首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
在小麦育种田间试验中,小区群体株高是最受关注的重要农艺性状之一。针对当前无人机遥感在小麦育种小区粒度下获取株高表型精确度低的问题,提出了两种方法:基于人工测量真值的近邻校正法(Nearest neighbor correction method, NNCM)和基于多光谱+RGB数据融合的光谱指数校正法(Spectral indices correction method, SICM),近邻校正法通过获取小区群体高程信息、结合地埂进行高程校正、再依据近邻真值滑动校正得到小区精确株高;光谱指数校正法通过计算植被指数并进行指数优选,从而构建株高-植被指数精确反演模型。试验结果表明,在具有地面真值的6个时期,传统无人机作物株高测量方法的相对均方根误差(Relative root mean square error, RMSE100)分别为11.15%、59.44%、11.76%、12.31%、8.05%、59.76%;NNCM的RMSE100分别为7.17%、8.18%、5.70%、5.62%、5.65%、7.74%;SICM的RMSE100分别为7.33%、8.17%、6.05%、6.15%...  相似文献   

2.
为探究不同作业模式对小麦生长的影响,通过无人机影像对小麦人工驾驶作业、小麦辅助驾驶系统作业、小麦无人驾驶系统作业区出苗率及长势进行对比性分析,研究结果表明:基于无人驾驶系统作业的小麦出苗率及小麦长势指数最好,分别为79.56%和0.853;基于辅助驾驶系统作业的小麦出苗率及小麦长势次之,分别为78.91%和0.806;基于人工驾驶作业的小麦出苗率及小麦长势最低,分别为60.43%和0.757。基于无人驾驶系统作业的小麦生长优于辅助驾驶作业优于人工驾驶作业,研究结果可为智能农机在小麦播种作业中的优势与价值提供参考,同时,本文所采用的基于无人机遥感的分析计算方法在评估小麦出苗率及长势方面也具有很好的参考价值。  相似文献   

3.
马燕莉 《南方农机》2022,(20):45-47
环境遥感技术具备成本低、高效、便捷等优势,近年来在农业生产领域得到了大范围的应用。以小麦生产为例,在小麦作物生长发育过程中实现精准化的管控,加强对小麦生长状态实行迅速的诊断、评估、监测,既是对小麦生产实现精准化管控的前提,也是现代化农业在发展层面的主流趋势。笔者论述了无人机遥感技术在应用层面的优势,分析了无人机遥感技术在当前小麦生产环节的具体应用状况。现阶段农业生产领域应用到的遥感模型,大多数是以统计分析为基础展开研究分析,随着应用尺度、区域、气候等条件因素的变换,适用性可能会受到不同程度的影响,降低预测环节的数值精准度。为此,笔者建议在未来的研究中,需要在不同的气候环境、土壤状况、生态区域内部,针对小麦生长发育模型、小麦产量品质的预测评估数字模型展开研究和分析,不仅有助于提高数字模型在应用期间的精准性,也能合理提高其在区域层面的适用性和实用性。  相似文献   

4.
配备多光谱相机的无人机可实现对农作物生长状况的快速无损监测,为评估无人机遥感监测高粱作物长势的可行性和准确性,利用无人机搭载的多光谱相机获取高粱拔节期、抽穗开花期、灌浆成熟期多光谱遥感图像,构建常用的4种植被指数与叶面积指数LAI和植被覆盖度FVC之间的回归模型.经过精确度评价,确定归一化差异植被指数NDVI为最优植被...  相似文献   

5.
及时准确地监测棉花长势和产量是精准农业栽培管理的关键。无人机(UAV)平台能够快速获取高时空分辨率的遥感数据,在作物生长参数和产量估算方面显示出巨大的潜力。以山东省滨州市棉花为研究对象,利用安装在无人机上的多光谱相机获取遥感影像,分别提取各波段反射率,筛选出8种植被指数,采用多元线性回归(MLR)、随机森林(RF)、人工神经网络(BPNN)3种方法分别构建棉花的株高、叶绿素相对含量、单株产量的估计模型并进行验证。结果表明,基于BPNN的预测模型精度明显优于MLR和RF模型,盛花期与成熟期棉花株高估计模型验证集的R2分别为0.842和0.670;叶绿素相对含量估算模型验证集的R2分别为0.725和0.765;产量估算模型验证集的R2分别为0.860和0.846。为无人机遥感在作物生长参数与产量估算领域中的应用提供理论依据,为进一步优化农业生产管理、科学决策提供参考。  相似文献   

6.
为及时准确地提取小麦倒伏面积,提出一种融合多尺度特征的倒伏面积分割模型Attention_U2-Net。该模型以U2-Net为架构,利用非局部注意力(Non-local attention)机制替换步长较大的空洞卷积,扩大高层网络感受野,提高不同尺寸地物识别准确率;使用通道注意力机制改进级联方式提升模型精度;构建多层级联合加权损失函数,用于解决均衡难易度和正负样本不均衡问题。Attention_U2-Net在自建数据集上采用裁剪方式提取小麦倒伏面积,查准率为86.53%,召回率为89.42%,F1值为87.95%。与FastFCN、U-Net、U2-Net、FCN、SegNet、DeepLabv3等模型相比,Attention_U2-Net具有最高的F1值。通过与标注面积对比,Attention_U2-Net使用裁剪方式提取面积与标注面积最为接近,倒伏面积准确率可达97.25%,且误检面积最小。实验结果表明,Attention_U2-Net对小麦倒伏面积提取具有较强的鲁棒性和准确率,可为无人机遥感小麦受灾面积及评估损失提供参考。  相似文献   

7.
为快速、准确地估测小麦产量,有效提高育种工作效率,本文以小麦品系为研究对象,收集小麦灌浆期无人机高光谱数据和产量数据。首先基于递归特征消除法筛选出特征波长作为模型输入变量,然后利用岭回归(Ridge regression,RR)、偏最小二乘回归(Partial least squares regression,PLS)、多元线性回归(Multiple linear regression,MLR)3种线性算法和随机森林(Random forest,RF)、梯度提升回归(Gradient boosting regression,GBR)、极限梯度提升(eXtreme gradient boosting,XGB)、高斯过程回归(Gaussian process regression,GPR)、支持向量回归(Support vector regression,SVR)、K最邻近算法(K-nearest neighbor,KNN)6种非线性算法构建单一算法产量估测模型并进行精度比较,最后基于Stacking算法构建多模型集成组合,筛选最佳集成模型。结果表明,基于不同算法的产量估测模型精度差异显著,非线性模型优于线性模型,基于GBR的产量估测模型在单一模型中表现最优,训练集R2为0.72,RMSE为534.49kg/hm2,NRMSE为11.10%,测试集R2为0.60,RMSE为628.73kg/hm2,NRMSE为13.88%。基于Stacking算法构建的集成模型性能与初级模型和次级模型的选择密切相关,以KNN、RR、SVR为初级模型组合,GBR为次级模型的集成模型有效提高了估测精度,相比单一模型GBR,训练集R2提高1.39%,测试集R2提高3.33%。本研究可为基于高光谱技术的小麦品系产量估测提供应用参考。  相似文献   

8.
基于光谱探测的小麦精准追肥机设计与试验   总被引:3,自引:0,他引:3  
为了实现小麦生长过程中的实时变量追肥,使用近地光谱探测技术,设计了大田实时变量追肥机。追肥光谱监测系统实时获取作物冠层归一化植被指数,结合追肥策略计算出当前的目标施肥量,采用测速和测距法反馈肥料流量信息,并根据追肥机实际行进速度,实时调整追肥量,实现精准变量追肥。试验结果表明,田间小麦长势存在空间差异性,冠层的归一化植被指数可以解析此差异性;追肥机追肥控制精度达到90%以上,可以满足精准追肥的要求;变量追肥比定量均匀追肥增施氮肥28 kg/hm2左右。  相似文献   

9.
基于无人机多光谱遥感的玉米根域土壤含水率研究   总被引:3,自引:0,他引:3  
及时获取农田作物根域土壤墒情是实现精准灌溉的基础和关键。以内蒙古自治区达拉特旗昭君镇试验站大田玉米为研究对象,利用无人机遥感系统,分别在玉米营养生长期(Vegetative stage,V期)、生殖期(Reproductive stage,R期)和成熟期(Maturation stage,M期)获得7次玉米冠层多光谱正射影像,并同步采集玉米根域不同深度土壤含水率(Soil moisture content,SMC);然后,采用灰色关联法对提取的多种植被指数(Vegetation index,VI)进行筛选,选取与土壤含水率敏感的植被指数;最后,分别采用多元混合线性回归(Cubist)、反向传播神经网络(Back propagation neural network,BPNN)和支持向量机回归(Support vector machine regression,SVR)等机器学习方法,构建不同生育期的敏感植被指数与土壤含水率的关系模型。结果表明,3种机器学习方法中SVR模型在各生育期的建模与预测精度均最优,BPNN模型次之,Cubist模型最差;其中SVR模型在M期效果最优,其建模集和验证集R~2分别为0. 851和0. 875,均方根误差(Root mean square error,RMSE)均为0. 7%,标准均方根误差(Normalized root mean square error,nRMSE)分别为8. 17%和8. 32%,R期效果最差,其建模集和验证集R~2分别为0. 619和0. 517。  相似文献   

10.
基于无人机遥感与植被指数的冬小麦覆盖度提取方法   总被引:14,自引:0,他引:14  
基于开源飞控Pixhawk开发了一套集成稳定云台、位置与姿态系统(Position and orientation system,POS)数据采集模块的无人机多光谱遥感图像采集系统,同步采集520~920 nm范围内的红、绿和近红外波段信息。以冬小麦为例,分别在越冬期、拔节期、挑旗期和抽穗期进行飞行实验,飞行高度55 m,多光谱影像地面分辨率2.2 cm。采用监督分类与植被指数统计直方图相结合的方式,提出了一种田间尺度小麦覆盖度快速提取的方法,给出归一化植被指数(Normalized difference vegetation index,NDVI)、土壤调节植被指数(Soil-adjusted vegetation index,SAVI)及修正土壤调节植被指数(Modified soil-adjusted vegetation index,MSAVI)对应的植被像元与土壤像元的分类阈值,分别为0.475 6、0.705 6和0.635 0。同时利用基于同步采集的地面分辨率可达0.8 cm的高清可见光遥感图像提取了相应时期的冬小麦覆盖度参考值。结果表明,基于无人机多光谱遥感技术及植被指数法可以较好地提取冬小麦越冬期、拔节期、挑旗期和抽穗期的植被覆盖度信息。与SAVI、MSAVI相比,基于NDVI分类阈值的提取效果最好,绝对误差最小。  相似文献   

11.
12.
基于无人机遥感影像的冬小麦氮素监测   总被引:7,自引:0,他引:7  
精准氮素管理是一项提高作物氮肥利用效率的有效策略,利用无人机遥感技术精确估测小麦氮素状况是必要的。试验在山东省乐陵市科技小院实验基地进行,利用八旋翼无人机搭载Mini-MCA多光谱相机于2016年获取冬小麦4个关键生育时期(返青期、拔节期、孕穗期、扬花期)冠层多光谱数据,同步获取地上部植株样品并测定其生物量、吸氮量、氮营养指数,及成熟期籽粒产量,根据各关键生育期与全生育期分别构建植被指数与农学参数回归分析模型,评估基于无人机遥感影像的冬小麦氮素营养诊断潜力。结果表明:基于无人机遥感影像能够较好地估测冬小麦氮素指标(R2为0.45~0.96),决定系数随着生育期推移而逐渐增大。拔节期、孕穗期和扬花期估产效果接近且具有很好的估测能力,扬花期DATT幂函数模型对小麦氮营养指数的解释能力最强(R2=0.95)。因此,以多旋翼无人机为平台同步搭载多光谱相机对冬小麦有较好的氮素诊断潜力,可利用估测结果指导精准氮肥管理。  相似文献   

13.
赵峰  姜攀 《农机化研究》2019,(1):226-229
无人机是一个由飞行器、控制站、通讯设备和其它部件形成的系统,在农业领域主要应用于农药喷洒、信息监测和农业保险勘察。农业无人机在飞行过程中的实际航线与规划航路之间会存在偏差,不仅降低了作业质量,还会影响作业效率。无线传感网络是一种与无人机紧密结合的技术,可以用于对无人机的航线进行控制。为此,基于无线传感网络,设计了无人机的航线控制系统。该系统由无人机平台、传感节点、汇聚节点和控制中心4部分组成,对航线的控制通过二维坐标系跟随算法完成。试验结果表明:无线传感网络对直线和曲线航线的跟踪更加稳定,具有较高的航线控制精确度。  相似文献   

14.
从病虫害传统诊断方式的优缺点入手,基于现实应用案例,概括了无人机技术相较于传统诊断方式具有监测成本低、反映速度快、数据分辨率高、信息反馈直观全面等优势。并指出了基于无人机技术的病虫害诊断方式依然具有数据来源单一、简单;处理、分析能力及精度有限等亟待解决的问题。结论显示无人机在病虫害信息获取、分析、诊断方面具有广阔的应用前景。  相似文献   

15.
介绍了一个以ARM为控制核心,遥控器或PC计算机为交互设备的无人机农业值保系统的主要设计思想.着重对系统的组成、硬件配置、软件设计及主要功能进行了详细的描述,并给出了ARM控制程序的流程图,文章还对系统的通信程序设计做了简要阐述.  相似文献   

16.
针对农用无人机的作业特点和应用领域,设计了一种基于经典PID控制方法的纵向姿态控制系统。首先,利用Mat Lab软件建立了无人机在配平点处的纵向运动数学模型,分析了无人机的纵向运动规律。在此基础上,采用经典PID理论对无人机纵向运动的俯仰角控制回路和高度控制回路进行设计。通过Simulink软件进行仿真实验,结果表明:该飞行姿态控制系统控制效果良好,可以满足农用无人机的技术要求。  相似文献   

17.
针对多旋翼无人机在飞行过程中容易受到各种外部扰动的影响,以复合翼无人机的旋翼控制系统为研究对象,设计了一种自抗扰控制系统。首先,建立了多旋翼无人机系统运动学模型和动力学模型;其次,对自抗扰控制算法的特点展开研究,结合无人机模型分别设计了位置和姿态控制器。并改进了扩张状态观测器,引入了更精确的动力学模型,提升了扰动观测速度和估计精度,同时,降低了扩张状态观测器的阶数,提升了控制器调参简易性;再次,依据六自由度力和力矩的平衡方程,对本文研究对象搭建了控制分配模型。最终,采用Matlab/Simulink完成仿真模型设计和参数调节,对控制目标分别加入了内部重力扰动和外部风力扰动,仿真结果表明本文设计的控制器不仅可以很好地估计出系统内外扰动并进行补偿,而且具有极强的抗干扰性,可以保证无人机从初始点快速且平稳到达目标位置,并保持稳定悬停,姿态控制稳态误差在0.05°以内。  相似文献   

18.
基于无人机技术的水稻精准喷药系统研究   总被引:1,自引:0,他引:1  
许真珠  黄莺 《农机化研究》2019,(2):238-241,247
水稻是我国最主要的粮食作物,但每年因病虫害而严重减产。喷洒农药对病虫害防治效果明显,成本也较低。我国适合用无人机进行水稻喷药作业,但采用的是大面积粗放喷洒方式,不利于节约成本和保护环境。精准喷药能够解决上述问题,符合绿色农业的发展趋势。为此,设计了基于无人机的水稻精准喷药系统,由计算机识别作物区域和空缺区域后形成处方图;喷药设备根据处方图控制喷头开启程度,实现精准喷药;单张图片的处理过程耗时50ms,可以满足快速作业的要求。系统能够识别作物区域,在飞行速度为2m/s时的雾滴沉积量与处方图剂量的线性关系较好,具有较高的作业质量和效率。  相似文献   

19.
基于旋翼无人机的低空、低速、利用旋翼风场作业等飞行特征,采用机载北斗定位系统获取精准机体实时观测值,协同地面风速传感器构成机-地传感器采集系统,尝试对具有稳定飞行轨迹的无人机进行状态预测。在充分讨论飞行状态的预测策略、可预测性、起始点确定等问题基础上,建立状态预测模型,设计状态预测算法用以自动判定传感器采集时段的起始点。依据算法展开冠层风速田间采集试验,对于无人机预测状态数据和实际观测数据做了对比分析,发现在可置信度为99%水平时,两者无差异的概率P值为0.956;同时统计出X、Y、Z向风速最大值出现时刻均值分别为3.036、2.427、3.145 s,计算出对应的标准差分别为0.79、0.87、0.98 s,说明3向风速最大值出现时刻在5 s采样范围内具有较明显的区域性,验证了采集时刻的准确性,表明机-地协同实时采集旋翼风场数据的有效性得到了显著提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号