首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Puddling as well as no-puddling for growing transplanted and direct seeded rice, respectively, have their disadvantages as well as advantages on the physical condition of the soil and yield of rice. The soil that is more susceptible to changes in structure is easy to puddle. However, what should be the extent of puddling is not well established. Generally, farmers have a tendency to create a very fine puddle that actually may not be required. Keeping in view the current global emphasis on conservation of resources as well as reduction of the production cost to improve the economic gain of farmers, this study attempted to find out the influence of varying intensities of puddling on the soil physical condition and rice yield (cv. IR 36) in a Vertisol of central India. The study was conducted over two cropping seasons during year 2000 and 2001. Three puddling intensities i.e. no-puddling (P0), and puddling by four (P1) and eight (P2) passes of a 5 hp power tiller were evaluated.

The aggregate mean weight diameter (AMWD) of soil (0–15 cm depth) for P0 remained almost unchanged till harvest. At 15 days after puddling, AMWD in P1 and P2 compared to P0 was less by 45 and 59% in the first year and by 60 and 69% in the second year, respectively. These values at harvest changed to 22 and 46% in the year 2000 and 28 and 43% in the year 2001, respectively. Soil bulk density (BD) and penetration resistance (PR) increased significantly from transplanting to harvest in puddled soil, but in unpuddled soil significant increase in PR only at the surface 0–7 cm layer was observed. Higher intensity of puddling favoured more soil wetness at harvest, as the puddled soil maintained 25% more water than P0. Compared to P1, P2 showed an increase of 4.3, 10.3 and 7.7% in length, width and depth of cracks, respectively, while the increase in P1 over P0 in the same order was 35, 23.5 and 13.3%, respectively. Thus, crack dimensions (length, width and depth) were larger under high intensity of puddling. Water loss through seepage plus percolation was significantly higher in P0 as compared to P1 and P2 and the higher intensity of puddling reduced the losses more. The grain yield of P2 was slightly higher than P1 but both were significantly above P0. Higher grain yield resulted in 46 and 49% more water use efficiency under P1 and P2 than P0, respectively. This 2-year study has shown that puddling beyond P1 i.e., four passes of a 5 hp power tiller may not be required to obtain higher yield or other benefits in Vertisols having similar hydrology to that reported here. Puddling only to the required level will also deteriorate less the soil physical condition as compared to more intense puddling. The unpuddled direct seeded rice maintained the soil in a better physical condition but the yield was significantly lower in relation to the puddled ones.  相似文献   


2.
One of the resource conservation technologies for rice (Oryza sativa) is direct seeding technique, which may be more water efficient and labour cost-effective apart from being conducive for mechanization. The crop establishment during the initial stages may depend upon the method of direct seeding, cultivar and seed rate. A study was carried out during 2004–2005 to evaluate the effect of different seeding techniques, cultivars and seed rates on the performance of direct-seeded basmati rice in loamy sand (coarse loamy, calcareous, mixed hyperthermic, Typic Ustipsamments) at Punjab Agricultural University, Ludhiana, India. The treatments in main plots included four seeding techniques (broadcast in puddled plots, direct drilling in puddled plots, direct drilling in compacted plots and direct drilling under unpuddled and uncompacted conditions). The subplots treatments comprised of two cultivars (Pusa Basmati-1 and Basmati-386) and three seed rates (at 30, 40 and 50 kg ha−1).

The moisture retention and bulk density at harvest were sufficiently lower in uncompacted/unpuddled plots than compacted or puddled plots more so in 0–30 cm soil layer. The crop stand establishment was higher in direct-drilled compacted plots with 50 kg seed ha−1. It was higher in Pusa Basmati-1 than Basmati-386. The direct drilling after compaction produced 28% higher biomass than uncompacted/unpuddled plots. Similar trend was observed in leaf area index and effective tillers. Effective tillers were significantly higher with 30 kg seed ha−1and were higher in Pusa Basmati-1 than Basmati-386. The root mass density of basmati rice in 0–15 cm soil layer at 45 days after sowing was 1549 g m−3 in compacted soils, 1258 g m−3 in broadcasting in puddled soil and 994 g m−3 with direct drilling in puddled soil. The grain yield of basmati rice was 44% and 30% higher in direct-drilled compacted and puddled plots, respectively, than uncompacted/unpuddled plots.  相似文献   


3.
Rice–wheat productivity in irrigated tract of the Indo-Gangetic plains is constrained by water and energy limitations. In order to minimize unproductive soil water evaporation and percolation loss at a field scale, management practices include soil puddling, water-economizing irrigation schedule, and matching growth cycle with periods of low evaporative demand. This 3-year field study examines combined effects of these options on rice–wheat productivity and water-use efficiency (WUE) and energy-use efficiency (EUE) on a sandy loam soil in an irrigated semi-arid sub-tropical environment. Treatments included combinations of three puddling intensities, viz., one (P1), two (P2), and four (P4) runs of a tine cultivator in ponded water after a common pre-puddling tillage; with two irrigation regimes, viz., continuous submergence (I1) throughout the growing season, and intermittent submergence (I2) with continuous submergence for 2 weeks after transplanting followed by 2-day interval between successive irrigations, and two transplanting dates, viz., first fortnight of June (D1) and end June (D2) to impose variation in seasonal evaporative demand. Residual effect of puddling in rice on succeeding wheat was also evaluated during the 3 years.

Intensive puddling and water-economizing schedule caused a significant reduction in seasonal percolation loss primarily due to puddling-induced changes in soil bulk density and hydraulic behavior. Increasing puddling intensity from P1 to P2 enhanced mean rice yield by 0.2–0.3 Mg ha−1, but additional puddling did not improve yield significantly. Mean grain yield increase with I1 over I2 ranged between 0.3 and 0.6 Mg ha−1. Interaction effect between puddling and irrigation indicate that yield benefit with I1 over I2 was greatest in P1 regime (0.6 Mg ha−1), and the effect decreased with increase in puddling intensity. Delayed transplanting caused a decline of 0.3–0.5 Mg ha−1 in rice yield. Although maximum yield was realized with combination of P2 or P4 regime with I1 regime, but water-use efficiency was greater with I2 compared to I1 regime by 1.1 kg ha−1 mm−1 in 2000 and by 0.3 kg ha−1 mm−1 in 2001. It indicates that yield gain with additional irrigation were not commensurate with additional water input. Energy analysis also showed that energy-use efficiency was 6.8, 7.2, and 6.6 kg kWh−1 for P1, P2, and P4 regimes suggesting that yield gain with P4 did not match energy input for additional puddling. Further, there was a greater risk of yield reduction of succeeding wheat with P4 (by 0.2–0.3 Mg ha−1) compared to P1 or P2 regime.  相似文献   


4.
Growing areas under transgenic crops have created a concern over their possible adverse impact on the soil ecosystem. This study evaluated the effect of Bt-cotton based cropping systems on soil microbial and biochemical activities and their functional relationships with active soil carbon pools in Vertisols of central India (Nagpur, Maharastra, during 2012–2013). Culturable groups of soil microflora, enzymatic activities and active pools of soil carbon were measured under different Bt-cotton based cropping systems (e.g. cotton-soybean, cotton-redgram, cotton-wheat, cotton-vegetables and cotton-fallow). Significantly higher counts of soil heterotrophs (5.7–7.9 log cfu g?1 soil), aerobic N-fixer (3.9–5.4 log cfu g?1 soil) and P-solubilizer (2.5?3.0 log cfu g?1 soil) were recorded in Bt-cotton soils. Similarly, soil enzymatic activities, viz. dehydrogenase (16.6–22.67 µg TPF g?1 h?1), alkaline phosphatase (240–253 µg PNP g?1 h?1) and fluorescein di-acetate hydrolysis (14.6–18.0 µg fluorescein g?1 h?1), were significantly higher under Bt-cotton-soybean system than other Bt- and non-Bt-cotton based systems in all crop growth stages. The growth stage-wise order of soil microbiological activities were: boll development > harvest > vegetative stage. Significant correlations were observed between microbiological activities and active carbon pools in the rhizosphere soil. The findings indicated no adverse effect of Bt-cotton on soil biological properties.  相似文献   

5.
The yield of rice (Oryza sativa L.) has increased substantially with the development of new cultivars, but the role of potassium (K) requirement for the increase in grain yield and the genotypic advance is still unclear. In order to investigate this relationship a database of 1199 on‐farm measurements (harvest index 0.4) comprising > 400 modern rice cultivars was collected during 2005–2010 across major irrigated lowland rice–production regions of China. This was used to evaluate the relationships among K requirement, grain yield, and genetic improvement. Across all the sites and seasons, mean reciprocal internal efficiency of K (RIE‐K, kg K [t grain produced]–1) was 19.8 kg K (t grain)–1 and rice yield averaged 8.7 t ha–1. Considering four levels of grain yield (< 7.5, 7.5–9, 9–10.5, and > 10.5 t ha–1), the respective RIEs were 18.7, 19.4, 20.5, and 21.7 kg K (t grain)–1. The gradual increase in the RIE‐K with yield was attributed mainly to the increase in straw and grain K concentration and the decrease in the K harvest index. The RIE‐K values for ordinary inbred, ordinary hybrid, and “super rice” were 18.5, 20.1, and 19.9 kg K (t grain)–1, respectively. Examining the historical development of rice cultivars, the RIE‐K decreased from 40.9 (Nanjing1, early tall, inbred) in the 1950s to 19.8 (IR24, semi‐dwarf, ordinary inbred) in the 1970s, and then increased to 20.9 (Shanyou63, modern ordinary hybrid) in the 1980s and 20.6 kg K (t grain)–1 (II‐you084, “super” rice) in the 2000s. This variation in RIE‐K among grain‐yield levels and cultivars highlights the importance of information on rice K requirement in calculating K balance and optimal K‐fertilizer rate for rice production.  相似文献   

6.
Coarse-textured soils are puddled to reduce high percolation losses of irrigation water under rice (Oryza sativa L.). This practice, however, reduces yield of succeeding wheat (Triticum aestivum L.) owing to deterioration in soil physical conditions. The 6 year field study reported in this paper evaluated the effects of puddling level and integrated N management on the development of subsurface compaction and growth and yield of rice and the following spring wheat grown in 1 year sequence on a sandy loam soil. Treatments were combinations of three puddling levels: low (one discing and one planking), medium (two discings and one planking), and high (four discings and one planking), and three nitrogen sources: (1) 120 kg N ha−1 from urea, (2) 60 kg N ha−1 from urea plus sesbania (Sesbania aculeata Pers.) green manure, and (3) 60 kg N ha−1 from urea plus 20 Mg ha−1 farmyard manure. Percolation rate decreased from 14 mm day−1 with low puddling to 10 mm day−1 with high puddling, with a corresponding reduction in irrigation water requirement of rice of about 20%. Bulk density profiles in the 0–30 cm soil layer showed the formation of a compact layer at 15–20 cm depth, and bulk density increased with puddling level and cropping season. The impact of organic amendments in reducing bulk density was immediate, but the rate of increase in bulk density with time was the same in all the nitrogen sources. Organic amendments did not affect percolation rate and irrigation requirement of rice. Rice yields were not significantly affected by puddling and N source treatments throughout the study period. Residual effects of treatments on wheat yield were observed from the second season onwards. Interactive effects of puddling and N source on yields of rice and succeeding wheat were not significant. Yield differences in wheat between high and low puddling were 8% and 11% during the second and the fifth cropping season, respectively. This study indicates that medium puddling was optimum, as it reduced percolation without decreasing yield of succeeding wheat.  相似文献   

7.
【目的】 优化氮肥用量和基追比例是实现氮肥减施和提高肥料利用率的重要途径。本研究在南方典型双季稻种植区进行定位试验,通过对土壤肥力与氮素农学效益进行综合评价,以期提出适合当地土壤和水稻种植条件的氮肥减施模式。 【方法】 以南方典型红壤区双季稻种植体系为研究对象,于 2014~2015 连续进行了 4 季大田定位试验,设处理:1) 不施氮肥 (T1);2) 当地农民习惯施氮 (T2),早稻、晚稻各施 N 165 和 195 kg/hm2,基肥∶蘖肥∶穗肥比分别为 60∶40∶0、40∶30∶30;3) 在 T2 处理基础上减施氮肥 20% (T3),即早稻施 N 135 kg/hm2,晚稻施 N 165 kg/hm2,基肥∶蘖肥∶穗肥比均为 40∶30∶30,并以 20% 有机氮代替普通化肥氮。分析了成熟期水稻产量和植物样氮素含量,测定了 0—20 cm土壤微生物量碳、氮含量,土壤 pH、有机质、全氮、速效钾和有效磷等理化指标,计算了累计氮肥利用率和氮肥农学效率,分别利用内梅罗指数法和灰色关联度法综合评价了土壤肥力效应以及各施肥模式的综合效益。 【结果】 1) 各处理土壤综合肥力指数 (IFI) 值由高到低为 T3 > T2 > T1;与 T2 处理相比,优化氮肥用量和基追比例的 T3 处理 IFI 值提高 2.34%,土壤微生物量碳含量提高了 4.37%~25.39%,土壤微生物量氮含量提高了 17.85%~29.24% (P < 0.05)。2) 与 T2 处理相比,2014–2015 年 T3 处理累计氮肥农学效率显著提高了 29.66% (P < 0.05),累计氮肥表观利用率显著提高了 28.82% (P < 0.05);2014 年各处理水稻总产量无显著差异,2015 年水稻总产量 T3 处理比 T2 处理提高了 5.26%,两年水稻总产量,T3 处理提高了 2.38%。3) 对土壤养分指标、土壤微生物指标和氮素农学效率指标进行关联度分析,2014~2015 年 T3 处理关联度最大,分别为 0.9999 和 1.0000,在土壤肥力和氮肥农学效应综合评价中最优,表明优化氮肥用量和基追比例能够实现氮肥减施以及肥料利用率的提高。 【结论】 在当地农民习惯施氮的基础上减施 20% 化肥氮,以有机氮替代,并适当提高化肥氮在抽穗期的比例,能够保证土壤综合肥力的可持续性、氮素养分持续高效利用和水稻持续稳产。   相似文献   

8.
Field experiments were conducted in WTCER research farm, Mendhasal and in the farmer's field at Bishwanathpur, Orissa, India, during two crop years to assess the performance of rice as influenced by drainage at different growth stages. In the first experiment, scented rice variety CR-689-113 was tested with drainage at different growth stages in the main plot and nitrogen levels in the sub plots. In the second experiment, rice variety Swarna was investigated and drainage at different growth stages was provided under the best nitrogen level. The results revealed that drainage at the tillering stage recorded significantly higher grain yield than drainage at all other crop stages. The grain yield of rice was found to be increased by 19–22% when drainage was provided at the tillering stage for an 8–10 day period relative to that of no drainage treatment. However, drainage at the panicle initiation stage recorded the lowest grain yield. Nitrogen at 60 kg ha?1 resulted in higher grain yield. Crop growth rate and nitrogen use efficiency were found to be higher when drainage was given at the tillering stage.  相似文献   

9.
Abstract

To increase the water use efficiency (WUE) of rice, two sets of experiments were carried out from 1997 – 1999. Experiment one: Irrigation period of rice was divided into three stages: early (S1, 10 – 35 days after transplanting, [DAT]); middle (S2, 36 – 60 DAT) and late (S3, 61 – 85 DAT). Intermittent ponding (IP) was imposed at single, two stages or the entire growing period. Continuous ponding (CP) in all three stages was taken as control. Though the highest grain yield (6.71 mg ha?1) was obtained under control, this regime was responsible for the lowest WUE. In contrast, IP in all stages was responsible for maximum WUE with minimum yield level. Imposition of IP in S1 resulted in higher (0.529 kg m?3) WUE along with insignificant reduction in yield over control. Experiment two: Three puddling practices were: (i) High intensity puddling (HIP); (ii) Moderate intensity puddling (MIP); and (iii) Low intensity puddling (LIP). On average, HIP resulted in the lowest value (6.5 mm d?1) of percolation rate. Both grain yield (6.93 mg ha?1) and WUE (0.597 kg m?3) attained highest value under HIP. A decrease in puddling intensity under MIP and LIP lowered the yield by 2.97 and 17.75% respectively. In the case of WUE, the reduction was 16.27 and 54.66%.  相似文献   

10.
The impact of the use of natural resources associated with anthropogenic activities has increased evidently, mainly through land use changes which have altered hydrophysical properties of soils. We hypothesized that, in the same soil type (Vertisol), four types of land use system (grassland, agricultural, Eucalyptus plantation and thornscrub) and seasonal variation can modify the soil hydrophysical properties. Results showed significant differences between land use systems and seasons for hydraulic conductivity (K), infiltration capacity (fp) and cumulative infiltration (fc). There were no seasonal differences in soil penetration resistance (SPR), bulk density (ρd) and total porosity (φP). Grassland presented higher values for ρd (1.2 g cm?3) and SPR (5.3 kg cm?2) and lower for K (0.8 × 10?5 cm s?1) and φP (53%), unlike thornscrub. Agriculture presented lower SPR (0.4 kg cm?2), while plantation showed similar values when compared to the thornscrub. Kostiakov infiltration model was fitted to land use infiltration curves, showing differences between land use and season. The values for fp oscillated between 53.6 and 548.8 mm hr?1 and fc ranged from 105.3 to 1,061 mm. The order of the infiltration values goes as follows: agriculture > plantation > thornscrub > grassland. Land use changes in Vertisols induced modification of soil physical properties affecting processes like permeability, soil compaction and water availability.  相似文献   

11.
不同水分条件下旱稻水分利用效率的研究   总被引:4,自引:2,他引:4  
田间试验研究不同水分条件下旱稻水分利用效率结果表明 ,“旱稻 50 2”、“津稻 3 0 5”拔节期和开花期净光合速率、蒸腾速率及水分利用效率日变化规律一致 ,叶片净光合速率和蒸腾速率均呈中间高、两头低变化趋势 ,水分利用效率均呈“L”型趋势。充分灌溉和水分胁迫处理“旱稻 50 2”叶片水分利用效率均大于“津稻 3 0 5”。“旱稻50 2”和“津稻 3 0 5”农业用水 (灌溉 降水 )水分利用效率均低于灌溉水水分利用效率 ,2品种水分胁迫处理下灌溉水水分利用效率均高于充分灌溉处理 ,“津稻 3 0 5”农业用水和灌溉水水分利用效率均低于“旱稻 50 2”。  相似文献   

12.
Field trials were conducted to study the responses of grain yield and nitrogen (N) use efficiency at five input rates (N0, N82.5, N165, N247.5, and N330 kg ha?1) in a set of nine of the most representative rice cultivars. Grain yields of rice across the nine cultivars were increased significantly by N level. All the cultivars contained a significant linear plus plateau or quadratic relationship between N levels and grain yields.The minimum yields (means of 2 years) at N0, N82.5, N165, N247.5, and N330 level all occurred in No. 2 cultivar. Compared with the grain yield of No. 2 at different N levels, those of the maximum cultivars increased by 37.1 (No. 8), 39.1 (No. 7), 48.4 (No.3), 43.3 (No. 4), and 43.9% (No. 3), respectively. In 2011, the highest average apparent nitrogen recovery efficiency (ANRE) in grain of the 4 N levels occurred in No. 3 cultivar (45.9%), followed by No. 4, No. 6, and No. 1, and the highest average agronomic efficiency (AE) in grain of the 4 N levels occurred in No. 9 cultivar [29.0 kg (kg N)?1], followed by No. 3, No. 1, and No. 4. For the second-season planting, the highest average ANRE occurred in No. 4 cultivar (28.4%), followed by No. 3, No. 5, and No. 6, and the highest average AE occurred in No. 5 cultivar [18.1 kg (kg N)?1], followed by No. 4, No. 3, and No. 7. Overall, No. 3 and No. 4 cultivars were the ideal ones that not only increased the grain yield but also improved the N use efficiency.  相似文献   

13.
湖北省水稻施肥效果及肥料利用效率现状研究   总被引:11,自引:2,他引:11  
2006至2008年在湖北省17个县(市、区)分别布置早、中、晚稻试验54个、136个和61个,研究在当前生产条件下平衡施用氮、磷、钾肥对水稻产量及经济效益的影响,明确当前水稻生产中的肥料贡献率及农学利用率现状,为湖北省水稻高效生产提供理论依据。结果显示,与不施肥对照相比,早、中、晚稻平衡施用氮、磷、钾肥分别平均增产稻谷2153、2445和1908 kg/hm2,增产率分别为57.4%、44.0%和42.3%;分别增收1691、2413和1413 Yuan/hm2。肥料对早、中、晚稻产量的贡献率分别为33.3%、28.6%和27.8%;肥料农学利用率分别为7.2、7.6和6.1 kg/kg。表明目前湖北省水稻平衡施用氮、磷、钾肥的增产、增收效果显著,平衡施肥是提高稻谷产量的关键技术。  相似文献   

14.
氮肥和栽植密度对水稻产量及氮肥利用率的影响   总被引:41,自引:4,他引:41  
针对部分地区水稻生产中氮肥用量过高及水稻移植密度越来越低的状况,选择2个早稻和2个晚稻品种为试验材料,设置施氮水平和移植密度互作试验,分析两因素及其互作对水稻产量和氮素利用率的影响。结果表明,氮水平和移植密度对水稻产量有显著影响,但其互作效应不显著;氮水平、移植密度及其互作对氮素利用率的影响均达显著水平。其中,低氮水平处理平均氮素利用率比高氮水平增加2.1%5~.6%;高密度的氮素利用率比低密度增加10.1%4~5.7%。说明提高移植密度,减少氮肥用量,既可通过大幅度增加有效穗来实现高产,又能显著提高氮素利用率。在资源日益短缺、生产成本渐高及面源污染越来越严重的形势下,密植少氮应是值得推广的水稻栽培技术。在本试验条件下,早稻移植密度在29.33~6.0万穴/hm2的基础上施N 153.11~69.4 kg/hm2、晚稻移植密度在23.13~0.0万穴/hm2的基础上施N 161.51~90.1 kg/hm2氮素是高产高效节氮的合理组合。  相似文献   

15.
以山西省吉县地区幼龄苹果、梨为研究对象,在盆栽实验的基础上,研究了不同土壤含水量条件下两种果树蒸腾速率、光合速率日变化规律,得出苹果、梨的蒸腾速率在土壤含水量6%~10%时呈现双峰曲线,中午出现低谷区;而在土壤含水量12%~20%时,呈现正午峰值型的单峰曲线。在此基础上研究了蒸腾、光合及水分利用率与土壤含水量的关系:蒸腾速率、水分利用率与土壤含水量相关关系可用三次四项式描述,而光合速率与土壤含水量呈二次相关关系。黄土高原半干旱区适宜苹果生长的土壤水分范围为12%~14%,最佳土壤含水量为12.37%;适宜梨树生长的土壤水分范围为12%~16%,最佳土壤含水量为15.19%。  相似文献   

16.
开垦对黑土表层土壤压缩—回弹行为的影响   总被引:5,自引:1,他引:4  
为探讨开垦对典型黑土表层土壤压缩与回弹行为的影响,以未经开垦天然次生林和开垦年限为17 a、30 a、40 a耕地的表层(0~10 cm)土壤为研究对象,采用快速固结试验方法,研究了土壤压缩与回弹过程中土壤孔隙比(e)、压缩指数(C_c)、压缩系数(a)和回弹指数(C_s)的变化。结果表明:土壤孔隙比(e)、压缩指数(C_c)、压缩系数(a)和回弹指数(C_s)随着开垦年限的增加而降低,C_c、a、C_s变化范围分别为0.252~0.426、0.002 04~0.003 70 k Pa~(-1)、0.041~0.070;未经开垦天然次生林地土壤C_c、C_s显著高于耕地土壤(p0.05);C_c、a、C_s与容重均呈极显著负相关(p0.01),与有机质含量呈极显著正相关(p0.01)。土壤压缩性与回弹能力随着开垦年限的增加逐渐降低,容重、有机质含量对其影响最大。  相似文献   

17.
In intensively irrigated rice cultivation,plant-available silicon(Si)is a crucial nutrient for improving rice productivity.As a source of Si,calcium silicate(CaSiO3)was amended to evaluate the effect of silicate fertilizer on rice production,nitrogen(N)use efficiency,and greenhouse gas(GHG)emission under alternating wetting and drying in a pot experiment using a tropical soil from a paddy field of the International Rice Research Institute(IRRI)in the Philippines.Four levels of CaSiO  相似文献   

18.
Dry direct-seeded aerobic rice (DSR) is an emerging attractive alternative to traditional puddled transplanted rice (PTR) production system for reducing labour and irrigation water requirements in the Indo-Gangetic plains (IGP) of India. The fertilizer N requirement of DSR grown with alternate wetting and drying water management may differ from that of PTR grown under continuous flooding due to differences in N dynamics in the soil/water system and crop growth patterns. Limited studies have been conducted on optimizing N management and application schedule for enhanced N use efficiency in DSR. Therefore, field experiments were conducted over 3 years in NW India to evaluate the effects of N rate and timing of its application on crop performance and N use efficiency. Interaction effects of four N rates (0, 120, 150, and 180 kg ha?1) as urea and four schedules of N application on yield and N use efficiency were evaluated in DSR. The N schedules included N application in three equal split doses (0, 35 and 63, and 14, 35 and 63 days after sowing, DAS) and four equal split doses (0, 28, 49 and 70; 14, 28, 49 and 70 DAS). There was no significant interaction between N rate and schedules on grain yield. Significant response to fertilizer N was observed at 120 kg N ha?1 and economic optimum dose for three equal split doses and skipping N at sowing was 130 kg N ha?1. Highest mean grain yield of 6.60 t ha?1 was obtained when N was applied in three equal split doses at 14, 35 and 63 DAS which was about 8.5% higher compared with N applied in four equal split doses at 14, 28, 49 and 70 DAS. Under the best N application schedule, agronomic N use efficiency (26 kg grain kg?1), recovery efficiency (49%) and physiological efficiency (53 kg kg?1) were comparable to the values reported in Asia for PTR. Results from our study will help to achieve high yields and N use efficiency in DSR to replace resource intensive PTR.  相似文献   

19.
耕地土壤肥力及施氮量对于小麦产量和氮肥利用率均具有重要影响,但它们综合影响的定量关系及相对贡献率并不清楚。在太湖流域常熟市研究区,通过设置不同土壤肥力与施氮量的小麦田间试验,研究施氮量、土壤肥力综合质量指数对小麦产量和氮肥利用率的影响,并利用多元回归方法拟合他们之间的定量关系方程,分析揭示施氮量与土壤肥力综合质量指数对小麦产量和氮肥利用率综合影响的相对贡献率。结果表明,提升施氮量和土壤肥力综合质量指数,有利于增加小麦产量,但不利于小麦氮肥利用率提升;土壤肥力综合质量指数对小麦产量和氮肥利用率的影响大于施氮量,两者对产量和氮肥利用率的相对贡献率比值分别为1.09∶1和1.32∶1。表明通过提升土壤综合肥力、削减氮肥施用量,达到粮食与生态双重安全目标,培育和提升耕地土壤质量显得更为基本和重要。  相似文献   

20.
在施钾条件下灌溉水稻的养分吸收和利用效率研究   总被引:1,自引:0,他引:1  
HU Hong  WANG Guang-Huo 《土壤圈》2004,14(1):125-130
Potassium is one of the most important nutrients for rice production in many areas of Asia, especially in southeast China where potassium deficiency in soil is a widespread problem. Field experiments were conducted for four consecutive years in Jinhua City, Zhejiang Province, to determine utilization of nutrients (N, P and K) by inbred and hybrid rice and rice grain yields as affected by application of potassium fertilizer under irrigated conditions. Grain yield and nutrient harvest index showed a significant response to the NPK treatment as compared to the NP treatment. This suggested that potassium improved transfer of nitrogen and phosphorus from stems and leaves to panicles in rice plants. N and P use efficiencies of rice were not strongly responsive to potassium, but K use efficiency decreased significantly despite the fact that the amount of total K uptake increased. A significant difference between varieties was also observed with respect to nutrient uptake and use efficiency. Hybrid rice exhibited physiological advantage in N and P uptake and use efficiency over inbred rice. Analysis of annual dynamic change of exchangeable K and non-exchangeable K in the test soil indicated that non-exchangeable K was an important K source for rice. Potassium application caused an annual decrease in the concentration of available K in the soil tested, whereas an increase was observed in non-exchangeable K. It could be concluded that K fertilizer application at the rate of 100 kg ha-1 per season was not high enough to match K output, and efficient K management for rice must be based on the K input/output balance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号