首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose fibres and cellulose nanocrystals were extracted from rice husk. Fibres were obtained by submitting the industrial rice crop to alkali (NaOH) and bleaching treatments. Nanocrystals were extracted from these fibres using sulphuric acid (H2SO4) hydrolysis treatment. The material obtained after each stage of the treatments was carefully characterized and its chemical composition was determined. Morphological investigation was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy showed the progressive removal of non-cellulosic constituents. X-ray diffraction (XRD) analysis revealed that the crystallinity increased with successive treatments. The thermal stability of the rice husk fibres and cellulose nanocrystals was also investigated using thermogravimetric analysis (TGA).  相似文献   

2.
In this study, biodegradable composites were prepared using cellulose nanowhiskers and poly(lactic acid). For processing at high temperature over 200 °C, cellulose nanowhiskers were prepared by ultra-sound treatment, with the high thermal stability of natural cellulose. The nanowhiskers were confirmed using transmission electron microscopy, X-ray diffraction, and thermo-gravimetric analysis. Surface modification of the cellulose nanowhiskers was performed to increase the adhesion between hydrophilic nanofillers and hydrophobic polymer matrix. The dynamic mechanical thermal analysis of the composites showed better reinforcing effect of the modified cellulose nanocrystals. The effects of cellulose nanowhiskers on the biodegradability of poly(lactic acid) were studied using a microbial oxidative degradation analyzer.  相似文献   

3.
In the present study, nanocomposites films formed by hydroxyethyl cellulose (HEC) and graphene oxide (GO) were synthesized and characterized. Compared with pure hydroxyethyl cellulose film, the thermal stability and mechanical properties of the composite materials were significantly improved. When the graphene loading was only 1.0 wt%, the maximum weight loss temperature increased 11.14 °C. The tensile strength and Young’s modulus of HEC/GO nanocomposites films were increased by 30.28 and 75.63 % compared to the pure HEC films, with only 1.0 wt% GO. The X-ray diffraction and Fouriertransform infrared spectroscop showed that GO sheets were completely exfoliated in the HEC matrix and suggested the presence of the weak interaction between HEC and GO sheets because of large number of oxygen-containing hydrophilic functional groups on the surface and edge of GO sheets. Furthermore, the well-dispersed GO nanosheets in the films can be inferred from the SEM and Halpin-Tsai model analysis. On the other hand, the composite films showed improved barrier properties against oxygen. This simple process for preparation of HEC/GO films is attractive for potential development of high-performance films for packing applications.  相似文献   

4.
The present study aimed to convert starch and potato peel waste to nanocrystals. Starch nanocrystals were prepared using two methodologies: direct acid hydrolysis and enzyme pretreatment followed by acid hydrolysis. Direct hydrolysis broke down the starch granules to nanocrystals in 12 days. Enzyme pretreatment with starch hydrolytic enzymes (α-amylase and amyloglucosidase) reduced the time for preparation of starch nanocrystals by 6 days. Starch nanocrystals of optimum size were obtained with both the treatments and the resultant size ranged from 10 to 50 nm. Nanocrystals were disk-like platelets in appearance. Cellulose nanocrystals were derived from cellulosic material in the potato peel. Cellulose was isolated from peel waste with alkali treatment. Further, cellulose nanocrystals from potato peel and cellulose microcrystalline were prepared by acid hydrolysis. Microscopic images revealed that the aqueous suspension of cellulose nanocrystals derived from potato peel were single rod shaped, whereas those derived from cellulose microcrystalline were rod-like nanoparticles, agglomerated in the form of bundles including some of the rods in single units (well separated). The size of potato peel nanocrystals ranged from 40 to 100 nm (length) and cellulose microcrystalline ranged from 4 to 20 nm (diameter) by 110 to 250, given 4 to 20 nm (length), respectively. As starch nanocrystals as well as cellulose nanocrystals are derived from biopolymer, both can be considered safe for humans and the environment. Moreover, the biodegradable nature of these nanocrystals makes them superior over metallic nanoparticles, particularly in the field of nanocomposites.  相似文献   

5.
The Allyl-heptaisobutyl-polyhedral oligomeric silsesquioxane (AHO-POSS) grafted polypropylene (PP) was prepared by reactive extrusion and by physical blending routes. The structure and properties of physically blended and reactively blended POSS/PP nanocomposites were investigated by FTIR, wide-angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC), thermogravimetric analysis, SEM, spherutlic growth and mechanical properties studies. Chemical bonding of POSS with PP in reactive extrusion was confirmed by FT-IR spectroscopy. DSC and TGA studies showed that the thermal stability of AHO-POSS/PP nanocomposite prepared by reactive extrusion improved significantly as compared to only physically blended nanocomposites. WAXD studies showed decrease in crystallinity of the AHO-POSS/PP nanocomposites prepared by reactive extrusion. SEM studies showed aggregation tendency in case of physically blended AHO-POSS/PP nanocomposites. Spherulite growth studies show reactive blending retards spherulite growth in PP polymer.  相似文献   

6.
A simple method based on the combination of the intercalation from solution and melt-processing preparation methods was used to prepare highly exfoliated and compatible thermoplastic starch (TPS) and montmorillonite clay (MMT) nanocomposites. The effects of the MMT content on the thermal, structural, and mechanical properties of the nanocomposites were investigated. XRD diffraction was used to investigate the MMT exfoliation/intercalation degrees in the TPS matrix. Data from thermogravimetric analysis and differential scanning calorimetry revealed that the addition of MMT increased the thermal stabilities of TPS nanocomposites. Young's modulus and tensile strength increased from 8.0 to 23.8 MPa and 1.5 to 2.8 MPa with an increasing MMT content from 0 to 5 wt% without diminishing their flexibility. The improvement in such properties can be attributed to the good dispersion/exfoliation of MMT in the TPS matrix. Combining both methods, it was possible to obtain homogenous and transparent nanocomposites with excellent thermal and mechanical properties for application as packaging materials.  相似文献   

7.
Thermal properties of copolyetherester/silica nanocomposites were examined by using DSC and TGA. The segmented block copolyetheresters with various hard segment structures and hard segment contents (HSC) were synthesized and their silica nanocomposite films were prepared by solution casting method. The nano-sized fumed silica particles were found to act as a nucleating agent of the copolyetheresters. The nanocomposites always showed reduced degree of supercooling or faster crystallization than the corresponding copolyetheresters. The nanocomposites also showed increased hard segment crystallinity except HSC 35 sample which had short hard segment length. In case of 2GT [poly(ethylene terephthalate)] copolyetheresters, which were not developed commercially because of their low crystallization rate, the hard segment crystallinity increased considerably. The copolyetherester/silica nanocomposites showed better thermal stability than copolyetheresters.  相似文献   

8.
In order to improve thermal stability of Acrylonitrile-butadiene-styrene (ABS) polymer, ABS/natural clinoptilolite (Clino) nanocomposite was produced using solvent/non-solvent method. The influence of natural clinoptilolite nanoparticles on scratch resistance and adherence properties of ABS coating on steel coupons was investigated. In order to study the scratch resistance and adherence properties, thin (20 µm) coatings of ABS and ABS/Clino nanocomposites, were prepared by solution casting method. The formation of ABS/Clino nanocomposite was characterized using FTIR spectroscopy, X-ray diffraction (XRD) patterns and scanning electron microscopy (SEM). Results showed that there is a strong interaction such as hydrogen bonding between ABS and clinoptilolite nanoparticles. The thermal stability of the nanocomposite was examined using thermogravimetric analysis (TGA). TGA results showed an increase in the thermal degradation temperature of the nanocomposite. TGA results indicated that the thermal stability of ABS increases by increasing the Clino content of nanocomposite up to 5 % w/w. Scratch resistance and adherence properties of ABS/Clino nanocomposite coatings were also evaluated. Results showed that the scratch resistance and adherence strength of ABS/Clino nanocomposite coatings are higher than that of pure ABS coatings.  相似文献   

9.
The multi-walled carbon nanotube (MWNT)/cellulose nanocomposites were prepared by using monohydrated Nmethylmorpholine-N-oxide (NMMO) as a solvent for dispersing the acid-treated MWNTs (A-MWNTs) as well as for dissolving the cellulose. The A-MWNTs were well dispersed in both monohydrated NMMO and the nanocomposite films. The nanocomposite films were prepared by a film-casting method onto a glass plate. The tensile strain at break, Young’s modulus, and toughness of nanocomposite films increased by ~5, ~2 and ~12 times, respectively at ? (A-MWNT content in the nanocomposite)=0.8 wt%, as compared to those of the pure cellulose film. The thermal degradation temperature of the nanocomposite films also increased from 329 to 339 oC by incorporation of 1 wt% A-MENTs. The electric conductivities of the A-MWNT/cellulose nanocomposites at ? =1 and 10 wt% were 2.09×10?5 and 3.68×10?3 S/cm, respectively. The transmittances were 86, 69 and 55 % at 550 nm for 0.4, 0.8 and 1 wt% nanocomposite films, respectively. Thus, these nanocomposites are promising materials in terms of all the properties studied in this paper and can be used for many applications, such as toughened cellulose fibers, transparent electrodes, etc.  相似文献   

10.
In this study, different organoclays (OMMTs) were prepared using various fatty nitrogen compounds (FNCs) and natural clay, sodium montmorillonite (MMT). The clay modification was carried out by stirring the clay particles in an aqueous solution of fatty amides (FA), fatty hydroxamic acids (FHA), and carbonyl difatty amides (CDFA). These OMMTs were then used for nanocomposites production to improve the property balance of poly(lactic acid) (PLA) by solution casting process. All sets of OMMTs and nanocomposites were characterized using various apparatuses. In the nanocomposites, where the clay surface is pretreated with FA, FHA and CDFA, the basal spacing of the clay increased to 2.94, 3.26 and 3.80 nm, respectively The X-ray diffraction (XRD) and transmission electron microscopy (TEM) results confirmed the production of nanocomposites. PLA modified clay nanocomposites show higher thermal stability and significant improvement of mechanical properties in comparison with pure PLA.  相似文献   

11.
Graphene nanoplatelet (GnP) was chemically functionalized by amine groups for improvement of compatibility in poly(methyl methacrylate) (PMMA)/poly(ethylene oxide) (PEO) blend. PMMA/PEO (90/10) nanocomposites with non-functionalized GnP and functionalized GnP (FGnP) were prepared by solution casting method. Successful grafting of amine groups on the GnP surface was confirmed by Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) analysis. The Transmission electron microscopy (TEM) images showed that the dispersion state of FGnP was better than that of GnP in PMMA/PEO nanocomposites. The effects of FGnP and GnP on rheological, thermal and electrical properties of PMMA/PEO nanocomposites were investigated by various methods. The results indicated that the FGnP-based nanocomposites had higher storage modulus, glass transition temperature and thermal stability as compared to the GnP-based nanocomposites. The electrical conductivity of the nanocomposites with FGnP was better than that of GnP-based nanocomposites. The higher conductivity was attributed to homogeneous and well dispersion state of FGnP in PMMA/PEO nanocomposites.  相似文献   

12.
A two step process was used for the modification of a cellulose/chitin mixed fibers: the first step was an alkali treatment with a NaOH solution (20 %), which was followed by the reaction with one of the reagents such as Nisopropylacrylamide, p-hydroxybenzoic acid, gallic acid, or eugenol. Both the samples activated with the alkali treatment and modified with chemicals were characterized by attenuated total reflectance Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy and thermal analysis. Results revealed the morphological and structural changes of the fiber surface after the surface grafting, which significantly altered the cellulose/chitin mixed fiber properties. Thermal analysis results showed an increase in the thermal stability of the treated samples. Antioxidant activity of cellulose/chitin mixed fibers modified with phenolic compounds showed that the efficiency depends on the chemical nature of phenolic compound.  相似文献   

13.
This paper is a contribution of scientific knowledge on the characteristics of several by-product materials from a bleached eucalyptus kraft pulp mill. In fact, three industrial wastes arising from bleached hardwood kraft pulps, namely: unbleached screen rejects (USR), effluent treatment (ETW), and eucalyptus bark (EB) were analyzed with the aim of their possible valorization as an alternative source of cellulose. Pure powder cellulose, CEAL, from Aldrich was also analyzed, as a reference. The structural, thermal, and morphological study of these raw materials were carried out by Fourier transform infrared spectroscopy (FTIR), energy dispersion spectrometry (EDS), X-ray diffraction (XRD), thermogravimetry (TG), temperature modulated differential scanning calorimetry (TMDSC) and scanning electron microscopy (SEM). Their morphological properties were determined using MorFi apparatus. For this study the sample bleached kraft pulp, BKP, was analyzed as a reference. Lignin and carbohydrate contents were also quantified. These by-products were studied as such (i.e. without careful purification) because we intended to find rational and low-cost way of valorization. In fact any additional operation will induce an over cost. The results obtained indicate that these industrial wastes can be potential raw material in fibre-based applications (paper, composites, …), since they contain a high proportion of cellulose with preserved fibrillar morphology and good thermal stability. Some of these materials have low lignin and inorganic residue contents.  相似文献   

14.
Nanofibrils of cellulose were prepared from short staple cotton by refining process using a lab disc refiner that exerts a combination of shear and frictional forces. The nanofibrils were characterized by scanning electron microscope (SEM), atomic force microscope (AFM), X-ray diffractometer (XRD) and Fourier transform infrared spectroscopy (FTIR). From SEM and AFM, it was found that starting average diameter of the cotton fiber (∼25 μm) was reduced to 242 nm after 30 passes of refining. FTIR analysis revealed the increase in amorphous nature of cotton cellulose due to refining process. Supportively, XRD analysis showed a steady decline in percent crystallinity of the cotton fibers as the cotton fibres were passed through the refiner for more number of passes. Similarly, degree of polymerization (DP) was reduced from 2720 to 740 due to the refining process. Nanofibrils of cellulose from short staple cotton have a huge potential for application in nanofilters and as biodegradable fillers in nanocomposites.  相似文献   

15.
In this work the feasibility of extracting cellulose from cotton, sisal and flax fibers, corn stover and rice husk by means of usual chemical procedures such as acid hydrolysis, chlorination, alkaline extraction, and bleaching was analyzed. Cellulose nanowhiskers from these sources, and from commercial cellulose, were produced by the acid hydrolysis of the obtained celluloses. The final products were characterized by means of Thermogravimetric Analysis (TGA), Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electronic Microscopy (SEM) and Atomic Force Microscopy (AFM). The chemical procedure used to obtain cellulose nanowhiskers was effective in all cases but differences on the thermal stability, chemical composition, crystallinity and morphology were found due to the dissimilar nature of the different sources. Thus, this work demonstrates that the morphology and physical properties of cellulose nanowhiskers synthesized by the same conditions are strongly dependent on their source.  相似文献   

16.
Cellulose/multi-walled carbon nanotubes (MWCNTs)- composite membranes applied in electrochemical and biomedical fields were prepared using 1-ethyl-3-methylimidazolium diethyl phosphate (EmimDEP) as solvent in this study. With the increasing of MWCNTs amount, the membrane conductivity increased, and the conductivity reached 9.1 S/cm as the mass ratio of MWCNTs to cellulose being 2:1. The additions of sodium dodecyl sulfate (SDS), 1-hexadecyl-3-methylimidazolium bromide (C16mimBr) and 1-butyl-3-methylimidazolium tetrafluoroborate (BmimBF4) efficiently improved the conductivity, mechanical property, and thermal stability by promoting the dispersion of MWCNTs. When the mass ratio of C16mimBr to MWCNTs changed from 0 to 0.3:1, the conductivity increased from 0.08 S/cm to 0.14 S/cm, and the tensile strength increased from 13.3 MPa to 17.0 MPa. These results indicate that the binary ionic liquids (ILs) system can regulate the properties of the composite membranes, and is a feasible approach for preparing cellulose/MWCNTs composite membranes with enhanced properties.  相似文献   

17.
The products from the dispersion of nanoscale particulates such as the layered clays or the spherical inorganic minerals within the polymeric matrices are called polymeric nanocomposites. In this paper, we prepared poly(vinyl chloride) (PVC) based nanocomposites containing SiO2-kaolinite by melt compounding. The influence of SiO2-kaolinite on the surface properties of PVC was investigated by the use of various surface analysis techniques including a ttenuated total reflectance spectroscopy (ATR), wide angle X-ray diffractometry (WAXD), atomic force microscopy (AFM), scanning electron microscopy (SEM), electron dispersive X-ray spectrometer (EDX), contact angle measurement (CAM), and reflectance spectroscopy (RS). ATR spectroscopy showed possible interaction between layered kaolinite and PVC at surface. Microscopic methods illustrated an increased surface roughness compared to the pure PVC. Contact angle measurements of the resultant PVC nanocomposites demonstrated that the wettability of substrates depends on the surface interactions between kaolinite layers and PVC matrix. Optical properties of nanocomposite films were finally measured by the aid of reflectance spectrophotometer. It can be seen from optical studies that reflectance values were increased after incorporation of SiO2-kaolinite in nanocomposite.  相似文献   

18.
Natural cellulosic fibres from various varieties of banana plants such as Red Banana, Nendran, Rasthaly, Morris and Poovan have been extracted manually and the physico-chemical properties of these fibres are investigated. The tensile strength of these fibres varies from 176 MPa to 525 MPa. The untreated fibres have more tensile strength than the treated one. The thermal properties of these fibres are studied by Differential Scanning Calorimetry (DSC). Two DSC thermal peaks, one is around 25°C to 180°C and the other is around 155°C to 240°C, are noticed. The tensile strengths have a direct correlation with the area of the lower thermal peak (enthalpy) and activation energy of the DSC, and also with the moisture absorption characteristics. The FTIR shows characteristic bands corresponds to cellulose. The reflections of the X-ray fibre diffraction pattern recorded for the banana fibre have been correlated with the mechanical strength.  相似文献   

19.
The thermal treatment method was employed to achieve higher homogeneity of calcium ferrite (CaFe2O4) and Poly (vinyl alcohol) (PVA) nanocomposites. The influences of phase transformation on physical and biological properties of calcined specimens were investigated by various experimental techniques including X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), high resolution Field emission scanning electron microscope (FESEM) and Fourier transform infrared spectroscopy (FT-IR). Heat treatment was conducted at temperatures between 723 and 923 K, so that a phase transformation occurred from cubic to orthorhombic spinel structure at 923 K. The chemical analysis of the PVA/CaFe2O4 nanocomposite was performed by energy dispersion X-ray analysis (EDXA), demonstrated the PVA/CaFe2O4 nanocomposites contained the elements of C, Ca, Fe, and O. The formed nanocomposites exhibited ferromagnetic behaviors which were confirmed by using a vibrating sample magnetometer (VSM). The calcined specimens were carried out to an antimicrobial or antifungal test.  相似文献   

20.
Nanocomposites of polyurethane (PU) and multi-walled carbon nanotubes (MWNTs) were prepared via in-situ polymerization of poly(ɛ-caprolactone)diol (PCL)-grafted-MWNTs, 4,4′-methylene bis(phenyl isocyanate), and 1,4-butanediol. The grafting of PCL onto MWNTs was confirmed by Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The nanocomposites showed more improved mechanical properties compared to conventional nanocomposites with the same MWNT loading. The thermo-responsive shape recovery as measured in a cyclic tensile test was observed to be approximately 80 % for in-situ nanocomposites, though it showed a reduced trend as the wt% of MWNTs increased. X-ray diffraction investigation also showed that the addition of MWNTs into the polyurethane increased the crystallinity. Scanning electron microscopy and TEM measurements showed better dispersion of MWNTs in the nanocomposites synthesized using in-situ method. Consequently, the presence of PCL-g-MWNTs made an important contribution to the enhancement of the mechanical and shape memory properties of polyurethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号