首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Raffinose oligosaccharides (RO) are the factors primarily responsible for flatulence upon ingestion of soybean-derived products. ROs are hydrolyzed by alpha-galactosidases that cleave alpha-1,6-linkages of alpha-galactoside residues. The objectives of this study were the purification and characterization of extracellular alpha-galactosidase from Debaryomyces hansenii UFV-1. The enzyme purified by gel filtration and anion exchange chromatographies presented an Mr value of 60 kDa and the N-terminal amino acid sequence YENGLNLVPQMGWN. The Km values for hydrolysis of pNP alphaGal, melibiose, stachyose, and raffinose were 0.30, 2.01, 9.66, and 16 mM, respectively. The alpha-galactosidase presented absolute specificity for galactose in the alpha-position, hydrolyzing pNPGal, stachyose, raffinose, melibiose, and polymers. The enzyme was noncompetitively inhibited by galactose (Ki = 2.7 mM) and melibiose (Ki = 1.2 mM). Enzyme treatments of soy milk for 4 h at 60 degrees C reduced the amounts of stachyose and raffinose by 100%.  相似文献   

2.
Polyphenol oxidase (EC 1.10.3.1, PPO) in the pulp of banana (Musa sapientum L.) was purified to 636-fold with a recovery of 3.0%, using dopamine as substrate. The purified enzyme exhibited a clear single band on polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate (SDS)-PAGE. The molecular weight of the enzyme was estimated to be about 41000 and 42000 by gel filtration and SDS-PAGE, respectively. The enzyme quickly oxidized dopamine, and its K(m) value for dopamine was 2.8 mM. The optimum pH was at 6.5, and the enzyme activity was stable in the range of pH 5-11 at 5 degrees C for 48 h. The enzyme had an optimum temperature of 30 degrees C and was stable even after a heat treatment at 70 degrees C for 30 min. The enzyme activity was completely inhibited by L-ascorbic acid, cysteine, sodium diethyldithiocarbamate, and potassium cyanide. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.  相似文献   

3.
Polyphenol oxidase (PPO) of garland chrysanthemum (Chrysanthemum coronarium L.) was purified approximately 32-fold with a recovery rate of 16% by ammonium sulfate fractionation, ion exchange chromatography, hydrophobic chromatography, and gel filtration. The purified enzyme appeared as a single band on PAGE and SDS-PAGE. The molecular weight of the enzyme was estimated to be about 47000 and 45000 by gel filtration and SDS-PAGE, respectively. The purified enzyme quickly oxidized chlorogenic acid and (-)-epicatechin. The K(m) value (Michaelis constant) of the enzyme was 2.0 mM for chlorogenic acid (pH 4.0, 30 degrees C) and 10.0 mM for (-)-epicatechin (pH 8.0, 40 degrees C). The optimum pH was 4.0 for chlorogenic acid oxidase (ChO) and 8.0 for (-)-epicatechin oxidase (EpO). In the pH range from 5 to 11, their activities were quite stable at 5 degrees C for 22 h. The optimum temperatures of ChO and EpO activities were 30 and 40 degrees C, respectively. Both activities were stable at up to 50 degrees C after heat treatment for 30 min. The purified enzyme was strongly inhibited by l-ascorbic acid and l-cysteine at 1 mM.  相似文献   

4.
Polyphenol oxidase (PPO) was purified and characterized from Chinese cabbage by ammonium sulfate precipitation and DEAE-Toyopearl 650M column chromatography. Substrate staining of the crude protein extract showed the presence of three isozymic forms of this enzyme. The molecular weight of the purified enzyme was estimated to be approximately 65 kDa by gel filtration on Toyopearl HW-55F. On SDS-PAGE analysis, this enzyme was composed of a subunit molecular weight of 65 kDa. The optimum pH was 5.0, and this enzyme was stable at pH 6.0 but was unstable below pH 4.0 or above pH 7.0. The optimum temperature was 40 degrees C. Heat inactivation studies showed temperatures >40 degrees C resulted in loss of enzyme activity. PPO showed activity to catechol, pyrogallol, and dopamine (K(m) and V(max) values were 682.5 mM and 67.6 OD/min for catechol, 15.4 mM and 14.1 OD/min for pyrogallol, and 62.0 mM and 14.9 OD/min for dopamine, respectively). The most effective inhibitor was 2-mercaptoethanol, followed in decreasing order by ascorbic acid, glutathione, and L-cysteine. The enzyme activity of the preparation was maintained for 2 days at 4 degrees C but showed a sudden decreased after 3 days.  相似文献   

5.
The hyphomycete Chalara paradoxa CH32 produced an extracellular beta-glucosidase during the trophophase. The enzyme was purified to homogeneity by ion-exchange and size-exclusion chromatography. The purified enzyme had an estimated molecular mass of 170 kDa by size-exclusion chromatography and 167 kDa by SDS-PAGE. The enzyme had maximum activity at pH 4.0-5.0 and 45 degrees C. The enzyme was inactivated at 60 degrees C. At room temperature, it was unstable at acidic pH, but it was stable to alkaline pH. The purified enzyme was inhibited markedly by Hg(2+) and Ag(2+) and also to some extent by the detergents SDS, Tween 80, and Triton X-100 at 0.1%. Enzyme activity increased by 3-fold in the presence of 20% ethanol and to a lesser extent by other organic solvents. Purified beta-glucosidase was active against cellobiose and p-nitrophenyl-beta-D-glucopyranoside but did not hydrolyze lactose, maltose, sucrose, cellulosic substrates, or galactopyranoside, mannopyranoside, or xyloside derivatives of p-nitrophenol. The V(max) of the enzyme for p-NPG (K(m) = 0.52 mM) and cellobiose (K(m) = 0.58 mM) were 294 and 288.7 units/mg, respectively. Hydrolysis of pNPG was inhibited competitively by glucose (K(i) = 11.02 mM). Release of reducing sugars from carboxymethylcellulose by a purified endoglucanase produced by the same organism increased markedly in the presence of beta-glucosidase.  相似文献   

6.
The maltooligosyltrehalose trehalohydrolase (MTHase) mainly cleaves the alpha-1,4-glucosidic linkage next to the alpha-1,1-linked terminal disaccharide of maltooligosyltrehalose to produce trehalose and the maltooligosaccharide with lower molecular mass. In this study, the treZ gene encoding MTHase was PCR-cloned from Sulfolobus solfataricus ATCC 35092 and then expressed in Escherichia coli. A high yield of the active wild-type MTHase, 13300 units/g of wet cells, was obtained in the absence of IPTG induction. Wild-type MTHase was purified sequentially using heat treatment, nucleic acid precipitation, and ion-exchange chromatography. The purified wild-type MTHase showed an apparent optimal pH of 5 and an optimal temperature at 85 degrees C. The enzyme was stable at pH values ranging from 3.5 to 11, and the activity was fully retained after a 2-h incubation at 45-85 degrees C. The k(cat) values of the enzyme for hydrolysis of maltooligosyltrehaloses with degree of polymerization (DP) 4-7 were 193, 1030, 1190, and 1230 s(-1), respectively, whereas the k(cat) values for glucose formation during hydrolysis of DP 4-7 maltooligosaccharides were 5.49, 17.7, 18.2, and 6.01 s(-1), respectively. The K(M) values of the enzyme for hydrolysis of DP 4-7 maltooligosyltrehaloses and those for maltooligosaccharides are similar at the same corresponding DPs. These results suggest that this MTHase could be used to produce trehalose at high temperatures.  相似文献   

7.
The activity of tomato pectinesterase (PE) was studied as a function of pressure (0.1-900 MPa) and temperature (20-75 degrees C). Tomato PE was rather heat labile at atmospheric pressure (inactivation in the temperature domain 57-65 degrees C), but it was very pressure resistant. Even at 900 MPa and 60 degrees C the inactivation was slower as compared to the same treatment at atmospheric pressure. At atmospheric pressure, optimal catalytic activity of PE was found at neutral pH and a temperature of 55 degrees C. Increasing pressure up to 300 MPa increased the enzyme activity as compared to atmospheric pressure. A maximal enzyme activity was found at 100-200 MPa combined with a temperature of 60-65 degrees C. The presence of Ca(2+) ions (60 mM) decreased the enzyme activity at atmospheric pressure in the temperature range 45-60 degrees C but increased enzyme activity at elevated pressure (up to 300 MPa). Maximal enzyme activity in the presence of Ca(2+) ions was noted at 200-300 MPa in combination with a temperature of 65-70 degrees C.  相似文献   

8.
Purification of a lipoxygenase enzyme from the cultivar Tresor of durum wheat semolina (Triticum turgidum var. durum Desf) was reinvestigated furnishing a new procedure. The 895-fold purified homogeneous enzyme showed a monomeric structure with a molecular mass of 95 +/- 5 kDa. Among the substrates tested, linoleic acid showed the highest k(cat)/K(m) value; a beta-carotene bleaching activity was also detected. The enzyme optimal activity was at pH 6. 8 on linoleic acid as substrate and at pH 5.2 for the bleaching activity on beta-carotene, both assayed at 25 degrees C. The dependence of lipoxygenase activity on temperature showed a maximum at 40 degrees C for linoleic acid and at 60 degrees C for bleaching activity on beta-carotene. The amino acid composition showed the presence of only one tryptophan residue per monomer. Far-UV circular dichroism studies carried out at 25 degrees C in acidic, neutral, and basic regions revealed that the protein possesses a secondary structure content with a high percentage of alpha- and beta-structures. Near-UV circular dichroism, at 25 degrees C and at the same pH values, pointed out a strong perturbation of the tertiary structure in the acidic and basic regions compared to the neutral pH condition. Moreover, far-UV CD spectra studying the effects of the temperature on alpha-helix content revealed that the melting point of the alpha-helix is at 60 degrees C at pH 5.0, whereas it was at 50 degrees C at pH 6.8 and 9.0. The NH(2)-terminal sequence allowed a homology comparison with other lipoxygenase sequences from mammalian and vegetable sources.  相似文献   

9.
Pectin methylesterase (PME) from green bell peppers (Capsicum annuum) was extracted and purified by affinity chromatography on a CNBr-Sepharose-PMEI column. A single protein peak with pectin methylesterase activity was observed. For the pepper PME, a biochemical characterization in terms of molar mass (MM), isoelectric points (pI), and kinetic parameters for activity and thermostability was performed. The optimum pH for PME activity at 22 degrees C was 7.5, and its optimum temperature at neutral pH was between 52.5 and 55.0 degrees C. The purified pepper PME required the presence of 0.13 M NaCl for optimum activity. Isothermal inactivation of purified pepper PME in 20 mM Tris buffer (pH 7.5) could be described by a fractional conversion model for lower temperatures (55-57 degrees C) and a biphasic model for higher temperatures (58-70 degrees C). The enzyme showed a stable behavior toward high-pressure/temperature treatments.  相似文献   

10.
Trypsin from tongol tuna (Thunnus tonggol) spleen was purified to 402-fold by ammonium sulfate precipitation, followed by a series of chromatographic separations. The molecular mass of trypsin was estimated to be 24 kDa by size-exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Trypsin appearing as a single band on native PAGE showed the maximal activity at pH 8.5 and 65 degrees C. It was stable in a wide pH range of 6-11 but unstable at the temperatures greater than 50 degrees C. The enzyme required calcium ion for thermal stability. The activity was strongly inhibited by 1.0 g/L soybean trypsin inhibitor and 5 mM TLCK and partially inhibited by 2 mM ethylenediaminetetraacetic acid. Activity was lowered with an increasing NaCl concentration (0-30%). The enzyme had a Km for Nalpha-p-tosyl-L-arginine methyl ester hydrochloride of 0.25 mM and a Kcat of 200 s-1. The N-terminal amino acid sequence of trypsin was determined as IVGGYECQAHSQPHQVSLNA and was very homologous to other trypsins.  相似文献   

11.
Aspergillus nidulans WG312 strain secreted lipase activity when cultured in liquid media with olive oil as carbon source. Highest lipase productivity was found when the mycelium was grown at 30 degrees C in a rich medium. The new enzyme was purified to homogeneity from the extracellular culture of A. nidulans by phenyl-Sepharose chromatography and affinity binding on linolenic acid-agarose. The lipase was monomeric with an apparent M(r) of 29 kDa and a pI of 4.85 and showed no glycosylation. Kinetic of enzyme activity versus substrate concentration showed a typical lipase behavior, with K(M) and K(cat) values of 0.28 mM and 494 s(-)(1) and 0.30 mM and 320 s(-)(1) for the isotropic solution and for the turbid emulsion, respectively. All glycerides assayed were hydrolyzed efficiently by the enzyme, but this showed preference toward esters of short- and middle-chain fatty acids. The optimum temperature and pH for the lipolytic activity were 40 degrees C and 6.5, with high activity in the range 0-20 degrees C and reduced thermal stability.  相似文献   

12.
Polyphenol oxidase (E.C. 1.14.18.1) (PPO) extracted from yacon roots (Smallanthus sonchifolius) was partially purified by ammonium sulfate fractionation and separation on Sephadex G-100. The enzyme had a molecular weight of 45 490+/-3500 Da and Km values of 0.23, 1.14, 1.34, and 5.0 mM for the substrates caffeic acid, chlorogenic acid, 4-methylcatechol, and catechol, respectively. When assayed with resorcinol, DL-DOPA, pyrogallol, protocatechuic, p-coumaric, ferulic, and cinnamic acids, catechin, and quercetin, the PPO showed no activity. The optimum pH varied from 5.0 to 6.6, depending on substrate. PPO activity was inhibited by various phenolic and nonphenolic compounds. p-Coumaric and cinnamic acids showed competitive inhibition, with Ki values of 0.017 and 0.011 mM, respectively, using chlorogenic acid as substrate. Heat inactivation from 60 to 90 degrees C showed the enzyme to be relatively stable at 60-70 degrees C, with progressive inactivation when incubated at 80 and 90 degrees C. The Ea (apparent activation energy) for inactivation was 93.69 kJ mol-1. Sucrose, maltose, glucose, fructose, and trehalose at high concentrations appeared to protect yacon PPO against thermal inactivation at 75 and 80 degrees C.  相似文献   

13.
The purification and characterization of a novel extracellular beta-glucosidase from Paecilomyces thermophila J18 was studied. The beta-glucosidase was purified to 105-fold apparent homogeneity with a recovery yield of 21.7% by DEAE 52 and Sephacryl S-200 chromatographies. Its molecular masses were 116 and 197 kDa when detected by SDS-PAGE and gel filtration, respectively. It was a homodimeric glycoprotein with a carbohydrate content of 82.3%. The purified enzyme exhibited an optimal activity at 75 degrees C and pH 6.2. It was stable up to 65 degrees C and in the pH range of 5.0-8.5. The enzyme exhibited a broad substrate specificity and significantly hydrolyzed p-nitrophenyl-beta- d-glucopyranoside ( pNPG), cellobiose, gentiobiose, sophorose, amygdalin, salicin, daidzin, and genistin. Moreover, it displayed substantial activity on beta-glucans such as laminarin and lichenan, indicating that the enzyme has some exoglucanase activity. The rate of glucose released by the purified enzyme from cellooligosaccharides with a degree of polymerization (DP) ranging between 2 and 5 decreased with increasing chain length. Glucose and glucono-delta-lactone inhibited the beta-glucosidase competitively with Ki values of 73 and 0.49 mM, respectively. The beta-glucosidase hydrolyzed pNPG, cellobiose, gentiobiose, sophorose, salicin, and amygdalin, exhibiting apparent Km values of 0.26, 0.65, 0.77, 1.06, 1.39, and 1.45 mM, respectively. Besides, the enzyme showed transglycosylation activity, producing oligosaccharides with higher DP than the substrates when cellooligosaccharides were hydrolyzed. These properties make this beta-glucosidase useful for various biotechnological applications.  相似文献   

14.
Amylases II-1 and II-2 with molecular weights of 55.7 and 65 kDa, respectively, were purified to electrophoretical homogeneity from small abalone (Sulculus diversicolor aquatilis) by ammonium sulfate fractionation, Sepharose CL-6B, CM-Sepharose CL-6B, and Sephacryl S-100 chromatographs. They had optimal temperatures of 45 and 50 degrees C and an optimal pH of 6.0. The purified amylases were stable at pH 5.0-8.0 and 6.0-8.0, respectively. They were completely or partially inhibited by Hg(2+), Cu(2+), Cd(2+), Zn(2+), iodoacetamide, phenylmethanesulfonyl fluoride, and N-ethylmaleimide, suggesting the existence of cysteine at their active sites. Digestion tests against various polysaccharides suggested that the purified amylases II-1 and II-2 are neoamylases which can hydrolyze both alpha-1,4 and alpha-1,6 glucosidic bonds. Amylase II-2 might be an exo- and II-1 an endo-/exo-amylase.  相似文献   

15.
The present investigation deals with purification and thermal characterization of an acid invertase produced by Fusarium solani in submerged culture. The maximum enzyme activity (9.90 U mL(-1)) was achieved after 96 h of cultivation at pH 5.0 and 30 degrees C in a basal medium containing molasses (2%) as the carbon and energy source supplemented with 1% peptone. Invertase was purified by ammonium sulfate fractionation and column chromatography on DEAE-cellulose and Sephadex G-200. The purified enzyme was proven to be homogeneous by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular mass of the enzyme was 65 kDa. The optimum pH and temperature for activity were 2.6 and 50 degrees C, respectively. The Km value for sucrose was 3.57 mM with an activation energy of 4.056 kJ mol(-1). Enthalpies of activation (DeltaH) were decreased while entropies (DeltaS) of activation increased at higher temperatures. The effects of alpha-chymotrypsin and 4 M urea were tetraphasic with periodic gain and loss of enzyme activity. A possible explanation for the thermal inactivation of invertase at higher temperatures is also discussed.  相似文献   

16.
Galactooligosaccharides (GO) are responsible for intestinal disturbances following ingestion of legume-derived products. Enzymatic reduction of GO level in these products is highly desirable to improve their acceptance. For this purpose, plant and microbial semipurified alpha-galactosidases were used for GO hydrolysis in soybean flour and soy molasses. alpha-Galactosidases from soybean germinating seeds, Aspergillus terreus, and Penicillium griseoroseum presented maximal activities at pH 4.0-5.0 and 45-65 degrees C. The KM,app values determined for raffinose by the soybean, A. terreus, and P. griseoroseum alpha-galactosidases were 3.44, 19.39, and 20.67 mM, respectively. The enzymes were completely inhibited by Ag+ and Hg2+, whereas only soybean enzyme was inhibited by galactose. A. terreus alpha-galactosidase was more thermostable than the enzymes from the other two sources. This enzyme maintained about 100% of its original activity after 3 h at 60 C. The microbial alpha-galactosidases were more efficient for reducing GO in soybean flour and soy molasses than soybean enzyme.  相似文献   

17.
Two major superoxide dismutases (SODs; SODs I and II) were found in the crude enzyme extract of wheat seedlings after heat treatment, ammonium sulfate fractionation, anionic exchange chromatography, and gel permeation chromatography. The purification fold for SODs I and II were 154 and 98, and the yields were 11 and 2.4%, respectively. SOD I was further characterized. It was found that SOD I from wheat seedlings is a homodimer, with a subunit molecular mass of 23 kDa. Isoelectric focusing electrophoresis (IEF) and zymogram staining results indicated that the isoelectric point of SOD I is 3.95. It belongs to the MnSOD category due to the fact that it was insensitive to KCN or hydrogen peroxide inhibitor. This MnSOD from wheat seedlings was found to be stable over pH 7-9, with an optimum pH of 8, but was sensitive to extreme pH, particularly to acidic pH. It was stable over a wide range of temperatures (5-50 degrees C). Thermal inactivation of wheat seedling MnSOD followed first-order reaction kinetics, and the temperature dependence of rate constants was in agreement with the Arrhenius equation. The activation energy for thermal inactivation of wheat seedling MnSOD in the temperature range of 50-70 degrees C was found to be 150 kJ/mol. HgCl2 and SDS at a concentration of 1.0 mM significantly inhibited enzyme activity. Chemical modification agents, including diethyl pyrocarbonate (2.5 mM) and Woodward's reagent K (50 mM), significantly inhibited the activity of wheat seedling SOD, implying that imidazole groups from histidine and carboxyl groups from aspartic acid and glutamic acid are probably located at or near the active site of the enzyme.  相似文献   

18.
Polyphenol oxidase (EC 1.10.3.1, o-diphenol: oxygen oxidoreductase, PPO) of banana (Musa sapientum L.) peel was partially purified about 460-fold with a recovery of 2.2% using dopamine as substrate. The enzyme showed a single peak on Toyopearl HW55-S chromatography. However, two bands were detected by staining with Coomassie brilliant blue on PAGE: one was very clear, and the other was faint. Molecular weight for purified PPO was estimated to be about 41 000 by gel filtration. The enzyme quickly oxidized dopamine, and its Km value (Michaelis constant) for dopamine was 3.9 mM. Optimum pH was 6.5 and the PPO activity was quite stable in the range of pH 5-11 for 48 h. The enzyme had an optimum temperature at 30 degrees C and was stable up to 60 degrees C after heat treatment for 30 min. The enzyme activity was strongly inhibited by sodium diethyldithiocarbamate, potassium cyanide, L-ascorbic acid, and cysteine at 1 mM. Under a low buffer capacity, the enzyme was also strongly inhibited by citric acid and acetic acid at 10 mM.  相似文献   

19.
The crude enzyme extract of wheat grass was heated at 60 degrees C for 30 min, followed by ammonium sulfate fractionation and isoelectric chromatofocusing on Polybuffer exchanger (PBE 94) for purification. The purified peroxidase was then characterized for its catalytic characteristics. It was found that AgNO3 at a concentration of 0.25 mM and MnSO4 and EDTA at concentrations of 5 mM significantly inhibited the activity of wheat grass peroxidase. However, KCl, NaCl, CuCl2, CaCl2, ZnCl2, and MgCl2 at concentrations of 5.0 mM and HgCl2 at a concentration of 0.25 mM enhanced enzyme activity. Chemical modification significantly influenced the activity of wheat grass peroxidase. Particularly, N-bromosuccinimide (5 mM) inhibited 16% of the enzyme activity, whereas N-acetylimidazole (2.5 mM), diethyl pyrocarbonate (2.5 mM), and phenylmethanesulfonyl fluoride (2.5 mM) enhanced by 18-29% of the enzyme activity. Such results implied that tryptophan, histidine, tyrosine, and serine residues are related to enzyme activity. The pH optima for wheat grass peroxidase to catalyze the oxidation of o-phenylenediamine (OPD), catechol, pyrogallol, and guaiacol were 5.0, 4.5, 6.5, and 5.0, respectively. The apparent Km values for OPD, catechol, pyrogallol, and guaiacol were 2.9, 18.2, 2.5, and 3.8 mM, respectively. Under optimal reaction conditions, wheat grass peroxidase catalyzed the oxidation of OPD (an aromatic amine substrate) 3-11 times more rapidly than guaiacol, catechol, and pyrogallol (phenolic substrates containing one to three hydroxy groups in the benzene ring).  相似文献   

20.
An esterase activity from Terfezia claveryi Chatin ascocarps, a mycorrhizal hypogeous fungus, is described for the first time. The enzyme was partially purified using phase partitioning in Triton X-114 (TX-114), achieving a reduction of 87% in the triglyceride content and the removal of 63% of phenols. The enzyme showed maximum activity toward short-chain p-nitrophenyl esters, and no interfacial activation was observed, indicating that the enzyme responsible for this activity is an esterase and not a lipase. This esterase presented its maximum activity at pH 7.4 and 60 degrees C. The values obtained for Km at pH 7.4 were 0.3 mM for p-nitrophenyl butyrate and 0.6 mM for p-nitrophenyl acetate with catalytic efficiencies (Vmax/Km) of 0.23 and 0.32, respectively. T. claveryi esterase was inhibited by phenylboric acid, indicating that serine residues were involved in the enzyme activity. This activity was localized only in the hypothecium and was absent from the peridium and gleba.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号