首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of leaf rust (caused by Puccinia triticina f. sp. tritici Eriks.) and powdery mildew [caused by Blumeria graminis (DC.) E. O. Speer f. sp. tritici Em. Marchal], on performance of 50 soft red winter (SRW) wheat (Triticum aestivum L) cultivars were evaluated under natural field conditions. Widely grown cultivars released from 1919 to 2009 with varying disease resistance were grown in split-plot experiments in 2010 and 2011. Treated replications received seed treatments of triadimenol, captan and imidacloprid and foliar applications of propiconazole and prothioconazole + tebucanazole fungicides. Non-treated replications received only tebucanazole + metalaxyl + imazalil seed treatments. Final mean disease severity, agronomic, yield-related traits, yield components and spike characteristics were analyzed to determine individual and combined effects of leaf rust and powdery mildew on the cultivars. Yield losses as high as 54% were observed in the susceptible cultivar Red May. Average yield losses ranged from 1% to 21%. Yield losses primarily due to powdery mildew were as high as 14%, and losses primarily due to leaf rust were as high as 33%. Powdery mildew had the largest negative correlation with harvest index and seeds/spike. Leaf rust was most negatively correlated with plant biomass and harvest index, with a less consistent negative relationship with kernel weight.  相似文献   

2.
India is a leading producer of oilseed Brassicas, contributing approximately 23 percent of the country's total oilseed production. In India, the Indian mustard [Brassica juncea (L.) Czern. & Coss.] crop is ravaged by various diseases, including Alternaria blight, white rust, downy mildew, Sclerotinia rot and powdery mildew, which can contribute to fluctuations in crop yields. A field experiment examining an integrated disease management system for Indian mustard (B. juncea) was conducted under the All India Coordinated Research Project on Rapeseed-Mustard (Indian Council of Agricultural Research or ICAR) during three crop seasons (2006–09) at 11 locations to assess treatments suitable for the management of crop disease. The data from the different locations and years regarding disease severity and incidence were pooled and analyzed. Seed treatments with freshly prepared Allium sativum bulb aqueous extract (1 percent w/v) resulted in significantly higher initial plant stands, across locations and years. Seed treatment with A. sativum bulb extract, followed by its use as a foliar spray, resulted in significantly reduced Alternaria leaf and pod blight severity, reduced white rust severity, fewer stag heads per plot, reduced downy mildew and Sclerotinia rot incidence, and reduced powdery mildew severity, across locations and years. The combination also provided significantly higher seed yields compared with the control across locations and years and was at par with treatment by chemical fungicides. The combination used in the present study was as effective as the combination of seed treatment with Trichoderma harzianum and foliar spraying with Pseudomonas fluorescens and T. harzianum. Economic returns were higher when using biorational treatments (A. sativum bulb extract, T. harzianum, P. fluorescens) compared with chemical fungicides. The combination of seed treatments with T. harzianum followed by its use as a foliar spray (17.22), and the similar combination of seed treatments and foliar spraying with the A. sativum bulb extract (17.18), resulted in a higher benefit to cost ratio. This eco-friendly technology can help oilseed Brassica growers in India safeguard the crops from major diseases and increase the stability and productivity of the Indian mustard crop.  相似文献   

3.
We examined the effect of saccharin on the systemic acquired resistance (SAR) response of soybean to the fungus Phakopsora pachyrhizi, the causal agent of soybean rust. Plants were grown hydroponically in half-strength Hoagland’s solution and were challenged with the pathogen 1, 5, 10 and 15 d after treatment with 3 mM saccharin applied either as a foliar spray or a root drench at the 2nd trifoliate (V3) and early reproductive (R1) stages. Plants were destructively harvested and assessed for visible rust symptoms 2 wk after inoculation. Mode of saccharin application was a significant factor influencing the severity of rust infection. Saccharin applied as a root drench was more effective than the foliar spray treatment at inducing SAR, with increased resistance observed 1 d after application. Systemic protection against rust infection was still apparent 15 d after application of saccharin as a root drench. In contrast, foliar treatment with saccharin did not increase systemic protection until 15 d after treatment. When systemic protection was induced by the application of saccharin in either manner, there was no significant reduction of plant growth, except when plants were inoculated 15 d after the saccharin application as a root drench at the R1 stage of development.  相似文献   

4.
Basil downy mildew, caused by Peronospora belbahrii Thines sp. nov., is a devastating foliar disease of fresh-cut basil first discovered in the U.S. in South Florida in 2007. Since then the pathogen has been found in over 20 U.S. states and has become a major threat to sweet basil production. In this study, acibenzolar-S-methyl (ASM, Actigard 50WG), DL-3-aminobutyric acid (BABA), isonicotinic acid (INA), salicylic acid (SA) and sodium salicylate (SS) were evaluated for their potential to control basil downy mildew in the greenhouse. Efficacy of these systemic acquired resistance (SAR) inducers varied in control of basil downy mildew depending on the rate, method and timing of application. Foliar sprays of ASM applied pre-, post- or pre- + post-inoculation at rates ranging from 25 to 400 mg l−1 significantly (P = 0.05) reduced disease severity compared to the non-treated control in all experiments. ASM sprayed at 50 mg l−1 three times on a weekly basis starting 3 and 7 days post- inoculation resulted in a 93.8 and 47.1% reduction in disease severity, respectively. Six weekly foliar sprays of BABA as pre- + post-inoculation at rates equal or higher than 125 mg l−1 significantly suppressed downy mildew compared to the non-treated control. Foliar treatments of ASM or BABA followed by one or two post-inoculation sprays of a mixture of potassium phosphite (Prophyt) and azoxystrobin (Quadris) significantly improved efficacy for disease control. Sporangia counted on ASM treated leaves were significantly lower than leaves sampled from the non-treated control. ASM and BABA at concentrations lower than 1.0 mM did not inhibit sporangial germination in vitro. The effect of INA, SA and SS on disease reduction was generally inconsistent and not significant compared to the non-treated control.  相似文献   

5.
Antifungal substances from a methanol extract of Cirsium japonicum roots were purified and characterized, and their antifungal activities against various plant pathogens were evaluated. Three polyacetylene substances were isolated from roots of C. japonicum using repeated column chromatography; these were identified as ciryneol A, ciryneol C and 1-heptadecene-11,13-diyne-8,9,10-triol by mass and nuclear magnetic resonance spectral analyses. In vitro antifungal activity of the three substances varied according to compound and target species. Magnaporthe oryzae, Colletotrichum coccodes, Colletotrichum acutatum, Pythium ultimum and Botrytis cinerea were relatively sensitive to the three polyacetylenes, with IC50 values below 50 μg mL−1. In vivo, they all showed similar and broad antifungal spectra against the seven plant diseases tested. At 500 μg mL−1, all three compounds effectively suppressed the development of rice blast, rice sheath blight, tomato late blight, wheat leaf rust and red pepper anthracnose, with control values over 90%. They were highly active especially against wheat leaf rust; they controlled the development of this disease more than 88% even at a concentration of 125 μg mL−1. In addition, ciryneol C effectively suppressed barley powdery mildew. This is the first report on the antifungal activities of the three polyacetylenes from roots of C. japonicum against plant pathogenic fungi. Polyacetylenes from roots of C. japonicum may contribute to the development of environmentally safer alternatives to protect crops from various phytopathogenic fungi.  相似文献   

6.
Soybean rust, caused by Phakopsora pachyrhizi Sydow, is a severe foliar disease of soybean [Glycine max (L.) Merr.] that occurs throughout most soybean producing regions of the world. The objective of this research was to evaluate selected soybean genotypes for resistance to soybean rust in Vietnam. Five field experiments in Vietnam were completed from 2006 to 2009. The area-under-the-disease-progress-curve (AUDPC) was calculated for each soybean genotype based on four disease assessments taken during the reproductive growth stages. AUDPC units among soybean genotypes in each experiment differed (P < 0.05). Over the five experiments, the resistant check DT 2000 was most often the genotype with the lowest AUDPC units while the sources of rust resistance (Rpp1-5) did not always have low AUDPC units in each experiment, although PI 230970 (Rpp2) appeared to be more stable. A few genotypes with non-characterized genes for resistance, such as PI 398998, PI 437323, and PI 549017, had the lowest AUDPC units in at least one of the experiments. These genetic resources may be useful for host plant resistance studies and breeding soybeans for rust resistance in Vietnam and other locations like Brazil and the United States that have more recently been inundated with soybean rust. A significant (P < 0.001) experiment × genotype interaction was found when the AUDPC data of 14 soybean genotypes tested in Experiments 1, 2, and 3 were combined and analyzed. This result indicates the potential importance of changing fungal races and/or biotypes that occur in the rust population.  相似文献   

7.
The reactions to shot-hole disease (Stigmina carpophila) of nine plum cultivars and seed-propagated myrobalan trees were evaluated during three years in three commercial orchards located at Nova Siri, Matera, Italy. In July 2006, May 2007, June 2007 and June 2008, shot-hole severity and twig defoliation were assessed. Pathogen pressure was higher in 2007 and 2008 than in 2006. In the three years of study, cultivar Golden Plumza was the most susceptible to the shot-hole measured by leaf severity, however it showed variable defoliation percentages in different years. The seed-propagated myrobalan trees were the most resistant, although they showed a slight degree of defoliation in 2007 and 2008. Intermediate reactions to the disease occurred in cultivars Angeleno, Autumn Giant, Fortune, Green Sun, October Sun, Santa Rosa, Sorriso di Primavera and T.C. Sun. A significant correlation between shot-hole leaf severity and twig defoliation was detected. To our knowledge, this is the first report on screening for resistance of plum cultivars to shot-hole disease.  相似文献   

8.
Downy mildew of field pea (Pisum sativum) caused by Peronospora viciae f. sp. pisi has become widespread in the main field pea production areas of central Alberta. Field experiments were conducted at naturally-infested field sites over several years to assess the effect of seeding depth, seeding date, seed treatment and foliar fungicides on downy mildew incidence and severity, and to estimate the relationship between severity and yield loss. Downy mildew was shown to cause substantial yield loss on field pea. Even a moderately severe infestation reduced pod numbers by 65% and seed yield by 75%. The loss (pod number or seed yield) was best explained by a linear model (y = −2.3114x + 10.086; R2 = 0.9441 and y = −2.5165x + 10.378; R2 = 0.9533, respectively). Depth of seeding (range 3–7 cm) did not affect downy mildew. Similarly, seeding date (early, mid and late May) did not have a consistent effect on disease levels. Late seeding occasionally reduced downy mildew, but always resulted in low seed yield. Several seed treatment fungicides reduced downy mildew, and metalaxyl-based products produced the highest yield. Several foliar-applied fungicides, including pyraclostrobin, azoxystrobin and metalaxyl, reduced downy mildew severity, but the results were not consistent across years. We conclude that cultural practices may not be sufficient for effective management of downy mildew, and that metalaxyl-based fungicides applied as seed treatments or foliar sprays could represent the best control option until downy mildew resistant pea cultivars become available.  相似文献   

9.
Coffee leaf scorch caused by Xylella fastidiosa is widespread in major coffee-growing regions of Brazil. This study was done to quantify the yield loss caused by this disease. The severity data of the disease were collected during the 2006, 2007 and 2008 seasons at commercial plantations growing Coffea arabica ‘Catuaí’ in São Gotardo-MG in 250 plants of three blocks of 7000 coffee plants each. Fifty selected plants per block with different disease severities were determined. The linear regression showed a significant relationship (P < 0.01) between disease severity and bean yield and between disease severity and grain size in all years. The relationship between yield and the disease severity was significant (P < 0.01). For each 1% increase in the disease severity, there was a decrease of 1.22, 1.34 and 2.02 bags of bean yield/ha in 2006, 2007 and 2008, respectively, thus showing the importance of the disease in reducing coffee bean yields.  相似文献   

10.
The commercial mycopesticide, Vertalec® based on Lecanicillium longisporum, was evaluated for simultaneous control of aphids and powdery mildew on cucumbers in a greenhouse setting where temperature and RH were allowed to fluctuate within normal operating ranges. Five to six week old cucumber plants were inoculated with either Sphaerotheca fuliginea (Sf) spores, cotton aphids (Aphis gossypii) or both. Vertalec, Vertalec containing irradiation-inactivated blastospores (II Vertalec) or sterilized water (control) were applied to the plants 1, 4, and 7 days later. Vertalec treatment provided complete control of aphids 16 days after aphid inoculation, whereas effects of the II Vetalec were not significantly different from the water-treated control. The number of powdery mildew spots on cucumber leaves and the number of S. fuliginea spores in each spot were significantly lower in Vertalec-treated plants than II Vertalec-treated plants or the controls, whereas numbers in the II Vertalec treatment were lower that the untreated control. These results demonstrate that Vertalec has potential for simultaneous management of both cotton aphid and powdery mildew in greenhouse cucumber production.  相似文献   

11.
Tan spot, caused by Pyrenophora tritici-repentis (Died.) Drechs., is an important constraint to wheat (Triticum aestivum L.) yield in many countries. Since the inheritance of field resistance to tan spot is poorly understood, this study was conducted to determine the genetic control of resistance in the field. Resistance was measured as disease severity caused by P. tritici-repentis race 1 in four crosses involving five wheat parents: parent 1 (P1) = catbird; parent 2 (P2) = Milan/Shanghai-7; parent 3 (P3) = Alondra/Coc//Ures; parent 4 (P4) = Bcb//Dundee/Gul/3/Gul); parent 5 (P5) = ND/VG9144//Kal/BB/3/Yaco/4/Chil. P1, P2 and P3 were resistant and P4 was moderately resistant, whereas P5 was susceptible to tan spot. The F2-derived F3 families and the parents were field evaluated at El Batán, Mexico, in 1996. When all the plants within a F3 family expressed low levels of disease severity similar to that of the resistant parent it was classified resistant (R), otherwise the progeny was classified as susceptible (S). The progeny of the three crosses of the susceptible parent with the resistant and moderately resistant parents P2, P3, and P4 segregated as 3R:13S whereas the progeny in the cross with P1 showed a segregation ratio of 1R:15S. This suggests that each resistant parent possessed two genes conditioning resistance to tan spot severity caused by P. tritici-repentis race 1. Information on the inheritance of resistance measured as disease severity on adult plants under field conditions is of practical importance for wheat breeding programs seeking improvement in tan spot resistance.  相似文献   

12.
The population dynamics of Xanthomonas campestris pv. vitians (Xcv) was studied both externally and internally in lettuce, tomato and pepper plants. In addition, the application of bactericides during transplant production period was carried out for the management of bacterial leaf spot of lettuce under greenhouse conditions. Epiphytic populations of Xcv were recovered on leaves of lettuce plants (105 CFU/g) 5 weeks after sprayed than the other plant species when inoculated with 108 CFU/ml of Xcv. When plants of each crop species infiltrated with the bacterium at 105 CFU/ml, the highest populations were developed in lettuce (108 CFU/cm2) followed by pepper with 106 CFU/cm2 and tomato with 105 CFU/cm2 10-days after infiltration. Application of a mixture of Maneb and Kocide or Kocide alone as a foliar spray on lettuce significantly reduced the incidence and disease severity of bacterial leaf spot by 29 and 27% respectively. Spread of the bacterium and development of the disease may partly be managed by avoiding intercropping of these plants commonly grown in close proximity to lettuce. For the management of leaf-associated populations of Xcv in lettuce, use of a mixture of Maneb and Kocide is advocated to minimize the effect of attacks.  相似文献   

13.
长江中下游麦区是中国弱筋小麦优势产业带,小麦赤霉病、白粉病和条锈病是该麦区主要病害,当前弱筋小麦主导品种综合抗性较弱,影响其生产安全。为培育多抗优质弱筋小麦品种,以高产中筋小麦品种扬麦16为轮回亲本,以兼抗白粉病、条锈病的软质小麦92R137为供体亲本,构建了BC1群体,利用分子标记在BC1F2代基础农艺性状较优良的株行中筛选抗白粉病基因 Pm21、抗条锈病基因 Yr26和软质麦相关基因 Pinb-D1a均纯合的单株,并鉴定BC1F6代对赤霉病、白粉病和条锈病的抗性,同时检测籽粒硬度、湿面筋含量、面团形成时间、稳定时间等重要品质指标以及小区产量,最终育成高抗赤霉病、免疫白粉病和高抗条锈病的弱筋小麦新品种扬麦38,于2022年通过国家农作物品种审定委员会审定。  相似文献   

14.
To determine the most sensitive spectral parameters for powdery mildew detection, hyperspectral canopy reflectance spectra of two winter wheat cultivars with different susceptibilities to powdery mildew were measured at Feekes growth stage (GS) 10, 10.5, 10.5.3, 10.5.4 and 11.1 in 2007–2008 and 2008–2009 seasons. As disease indexes increased, reflectance decreased significantly in near infrared (NIR) regions and it was significantly correlated with disease index at GS 10.5.3, 10.5.4 and 11.1 for both cultivars in both seasons. For the two cultivars, red edge slope (drred), the area of the red edge peak (Σdr680−760 nm), difference vegetation index (DVI) and soil adjusted vegetation index (SAVI) were significantly negatively correlated with disease index at GS 10.5.3, 10.5.4 and 11.1 in both seasons. Compared with other parameters, Σdr680−760 nm was the most sensitive parameter for powdery mildew detection. The regression models based on Σdr680−760 nm were constructed at GS 10.5.3, 10.5.4 and 11.1 in both seasons. These results indicated that canopy hyperspectral reflectance can be used in wheat powdery mildew detection in the absence of other stresses resulting in unhealthy symptoms. Therefore, disease management strategies can be applied when it is necessary based on canopy hyperspectral reflectance data.  相似文献   

15.
Leaf area index simulation in soybean grown under near-optimal conditions   总被引:2,自引:0,他引:2  
Different approaches have been used to simulate leaf area index (LAI) in soybean (Glycine max L. Merr). Many of these approaches require genotype-specific calibration procedures. Studies modeling LAI dynamics under optimal growth conditions with yields close to the yield potential of soybean have remained scarce. A sink-driven approach was developed and evaluated for LAI simulation in soybean under near-optimal environments. The rate of change in expanding leaf area was simulated using the first derivative of a logistic function accounting for plant population density, air temperature, and water deficit. The rate of change in senescing leaf area was also simulated using the first derivative of a logistic function, assuming monocarpic senescence that began at the flowering stage (R1). Phenology was simulated as a function of temperature and photoperiod. Data for model development and evaluation were obtained from irrigated field experiments conducted at two locations in Nebraska, where agronomic management was optimized to achieve growth at a near yield potential level. LAI simulation with the proposed model had average RMSE of 0.52 m2 m−2 for independent data at the two locations. The proposed model has minimum input requirements. Interactions between leaf growth and source-driven processes can be incorporated in the future, while maintaining the basic physiological assumptions underlining leaf expansion and senescence.  相似文献   

16.
In various crop species, high levels of powdery mildew infection and severity have been associated with high vegetative vigour. In grapevine this relationship has also been observed by vine growers, though it has not been quantified. This study was undertaken to investigate the relationship between the development of powdery mildew on leaves and berries and canopy growth, and thus to quantify the relationship between the pathogen and its host. Over a two-year period (2005 and 2006), an experiment was carried out in a vineyard (cv. Aranel) near Montpellier, southern France. Several levels of canopy growth were generated by implementing four soil management strategies: i) perennial cover crop in the inter-row, ii) annual cover crop in the inter-row, iii) chemical weed control over the entire soil surface, iv) chemical weed control all over the soil surface and drip irrigation and fertilization in the row. Powdery mildew was artificially inoculated on experimental sub-plots with Erysiphe necator [Schw.] Burr. conidia. The most vigorous vines developed a larger number of diseased leaves and a higher percentage of mildewed berries compared to low-vigour vines. The major explanatory variable highlighted in these experiments was the shoot leaf number, mainly early in the season. A higher leaf population generated a larger number of powdery mildew colonies close to grapes and consequently a higher probability of berry infection. Our experimental results provide evidence of a positive relationship between powdery mildew development and grapevine vegetative development. These results provide an opportunity to develop new IPM strategies in vineyards.  相似文献   

17.
In commercial apple orchards in southern Brazil, it is common to avoid hail damage by covering the trees with nets. This study was carried out to assess the effects of both black and white hail netting on the temporal dynamics of Glomerella Leaf Spot disease (GLS) in a commercial ‘Royal Gala’ apple orchard in a high-altitude region of southern Brazil during two growing seasons (2003/2004 and 2004/2005). Apple trees on M9 rootstock, trained to a slender spindle and with a spacing of 5.5 m × 3 m, were left uncovered (control) or covered with black or white hail netting. The incidence and severity of GLS were quantified biweekly from October to February by evaluating 100 leaves distributed randomly on four medium-height branches per plant on each 12 replications per treatment. Disease progress curves were constructed from the data and the epidemics were compared by using four epidemiological measures: the beginning of symptom appearance (BSA), the time to reach the maximum disease intensity (TRMDI), the maximum value of disease severity (Ymax), and the area under the disease progress curve (AUDPC). The highest intensity of GLS was observed in the plants under the black hail netting. Significant reductions in BSA and TRMDI and significant increases in Ymax and AUDPC were found among treatments in both growing seasons. However, no significant differences of GLS were found between the white hail netting and the control in either growing season.  相似文献   

18.
Ascochyta rabiei causes Ascochyta blight, a yield-limiting disease of chickpea (Cicer arietinum) world-wide. In 2007, fungal populations of A. rabiei resistant to the QoI group of fungicides were detected in the Northern Great Plains of the United States. Assays were conducted to determine fungal sensitivity for two alternative fungicidal modes of action. A total of 78 isolates of A. rabiei collected between 1983 and 2007 were screened to determine baseline sensitivity to the demethylation-inhibiting foliar fungicide, prothioconazole, and 100 isolates collected between 1987 and 2007 were screened for sensitivity to the methyl benzimidazole carbamate (MBC) fungicide, thiabendazole. Isolates were tested using an in vitro mycelial growth assay to determine the effective fungicide concentration at which 50% of fungal growth was inhibited (EC50) for each isolate-fungicide combination. Baseline EC50 values of prothioconazole ranged from 0.0526 to 0.2958 μg/ml, with a mean of 0.1783 μg/ml. Isolates of A. rabiei collected from 2007 to 2009 from North Dakota chickpea fields exposed to prothioconazole, were screened for prothioconazole sensitivity using the same assay. Mean EC50 values for these isolates were 0.3544 μg/ml, 0.3746 μg/ml, and 0.7820 μg/ml, respectively. These values represent an approximate 2.0 (2007-2008) and 4.4-fold (2009) decrease in sensitivity from the baseline mean. EC50 values of thiabendazole ranged from 1.192 to 3.819 μg/ml, with a mean of 2.459 μg/ml. No significant decrease in fungicide sensitivity was observed for thiabendazole. To date, no loss of Ascochyta blight control has been observed with the use of either prothioconazole or thiabendazole.  相似文献   

19.
More rapid progress in breeding peanut for reduced aflatoxin contamination should be achievable with a better understanding of the inheritance of, aflatoxin trait and physiological traits that are associated with reduced contamination. The objectives of this study were to estimate the heritability of aflatoxin traits and genotypic (rG) and phenotypic (rP) correlations between drought resistance traits and aflatoxin traits in peanut. One hundred-forty peanut lines in the F4:6 and F4:7 generations were generated from four crosses, and tested under well-watered and terminal drought conditions. Field experiments were conducted under the dry seasons 2006/2007 and 2007/2008. Data were recorded for biomass (BIO), pod yield (PY), drought tolerance traits [harvest index (HI), drought tolerance index (DTI) of BIO and PY, specific leaf area (SLA), and SPAD chlorophyll meter reading (SCMR)], and aflatoxin traits [seed infection and aflatoxin contamination]. Heritabilities of A. flavus infection and aflatoxin contamination in this study were low to moderate. The heritabilities for seed infection and aflatoxin contamination ranged from 0.48 to 0.58 and 0.24 to 0.68, respectively. Significant correlations between aflatoxin traits and DTI (PY), DTI (BIO), HI, biomass and pod yield under terminal drought conditions were found (rP = −0.25** to 0.32**, rG = −0.57** to 0.53**). Strong correlations between SLA and SCMR with A. flavus infection and aflatoxin contamination were also found. Positive correlations between SLA at 80, 90, and 100 DAP and aflatoxin traits were significant (rP = 0.13** to 0.46**, rG = 0.26** to 0.81**). SCMR was negatively correlated with aflatoxin traits (rP = −0.10** to −0.40**, rG = −0.11** to −0.66**). These results indicated that physiological-based selection approaches using SLA and SCMR might be effective for improving aflatoxin resistance in peanut.  相似文献   

20.
The inhibitory properties of middle-viscosity Chitosan on the growth of fungus Ramularia cercosporelloides were studied in vitro. The inhibitory concentration that delayed 50% of the radial growth (IC50) was 3.4 g l−1 for middle-viscosity Chitosans with molecular weights of about 133 and 187 kDa (middle molecular weight) dissolved in lactic and acetic acids, respectively. At 96 h of incubation and under the same growing conditions, inhibitions of 91.79% and 73.13% of the radial growth of the fungus were observed when 3.4 g l−1 of Chitosan was dissolved in 0.05 M acetic and 0.05 M lactic acid, respectively. The biomass production was significantly lower than that observed in the controls at 72 h. Based on these in vitro results; Chitosan could be a good alternative to control the disease caused by R. cercosporelloides on safflower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号