首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Nankai Trough is a vigorous subduction zone where large earthquakes have been recorded since the seventh century, with a recurrence time of 100 to 200 years. The 1946 Nankaido earthquake was unusual, with a rupture zone estimated from long-period geodetic data that was more than twice as large as that derived from shorter period seismic data. In the center of this earthquake rupture zone, we used densely deployed ocean bottom seismographs to detect a subducted seamount 13 kilometers thick by 50 kilometers wide at a depth of 10 kilometers. We propose that this seamount might work as a barrier inhibiting brittle seismogenic rupture.  相似文献   

2.
An array of 14 biaxial shallow-borehole tiltmeters (at 1O(-7) radian sensitivity) has been installed along 85 kilometers of the San Andreas fault during the past year. Earthquake-related changes in tilt have been simultaneously observed on up to four independent instruments. At earthquake distances greater than 10 earthquake source dimensions, there are few clear indications of tilt change. For the four instruments with the longest records (> 10 months), 26 earthquakes have occurred since July 1973 with at least one instrument closer than 10 source dimensions and 8 earthquakes with more than one instrument within that distance. Precursors in tilt direction have been observed before more than 10 earthquakes or groups of earthquakes, and no similar effect has yet been seen without the occurrence of an earthquake.  相似文献   

3.
《Science (New York, N.Y.)》1994,266(5184):389-397
The most costly American earthquake since 1906 struck Los Angeles on 17 January 1994. The magnitude 6.7 Northridge earthquake resulted from more than 3 meters of reverse slip on a 15-kilometer-long south-dipping thrust fault that raised the Santa Susana mountains by as much as 70 centimeters. The fault appears to be truncated by the fault that broke in the 1971 San Fernando earthquake at a depth of 8 kilometers. Of these two events, the Northridge earthquake caused many times more damage, primarily because its causative fault is directly under the city. Many types of structures were damaged, but the fracture of welds in steel-frame buildings was the greatest surprise. The Northridge earthquake emphasizes the hazard posed to Los Angeles by concealed thrust faults and the potential for strong ground shaking in moderate earthquakes.  相似文献   

4.
Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.  相似文献   

5.
Dynamical processes in the Earth's mantle, such as cold downwelling at subduction zones, cause deformations of the solid-state phase change that produces a seismic discontinuity near a depth of 660 kilometers. Observations of short-period, shear-to-compressional wave conversions produced at the discontinuity yield a detailed map of deformation beneath the Izu-Bonin subduction zone. The discontinuity is depressed by about 60 kilometers beneath the coldest part of the subducted slab, with a deformation profile consistent with the expected thermal signature of the slab, the experimentally determined Clapeyron slope of the phase transition, and the regional tectonic history.  相似文献   

6.
Splay fault branching along the Nankai subduction zone   总被引:3,自引:0,他引:3  
Seismic reflection profiles reveal steeply landward-dipping splay faults in the rupture area of the magnitude (M) 8.1 Tonankai earthquake in the Nankai subduction zone. These splay faults branch upward from the plate-boundary interface (that is, the subduction zone) at a depth of approximately 10 kilometers, approximately 50 to 55 kilometers landward of the trough axis, breaking through the upper crustal plate. Slip on the active splay fault may be an important mechanism that accommodates the elastic strain caused by relative plate motion.  相似文献   

7.
After the 26 December 2004 earthquake and tsunami, field data on the extent of the inundation in Banda Aceh, Sumatra, were combined with satellite imagery to quantify the tsunami effects. Flow depths along the shores of Banda Aceh exceeded 9 meters, with inundation reaching 3 to 4 kilometers inland. To the southwest, at Lhoknga, flow depths were more than 15 meters at the shoreline and runup exceeded 25 meters. Erosion and subsidence moved the shoreline of Banda Aceh inland up to 1.5 kilometers, and 65 square kilometers of land between Banda Aceh and Lhoknga were flooded.  相似文献   

8.
Using an inverse mantle convection model that assimilates seismic structure and plate motions, we reconstruct Farallon plate subduction back to 100 million years ago. Models consistent with stratigraphy constrain the depth dependence of mantle viscosity and buoyancy, requiring that the Farallon slab was flat lying in the Late Cretaceous, consistent with geological reconstructions. The simulation predicts that an extensive zone of shallow-dipping subduction extended beyond the flat-lying slab farther east and north by up to 1000 kilometers. The limited region of flat subduction is consistent with the notion that subduction of an oceanic plateau caused the slab to flatten. The results imply that seismic images of the current mantle provide more constraints on past tectonic events than previously recognized.  相似文献   

9.
During the period 1973 to 1991 the interval between eruptions from a periodic geyser in Northern California exhibited precursory variations 1 to 3 days before the three largest earthquakes within a 250-kilometer radius of the geyser. These include the magnitude 7.1 Loma Prieta earthquake of 18 October 1989 for which a similar preseismic signal was recorded by a strainmeter located halfway between the geyser and the earthquake. These data show that at least some earthquakes possess observable precursors, one of the prerequisites for successful earthquake prediction. All three earthquakes were further than 130 kilometers from the geyser, suggesting that precursors might be more easily found around rather than within the ultimate rupture zone of large California earthquakes.  相似文献   

10.
Seismic tomography revealed a low seismic velocity (-5%) and high Poisson's ratio (+6%) anomaly covering about 300 square kilometers at the hypocenter of the 17 January 1995, magnitude 7.2, Kobe earthquake in Japan. This anomaly may be due to an overpressurized, fluid-filled, fractured rock matrix that contributed to the initiation of the Kobe earthquake.  相似文献   

11.
Two lines of evidence suggest that large earthquakes that occur on either the San Jacinto fault zone (SJFZ) or the San Andreas fault zone (SAFZ) may be triggered by large earthquakes that occur on the other. First, the great 1857 Fort Tejon earthquake in the SAFZ seems to have triggered a progressive sequence of earthquakes in the SJFZ. These earthquakes occurred at times and locations that are consistent with triggering by a strain pulse that propagated southeastward at a rate of 1.7 kilometers per year along the SJFZ after the 1857 earthquake. Second, the similarity in average recurrence intervals in the SJFZ (about 150 years) and in the Mojave segment of the SAFZ (132 years) suggests that large earthquakes in the northern SJFZ may stimulate the relatively frequent major earthquakes on the Mojave segment. Analysis of historic earthquake occurrence in the SJFZ suggests little likelihood of extended quiescence between earthquake sequences.  相似文献   

12.
Geologic and palynological evidence for rapid sea level change approximately 3400 and approximately 2000 carbon-14 years ago (3600 and 1900 calendar years ago) has been found at sites up to 110 kilometers apart in southwestern British Columbia. Submergence on southern Vancouver Island and slight emergence on the mainland during the older event are consistent with a great (magnitude M >/= 8) earthquake on the Cascadia subduction zone. The younger event is characterized by submergence throughout the region and may also record a plate-boundary earthquake or a very large crustal or intraplate earthquake. Microfossil analysis can detect small amounts of coseismic uplift and subsidence that leave little or no lithostratigraphic signature.  相似文献   

13.
Data from two microseismic field experiments in northern Chile revealed an elongated cluster of earthquakes in the subducted Nazca plate at a depth of about 100 kilometers in which down-dip tensional events were consistently shallower than a family of compressional earthquakes. This double seismic zone shows a distribution of stresses of opposite polarity relative to that observed in other double seismic zones in the world. The distribution of stresses in northern Chile supports the notion that at depths of between 90 to 150 kilometers, the basalt to eclogite transformation of the subducting oceanic crust induces tensional deformation in the upper part of the subducted slab and compressional deformation in the underlying mantle.  相似文献   

14.
Aftershocks of the 29 November 1978 Oaxaca, Mexico, earthquake (surface-wave magnitude Ms = 7.8) define a rupture area of about 6000 square kilometers along the boundary of the Cocos sea-plate subduction. This area had not ruptured in a large (Ms >/= 7), shallow earthquake since the years 1928 and 1931 and had been designated a seismic "gap." The region has also been seismically quiet for small to moderate (M >/= 4), shallow (depth 相似文献   

15.
Thatcher W 《Science (New York, N.Y.)》1974,184(4143):1283-1285
Reexamination of geodetic data has shown that aseismic slip occurred on or near the San Andreas fault in the period of about 20 years after 1906. The inferred displacements are comparable to but at greater depths than the sudden slip that occurred at the time of the earthquake. The postseismic slip is constrained only between late 1906 and 1925, and data are insufficient to determine the movements, if any, below about 20 kilometers on the fault. Two independent observations also indicate stubstantial anomalous crustal deformation away from the fault at least 30 years before the earthquake.  相似文献   

16.
The four Pioneer Venus entry probes transmitted data of good quality on the structure of the atmosphere below the clouds. Contrast of the structure below an altitude of 50 kilometers at four widely separated locations was found to be no more than a few degrees Kelvin, with slightly warmer temperatures at 30 degrees south latitude than at 5 degrees or 60 degrees north. The atmosphere was stably stratified above 15 or 20 kilometers, indicating that the near-adiabatic state is maintained by the general circulation. The profiles move from near-adiabatic toward radiative equilibrium at altitudes above 40 kilometers. There appears to be a region of vertical convection above the dense cloud deck, which lies at 47.5 to 49 kilometers and at temperature levels near 360 K. The atmosphere is nearly isothermal around 100 kilometers (175 to 180 K) and appears to exhibit a sizable temperature wave between 60 and 70 kilometers. This is where the 4-day wind is believed to occur. The temperature wave may be related to some of the wavelike phenomena seen in Mariner 10 ultraviolet photographs.  相似文献   

17.
Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.  相似文献   

18.
Displacement above the hypocenter of the 2011 Tohoku-Oki earthquake   总被引:3,自引:0,他引:3  
The moment magnitude (M(w)) = 9.0 2011 Tohoku-Oki mega-thrust earthquake occurred off the coast of northeastern Japan. Combining Global Positioning System (GPS) and acoustic data, we detected very large sea-floor movements associated with this event directly above the focal region. An area with more than 20 meters of horizontal displacement, that is, four times larger than those detected on land, stretches several tens of kilometers long along the trench; the largest amount reaches about 24 meters toward east-southeast just above the hypocenter. Furthermore, nearly 3 meters of vertical uplift occurred, contrary to observed terrestrial subsidence.  相似文献   

19.
Geodetic measurements of deformation in northwestern Washington indicate that strain is accumulating at a rate close to that predicted by a model of the Cascadia subduction zone in which the plate interface underlying the continental slope and outer continental shelf is currently locked but the remainder of the interface slips continuously. Presumably this locked segment will eventually rupture in a great thrust earthquake with a down-dip extent greater than 100 kilometers.  相似文献   

20.
Precursory changes in the radon concentration of groundwater were observed prior to the Izu-Oshima-kinkai earthquake (magnitude 7.0) 14 January 1978. The distance from the epicenter to a continuous radon-monitoring station at Nakaizu was about 25 kilometers. A sudden drop and a subsequent increase in the radon concentration recorded on 9 January 1978 were significant. The size of the spike-like change was about 15 percent. After the earthquake, a remarkable increase in the radon concentration occurred.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号