首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
基于ANSYS Bladegen软件,针对不同叶片安放角变化规律分别设计3种前弯叶片液力透平专用叶轮。通过与试验结果对比,确定了合理的数值模拟方案,分别完成了3台透平全流场数值计算。分析了叶片安放角变化规律对透平外特性、压力分布和水力损失分布的影响。结果表明:最优工况时,3个叶轮的效率、压力分布和水力损失分布均相差不大。在非最优工况,安放角采用线性变化规律设计时,透平性能更好,效率曲线更平坦;叶轮出口处低压区域范围较其他2种方案大。水力损失分布显示在叶片进出口安放角及包角相同的情况下,安放角变化规律对蜗壳及尾水管内的流动影响不大,仅对叶轮内的流动产生较明显的影响,叶片安放角呈S形变化对透平性能的影响是负面的,线性分布规律相对较好。  相似文献   

2.
为研究按水力原动机理论设计的多级水轮机模式液力透级间导叶对其性能的影响,以一个二级水轮机模式液力透平为研究对象,设计了5种导叶数不同的新型空间级间导叶作为其级间导叶,利用数值分析进行定常及非定常数值计算,获得了5种模型的外特性曲线、内部流态以及压力脉动数据,并进行分析.结果显示:随着级间导叶数增加,液力透平效率先增后减...  相似文献   

3.
采用数值模拟与试验验证相结合的方法,在保证叶轮其他主要几何参数不变的情况下,分别模拟叶片包角为45°,65°,75°,85°,95°和105°的叶轮模型,并通过试验进行验证,探究叶片包角变化对混流泵作透平性能的影响规律.结果表明:随着叶片包角增大,混流泵作透平流量效率曲线向小流量工况偏移,且高效区间逐渐减小,流量扬程曲线和流量轴功率曲线上升趋势越来越陡峭.随着包角增加,液流流动将更加贴近叶片型线,叶轮流道内部漩涡现象得到一定程度的改善.包角增加使得叶片对液流约束能力加强,旋涡损失减小从而小流量区域水力损失减小;在大流量区域,包角增大使得叶轮流道加长,摩擦损失增加从而流道内的水力损失加大.因此旋涡损失和摩擦损失的共同作用使叶片包角存在一个最佳值使得透平最高,效率最高,对混流泵作透平叶片设计有一定的指导意义.  相似文献   

4.
为研究设计工况下叶片包角对高比转数离心泵性能的影响,以一台比转数为185的单级单吸离心泵为研究对象,在保证泵体和叶轮其他几何参数相同的前提下,将叶片包角分别设计为110°,115°,120°,125°和130°. 应用ANSYS CFX 14.5软件对离心泵内流场进行数值计算.结果表明:叶片包角对外特性有显著影响,包角过大,扬程和水力效率整体下降;当叶片包角增大到130°时,最佳效率点向小流量偏移近20%;同时,随着叶片包角的增大,叶轮进口低压区增大,更容易发生汽蚀;叶片包角从110°增大到115°时,蜗壳内流动更加平顺. 当叶片包角增大到125°时,隔舌附近出现明显的低速旋涡区,随着包角进一步增大,旋涡区域扩大且向出口处移动;此外,当叶片包角为120°时,各监测点的压力脉动幅值较低,说明对于动静干涉作用的影响,叶片包角存在一个最优值. 针对叶片包角为120°的模型泵进行了性能试验,对比发现数值计算的结果与试验结果趋势一致,表明数值计算方法是可信的,对高比转数离心泵水力设计具有一定的参考价值.  相似文献   

5.
长短叶片对液力透平性能的影响   总被引:3,自引:0,他引:3  
为了研究长短叶片对液力透平性能的影响,制作了液力透平样机,搭建了开式液力透平实验台,对有、无长短叶片的叶轮分别进行了数值和实验研究。研究结果表明,长短叶片的增加可以提高液力透平的效率,增加最高效率点的流量,降低液力透平的扬程。内部流场分析表明,长短叶片的增加,可以改善叶轮内部流场分布,减小叶轮内部漩涡的区域和强度,改善液力透平内部流动规律。对液力透平内部功率损失分布分析表明,液力透平内部的功率损失主要集中在叶轮内部,长短叶片的增加,改善了叶轮内部流动,减小了叶轮内部的功率损失。叶片数的增加加剧了叶轮和蜗壳之间的相互作用,因此蜗壳内部的功率损失有所增加。  相似文献   

6.
叶片包角对离心泵空化性能的影响   总被引:1,自引:0,他引:1  
为了研究叶片包角对离心泵空化性能的影响,选择3台不同比转数的离心泵为研究对象,分别将各模型的设计包角做减少5°、增加5°和10°变化。基于ANSYS CFX软件应用标准k-ε湍流模型、均质多相模型和Zwart-Gerber-Belamri空化模型对各模型泵在包角变化时泵内的空化流场进行数值模拟,分析空化性能和空泡体积分布变化规律,并通过实验进行验证。结果表明:叶片包角对中高比转数离心泵空化性能的影响较大;随着叶片包角的增加,各模型必需空化余量的变化规律各不相同,但叶片包角存在一个最优值使离心泵在设计工况下的空化性能最佳。  相似文献   

7.
为探究叶片安放角对微型轴流式水轮机水力性能的影响,以一比转数为548的微型轴流式水轮机为研究对象,在不改变其他几何参数的前提下,仅偏置转轮叶片各翼型剖面,得到7个不同叶片安放角的转轮;在试验验证的基础上,通过全流场数值计算,分析了改变叶片安放角对微型轴流式水轮机水力性能的影响.结果表明:随着叶片安放角的减小,在相同流量下水轮机的水头与出力均增大,高效率区域向小流量区域偏移,水轮机可高效运转的范围有一定程度的增大;随着叶片安放角的增大,水轮机的水头与出力减小,高效率区域向大流量区域偏移.适当减小叶片安放角的水轮机能在较大水头(流量)变化范围内维持较好的性能.其中,安放角为-4°的水轮机最高效率达到82.13%,高效率区的范围最大.该研究可为微型轴流式水轮机转轮的设计提供一定参考.  相似文献   

8.
叶片包角对离心泵性能的影响   总被引:1,自引:0,他引:1  
在保证离心泵主要几何参数不变的前提下,使用Hermite插值方法对叶片包角为90°、120°、150°和180°的4个叶轮进行叶片绘型。数值模拟分析了不同叶片包角与离心泵性能的关系。结果表明,叶片包角因改变叶轮出口相对速度液流角而使离心泵扬程和功率特性发生变化,其效果与改变叶片出口安放角类似。叶片包角增大的同时叶轮流道内的脱流与漩涡也随之减小,流动更贴近叶片型线,但叶轮流道内的摩擦损失也随之增大,离心泵存在一个使其效率最高的最佳叶片包角。  相似文献   

9.
为研究叶片包角对双吸泵内部流场及水力性能的影响规律,分别设计100°、110°、120°、130°、140°等五种不同叶片包角的双吸泵,通过数值模拟与试验相结合的方法,得到大小不同叶片包角的速度云图和压力云图,分析不同叶片包角对双吸泵扬程和效率曲线的影响规律。研究表明:合理增大叶片包角可以提高泵的扬程和效率,改善内流场的压力分布和速度分布,双吸离心泵最优叶片包角为120°。  相似文献   

10.
针对按泵工况设计的多级泵式间导叶用于液力透平装置时不能满足转轮对水流环量要求的问题,结合水轮机设计理论和CFD数值仿真研究了泵式同径正反导叶关键结构参数对液力透平装置的水头损失、效率和工作水头等影响程度。结果表明:适当增大反导叶叶片进口边直径,隔板边缘倒圆角,级间导叶进口处内外壁倒圆角均能够减小级间导叶水头损失、提高液力透平工作效率;导叶线型及数量对其出口水流速度环量影响较大;增大包角或增多叶片数量可增强导叶对水流强迫作用,提高出口水流环量,但增加导叶水头损失。可为用于液力透平的同径正反导叶的设计提供参考。  相似文献   

11.
为了寻找贯流式水轮机中导叶与转轮轴向间距的合理取值,在保证其结构紧凑性的同时,获得良好的水力性能,在其他主要参数不变的情况下,通过试验与数值计算相结合的方法,分别对导叶与转轮之间轴向间距s值为30, 40, 50, 60和70 mm 的微贯流式水轮机模型进行全流场数值计算,研究轴向间距对贯流式水轮机水力性能的影响.结果表明:水轮机的水头随着轴向间距的增大而增加,水轮机的轴功率随着轴向间距的增大呈现先上升后稳定的趋势;综合各流量条件,水轮机通常在适中的轴向间距下取得较高的效率,该模型在s=40 mm时效率达到最高.选择适中的轴向间距可以改善转轮叶片表面压力分布和流态;过大的轴向间距会导致转轮进口发生负撞击,出现脱流现象;转轮出口的湍动能随着轴向间距的扩大而减小.在最优工况下,轴向间距从30 mm扩大至70 mm的过程中,转轮内部的水力损失逐渐增加,增加幅度达到15.6%,而出水管中的水力损失则减小了19.7%,总水力损失呈增加趋势.综合考虑,选用s=40 mm 作为最终方案.  相似文献   

12.
为了研究叶片出口角对化工离心泵性能的影响,以一台比转数为180的化工离心泵为研究对象,将叶片出口角从22°依次增大到27°,37°和47°. 应用ANSYS 14.5软件进行数值计算,结果表明:叶片出口角对外特性影响显著,适当增大叶片出口角可以提高扬程及效率,但也不宜过度增大到47°;随着叶片出口角的增大,叶轮进口的低压区域逐渐向叶轮出口方向扩大,压力分布趋于紊乱,且在工作面附近有逆压梯度存在,会聚集不稳定的低压流体;在额定工况下,叶片出口角小于37°时,压力脉动幅值较小,且高频脉动很小;次主频有随叶片出口角的增大向低频处转移的趋势;4个方案叶轮所受径向力都是在额定工况下达到最小,并在小流量下差异性最大;不同工况下叶片出口角为27°的叶轮所受径向力最小,这说明对非定常特性的影响,叶片出口角存在一个最优值.此外,针对叶片出口角为22°的模型进行了性能试验,对比发现数值计算的结果是可信的.  相似文献   

13.
针对目前国内卷盘式喷灌机用水涡轮的外特性和内部流场分布规律的研究较少,设计了水涡轮试验台,对JP50卷盘式喷灌机配套使用的水涡轮进行试验,得到了外特性曲线.采用全流场和结构化网格技术对水涡轮内部流动进行了数值计算,分析水涡轮在不同流量下的压力分布和速度矢量分布,得到了内部流动分布规律.结果表明:水涡轮的工作效率很低,最高效率仅为13%,最高效率点前效率曲线比较陡峭,最高效率点后效率曲线相对较为平坦;最高效率的数值计算与试验结果相对误差为6.87%;高压水通过水涡轮主要工作叶片后压力迅速递减,造成了较大的水力损失;进出口压差随流量的增大而逐渐增大,与水涡轮的水头-流量及轴功率-流量曲线相吻合;水涡轮叶轮出口处出现回流现象;水涡轮出口管道下壁面附近存在低压区,并且随着流量的增大低压区的面积逐渐减小,随之出现了涡流现象.  相似文献   

14.
为研究叶片出口边倾斜角对叶轮与蜗壳由动静干涉作用而引起压力脉动的影响,在保证叶轮基本参数和叶片安放角变化规律不变的情况下,通过改变叶片出口边倾斜角而设计了2种计算方案.采用SST湍流模型、SIMPLEC算法和滑移网格技术,分别对不同叶片出口边倾斜角的叶轮匹配同一蜗壳的离心泵进行全流道非稳态数值模拟,得到不同叶片出口边倾斜角的离心泵外特性及压力脉动特性,并对其进行分析.计算结果表明:随着叶片出口边倾斜角的减小,泵高效区加宽;在小流量工况至设计流量工况时模型1,2的扬程流量曲线接近,在设计流量工况至大流量工况时模型2的扬程增大;2种叶片出口边倾斜角的离心泵中监测点处的压力脉动规律相同,呈周期性变化;较小叶片出口边倾斜角的离心泵中蜗壳内及隔舌处的压力脉动波动幅度减小,高频脉动成分减小.分析结果可为离心泵叶轮的设计提供理论参考.  相似文献   

15.
基于CFD-DEM耦合方法计算离心泵内固液两相的流动及过流部件的磨损,研究不同叶片包角时叶轮的平均磨损率、液相的速度分布、颗粒的运动、颗粒与壁面的接触次数和接触力.研究表明:随着包角的增大,扬程、效率和平均磨损率均先增大后减小;当包角为110°时,颗粒与壁面的接触力和接触次数最大,导致磨损最为严重,磨损严重区域在吸力面中间与前盖板的交界处;包角从90°增大到110°时,颗粒与过流部件壁面之间的接触次数逐渐增多,接触力逐渐增大,增大了离心泵磨损程度;包角从110°增大到160°时,聚集在吸力面中间位置的低速颗粒逐渐减少,导致颗粒与过流部件壁面之间的接触次数逐渐减少,接触力逐渐减小,从而减小了磨损严重的区域,减轻了离心泵磨损程度.  相似文献   

16.
分析了3种不同叶片安放角变化规律对泵性能的影响.叶片工作面和背面的相对流速根据流道内质点运动微分方程求解,压力分布根据相对运动Bernoulli方程计算,将压力力矩沿叶片表面进行积分得到泵叶轮的等价输入功率.根据叶片表面的相对速度计算叶轮扬程的滑移系数,进而计算各工况下泵的扬程以及水力效率.通过分析及试验研究表明,采用滑移理论可以准确分析设计工况点叶片安放角变化规律对泵性能的影响,双圆弧和线性变化规律的差别对泵的扬程影响不大,单圆弧叶片叶轮的扬程略低.影响滑移系数的关键是叶片工作面靠近出口部分的型线的设计.  相似文献   

17.
叶片型线对渣浆泵水力性能及叶轮磨损特性的影响   总被引:1,自引:0,他引:1  
为研究叶片型线对渣浆泵水力性能及叶轮磨损特性的影响,以LC100/350型渣浆泵为研究对象,工质为石灰石浆液,在叶轮轴面及叶片进出口安放角等参数不变的条件下,采用对数螺旋线进行叶片型线控制,通过数值计算方法,采用离散相模型,分析渣浆泵叶轮叶片型线对其水力性能及磨损特性之间的关系.计算结果表明:采用变角螺线法设计的圆柱形叶片有利于提高水力效率,但将导致扬程的小幅降低;包角120°的叶型为设计空间水力性能最优叶型;不同的叶片型线条件下,渣浆泵的水力性能与其叶轮磨损特性相互制约;小包角的叶片导致泵的水力性能下降,但叶轮磨损强度相对较低;叶轮的磨损强度与固相浓度呈正相关关系,叶轮磨损最严重的部位位于后盖板靠近轮毂的区域;在大流量工况下叶片包角对叶轮磨损强度影响较额定工况及小流量工况显著得多,颗粒粒径的变化与颗粒浓度的变化对泵的水力性能及叶轮磨损特性的影响基本一致.  相似文献   

18.
为研究叶片进口边形状对微型高速离心式冷却水泵性能的影响,在保证叶片进口断面面积相等的基础上,设计了3种不同叶片进口形式,即外凹型、半凸型、基础型.采用SST k-ω湍流模型对泵的水力特性以及压力脉动进行数值计算,将结果与试验值进行对比分析.结果表明:仿真结果较为准确地预测了泵的水力性能,具有可行性;3种方案在远离扩压管的叶轮流道内均存在旋涡;与基础型相比,外凹型方案的扬程和效率有明显提高,并且高效区范围最宽;外凹型方案叶片进口边和出口附近的湍动能分布较好、叶轮出口圆周速度最高;3种方案蜗壳内压力脉动幅值出现在叶频及其倍频处,距隔舌位置越远,脉动幅值越低.采用外凹型方案叶片能减小脉动幅值,利于泵稳定运行.研究结果为微型高速离心泵优化设计提供一定的参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号