 m.The capacity of V. trilobata to grow deep roots allows it to compete strongly for soil water and decrease yield of the main crop. Thus, a shallow-rooting plant would be preferred as a ground cover.  相似文献   

14.
《Field Crops Research》2005,91(2-3):329-336
Southwestern corn borer (Diatraea grandiosella Dyar) is a major pest of corn (Zea mays L.) in the southern United States. In addition to the direct yield losses caused by southwestern corn borer, larval feeding on developing ears provides a site for fungi to enter the ear. Aspergillus flavus Link: Fries infection and the subsequent accumulation of aflatoxin in corn grain are major limitations to profitable corn production in the southern United States. This investigation was conducted to determine the effectiveness of transgenic corn hybrids expressing the δ-endotoxin insecticidal (CryIAb) proteins isolated from Bacillus thuringiensis (Bt) in reducing southwestern corn borer damage and aflatoxin accumulation. Ear damage and aflatoxin accumulation were compared among 10 pairs of conventional nonBt and transgenic Bt corn hybrids following infestation with southwestern corn borer and inoculation with A. flavus using kernel-wounding and nonwounding techniques. Both nonBt and Bt hybrids exhibited high levels of aflatoxin accumulation when inoculated with a kernel-wounding technique. When inoculated with a non-wounding technique and infested with southwestern corn borer, aflatoxin accumulation was significantly higher in nonBt than Bt hybrids. Aflatoxin accumulation was also significantly higher for nonBt hybrids inoculated with A. flavus and infested with southwestern corn borer than for hybrids that were only inoculated with A. flavus. Southwestern corn borer larval establishment was significantly higher on nonBt hybrids than on Bt hybrids. Larval survival was extremely low on the Bt hybrids. The results of this investigation indicate that these Bt hybrids should be effective in reducing aflatoxin contamination in areas where high southwestern corn borer infestations occur. The reduced levels of aflatoxin accumulation associated with Bt hybrids are likely a consequence of reduced insect damage rather than resistance to A. flavus infection or aflatoxin accumulation per se.  相似文献   

15.
Improvement of the nutritive value of dual-purpose sorghum (Sorghum bicolor (L.) Moench) stover is an important objective for the semi-arid tropics where sorghum crop residue is extensively used for livestock feed. To identify the relative importance of genetic and environmental sources of variation for nutritive value, leaves and stems of six diverse dual-purpose sorghum cultivars were evaluated for in vitro gas production (Gas48hr), neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin, nitrogen, and ash contents under two fertility and two plant-density regimes during 2 years in India. Substantial genotypic differences were observed for stem Gas48hr (25.7 to 33.0 ml in 200 g−1 dry matter (DM)) and NDF (564–687) content. Gas48hr and NDF content of stems exhibited more promise as selection criteria than those of leaves, as stems showed larger portion of variation attributed to genotypes, relatively less genotype by environment (GE) interactions, and were closely related to whole-plant values. Year, nitrogen fertilization and plant density showed very little influence on Gas48hr, NDF or ADF of leaves and stems. Gas48hr exhibited substantial GE interactions with all environmental factors, indicating the need for multi-environment testing to achieve progress.  相似文献   

16.
《Field Crops Research》2004,88(1):57-67
Increasing atmospheric CO2 concentration has led to concerns about global changes to the environment. One area of global change that has not been fully addressed is the effect of elevated atmospheric CO2 on agriculture production inputs. Elevated CO2 concentration alterations of plant growth and C:N ratios may modify C and N cycling in soil and N fertility. This study was conducted to examine the effects of legume, soybean (Glycine max (L.) Merr.), and non-legume, grain sorghum (Sorghum bicolor (L.) Moench.) carbon dioxide-enriched agro-ecosystems on N soil fertility in a Blanton loamy sand (loamy siliceous, thermic, Grossarenic Paleudults). The study was a split-plot design replicated three times with crop species (soybean and grain sorghum) as the main plots and CO2 concentration (ambient and twice ambient) as subplots using open top field chambers. Fertilizer application was made with 15N-depleted NH4NO3 to act as a fertilizer tracer. Elevated CO2 increased total biomass production in all 3 years of both grain sorghum (average 30%) and soybean (average 40%). With soybean, while no impact on the plant C:N ratio was observed, the total N content was greatly increased (average 29%) due to increased atmospheric N2 fixation with elevated CO2 concentration. With grain sorghum, the total N uptake was not affected, but the C:N ratio was markedly increased (average 31%) by elevated CO2. No impact of elevated CO2 level was observed for fertilizer N in grain sorghum. The results from this study indicated that while elevated CO2 may enhance crop production and change N status in plant tissue, changes to soil N fertilizer application practices may not be needed.  相似文献   

17.
Transgenic corn hybrids that express toxins from Bacillus thuringiensis (Bt) are highly effective against the European corn borer, Ostrinia nubilalis (Hübner), and the closely related Asian corn borer, Ostrinia furnacalis (Guenée). Since the registration of Bt corn hybrids in the U.S. in 1996, there has been a great deal of information generated on O. nubilalis. However, relatively little information exists for O. furnacalis. To help determine whether the information generated for O. nubilalis can be leveraged for decisions regarding the use of transgenic Bt corn against O. furnacalis, experiments were designed to determine whether the pattern of sensitivity to various Bt Cry1 toxins is similar between the two species. Test insects included laboratory-reared O. furnacalis originating from Malaysia, a Bt-susceptible laboratory colony of O. nubilalis maintained at the University of Nebraska-Lincoln (UNL) and an out-group consisting of the sugarcane borer, Diatraea saccharalis (F.), from Louisiana which represents a different genus from the same family. O. furnacalis and O. nubilalis exhibited a similar pattern of susceptibility to all the Cry1 toxins and were highly susceptible to the range of Bt toxins tested including Cry1Aa, Cry1Ab, Cry1Ac and Cry1F. Both of the Ostrinia species were more tolerant to Cry1Ba compared with D. saccharalis, although sensitivity of O. furnacalis was intermediate and did not differ significantly from that of O. nubilalis and D. saccharalis. D. saccharalis was also susceptible to the range of toxins tested but unlike the two Ostrinia species, was more tolerant to Cry1F and more susceptible to Cry1Ba. These results indicate that both of the Ostrinia corn borer species are similar in sensitivity to the Cry1Aa, Cry1Ab, Cry1Ac, Cry1Ba and Cry1F toxins, thus suggesting shared toxin receptors and mechanisms of toxicity for the two species.  相似文献   

18.
The cotton bollworm Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a widespread pest of many cultivated and wild plants in Europe, Africa, Asia, and Australia. In 2013, this species was reported in Brazil, attacking various host crops in the midwestern and northeastern regions of the country and is now found countrywide. Aiming to understand the effects of different host plants on the life cycle of H. armigera, we selected seven species of host plants that mature in different seasons and are commonly grown in these regions: cotton (Gossypium hirsutum, “FM993”), corn (Zea mays, “2B587”), soybean (Glycine max, “99R01”), rattlepods (Crotalaria spectabilis), millet (Pennisetum glaucum, “ADR300”), sorghum (Sorghum bicolor, “AGROMEN70G35”), and cowpea (Vigna unguiculata, “SEMPRE VERDE”). The development time of immatures, body weight, survivorship, and fecundity of H. armigera were evaluated on each host plant under laboratory conditions. The bollworms did not survive on corn, millet, or sorghum and showed very low survival rates on rattlepods. Survival rates were highest on soybean, followed by cotton and cowpea. The values for relative fitness found on soybean, cotton, cowpea, and rattlepods were 1, 0.5, 0.43, and 0.03, respectively. Survivorship, faster development time, and fecundity on soybean, cotton, and cowpea were positively correlated. Larger pupae and greater fecundity were found on soybean and cotton. The results indicated that soybean, cotton, and cowpea are the most suitable plants to support the reproduction of H. armigera in the field.  相似文献   

19.
《Journal of Crop Improvement》2013,27(1-2):217-244
SUMMARY

Since CO2 is a primary input for crop growth, there is interest in how increasing atmospheric CO2 will affect crop productivity and alter cropping system management. Effects of elevated CO2 on grain and residue production will be influenced by crop selection. This field study evaluated soybean [C3; Glycine max(L.) Merr.] and grain sorghum [C4; Sorghum bicolor (L.) Moench.] cropping systems managed under conservation tillage practices and two atmospheric CO2 concentrations (ambient and twice ambient) for three growing seasons. Elevated CO2 increased soybean and sorghum yield by 53% and 17% increase, respectively; reductions in whole plant water use were also greater for soybean than sorghum. These findings suggest that increasing CO2 could improve future food security, especially in soybean production systems. Elevated CO2 increased aboveground residue production by > 35% for both crops; such shifts could complement conservation management by increasing soil surface cover, thereby reducing soil erosion. However, increased residue could negatively impact crop stand establishment and implement effectiveness during tillage operations. Elevated CO2 increased total belowground dry weight for both crops; increased root proliferation may alter soil structural characteristics (e.g., due to increased number and extent of root channels) which could lead to increases in porosity, infiltration rates, and subsequent soil water storage. Nitrate leaching was reduced during the growing season (due to increased N capture by high CO2-grown crops), and also during the fallow period (likely a result of altered decomposition patterns due to increased C:N ratios of the high CO2-grown material). Enhanced crop growth (both above-and be-lowground) under elevated CO2 suggests greater delivery of C to soil, more soil surface residue, and greater percent ground coverage which could reduce soil C losses, increase soil C storage, and help ameliorate the rise in atmospheric CO2. Results from this study suggests that the biodegradability of crop residues and soil C storage may not only be affected by the environment they were produced in but may also be species dependent. To more fully elucidate the relationships between crop productivity, nutrient cycling, and decomposition of plant materials produced in elevated CO2 environments, future studies must address species effects (including use of genetically modified crops) and must also consider other factors such as cover crops, crop rotations, soil series, tillage practices, weed management, and regional climatic differences.  相似文献   

20.
On-farm field experiments were conducted in 2004 and 2007 to assess the suitability of novaluron, a chitin synthesis inhibitor, for sugarcane borer, Diatraea saccharalis (F.), management in Louisiana sugarcane (Saccharum spp. hybrids). Aerial insecticide applications reproducing commercial production practices were made when D. saccharalis infestation levels exceeded a recommended action threshold. In addition to decreased D. saccharalis infestations, 6.3 – 14.5-fold reductions in end of season injury, expressed as the percentage of bored sugarcane internodes, were observed in plots treated with novaluron. D. saccharalis control in novaluron plots was equivalent to (P > 0.05) or better (P < 0.05) than that achieved with tebufenozide, an ecdysone agonist that has been extensively used for over a decade on sugarcane. With a numerical trend of a 3.1-fold decrease in percent bored internodes, the pyrethroid gamma-cyhalothrin seemed less effective than the biorational insecticides in protecting sugarcane against D. saccharalis. Using continuous pitfall trap sampling, no measurable (P > 0.05) decreases in predaceous and non-predaceous soil-dwelling non-target arthropods were associated with insecticides. However, numerical trends for decreases in immature crickets associated with novaluron and gamma-cyhalothrin were recorded in 2007. Our data suggest that novaluron will fit well in Louisiana sugarcane integrated pest management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号