首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The net ecosystem exchange of carbon dioxide was measured by eddy covariance methods for 3 years in two old-growth forest sites near Santarém, Brazil. Carbon was lost in the wet season and gained in the dry season, which was opposite to the seasonal cycles of both tree growth and model predictions. The 3-year average carbon loss was 1.3 (confidence interval: 0.0 to 2.0) megagrams of carbon per hectare per year. Biometric observations confirmed the net loss but imply that it is a transient effect of recent disturbance superimposed on long-term balance. Given that episodic disturbances are characteristic of old-growth forests, it is likely that carbon sequestration is lower than has been inferred from recent eddy covariance studies at undisturbed sites.  相似文献   

2.
Sensitivity of boreal forest carbon balance to soil thaw   总被引:6,自引:0,他引:6  
We used eddy covariance; gas-exchange chambers; radiocarbon analysis; wood, moss, and soil inventories; and laboratory incubations to measure the carbon balance of a 120-year-old black spruce forest in Manitoba, Canada. The site lost 0.3 +/- 0.5 metric ton of carbon per hectare per year (ton C ha-1 year-1) from 1994 to 1997, with a gain of 0.6 +/- 0.2 ton C ha-1 year-1 in moss and wood offset by a loss of 0.8 +/- 0.5 ton C ha-1 year-1 from the soil. The soil remained frozen most of the year, and the decomposition of organic matter in the soil increased 10-fold upon thawing. The stability of the soil carbon pool ( approximately 150 tons C ha-1) appears sensitive to the depth and duration of thaw, and climatic changes that promote thaw are likely to cause a net efflux of carbon dioxide from the site.  相似文献   

3.
浙江省安吉县CCER竹林经营碳汇交易项目经济效益分析   总被引:1,自引:1,他引:0  
基于《竹林经营碳汇项目方法学》和改进的项目经济效益评价模型,对浙江省安吉县中国核证减排量(CCER)竹林经营碳汇交易项目的经济效益进行定量评估,并在不同情景下对项目净现值进行敏感性分析。结果表明:在当前市场条件下,竹林经营碳汇交易项目在30 a周期内净现值为19 567.52万元,年均净现值为652.25万元·a-1,单位面积净现值为13.72万元·hm-2,相比传统竹林经营增加了42.05%;项目累计二氧化碳减排量为249 658 t,年均减排量8 322 t·a-1,单位面积减排量175 t·hm-2,项目减排量累计现值465.40万元,年均现值15.51万元·a-1,单位面积现值0.33万元·hm-2。在相同因素变化率的情景下,项目净现值的敏感程度大小依次为竹材价格>贴现率水平>劳动力价格>碳汇价格。根据研究结论,从碳汇价格、农民增收和市场环境等3个方面为更好地持续开展竹林经营碳汇交易项目提出了相关建议。  相似文献   

4.
Most inverse atmospheric models report considerable uptake of carbon dioxide in Europe's terrestrial biosphere. In contrast, carbon stocks in terrestrial ecosystems increase at a much smaller rate, with carbon gains in forests and grassland soils almost being offset by carbon losses from cropland and peat soils. Accounting for non-carbon dioxide carbon transfers that are not detected by the atmospheric models and for carbon dioxide fluxes bypassing the ecosystem carbon stocks considerably reduces the gap between the small carbon-stock changes and the larger carbon dioxide uptake estimated by atmospheric models. The remaining difference could be because of missing components in the stock-change approach, as well as the large uncertainty in both methods. With the use of the corrected atmosphere- and land-based estimates as a dual constraint, we estimate a net carbon sink between 135 and 205 teragrams per year in Europe's terrestrial biosphere, the equivalent of 7 to 12% of the 1995 anthropogenic carbon emissions.  相似文献   

5.
Tilman D  Hill J  Lehman C 《Science (New York, N.Y.)》2006,314(5805):1598-1600
Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram hectare(-1) year(-1) of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during biofuel production (0.32 megagram hectare(-1) year(-1)). Moreover, LIHD biofuels can be produced on agriculturally degraded lands and thus need to neither displace food production nor cause loss of biodiversity via habitat destruction.  相似文献   

6.
广东省桉树碳储量和碳汇价值估算   总被引:3,自引:0,他引:3  
利用雷州林业局2002年二次森林清查资料和广东省林业调查的研究资料,分析了不同龄组的桉树各器官的碳含量在乔木碳含量中的比例,并初步探讨碳密度随蓄积量的变化趋势,在此基础上估算了2002年广东省桉树林的碳储量和碳汇价值。结果表明,不同龄组各组分碳含量比例有明显差异,桉树的碳含量主要表现为树干的碳含量。对于幼龄林,各器官所含碳含量的分配格局是干>皮>叶>根>枝,对于中龄林、近成熟林、成熟林和过熟林,各器官的碳含量分配格局基本一致,为干>根>皮>枝>叶。不同龄组的碳密度,均随林分蓄积量的增加而增加。2002年广东省桉树总碳储量约为1 153.32万t,其中中龄林碳储量最多为443.13万t,而过熟林由于立地面积较少,仅为21.65万t。成熟林的碳密度最大,为50.50 t/hm2,碳密度最小的是幼龄林,为12.72 t/hm2。采用造林成本法和瑞典碳税法计算不同龄组桉树的碳汇价值,结果表明,成熟林最高,为12 695.06~51 280.18元/hm2。两种估价方法取平均,估算2002年广东省桉树的碳汇总价值为51.92亿元。  相似文献   

7.
以广州市为对象,构建了城市土地利用碳源/碳汇的研究框架,测算了土地利用的碳排放量和碳吸收量,深入剖析了土地利用变化的碳排放效应.结果表明,1996-2008年广州市土地利用的净碳排放量呈上升趋势,各区县净碳排放量的空间差异大,另外,建设用地的碳排放效应为0.03614×104 t/hm2.GM预测结果显示,2020年净碳排放量明显增加,并提出了土地利用的增汇减排建议.  相似文献   

8.
潍坊市农田生态系统碳源(碳汇)及其碳足迹变化   总被引:4,自引:0,他引:4  
以山东省潍坊市为研究区,以种植面积、农作物产量及农业投入等相关数据为基础,定量测算2003—2012年潍坊市农田生态系统的碳源(碳汇),分析期间碳足迹的变化。结果表明:1)2003—2012年,潍坊市农田生态系统碳吸收总量小于碳排放总量,二者的比例为1∶7.4,碳排放强度增长率从0.055%减少到0.048%,碳吸收强度增长率从1.18%增加到1.98%。10年间农田生态系统碳吸收量和碳排放量分别增长了10.69%和7.02%,碳吸收增长率高于碳排放增长率,农田系统具有较强的碳汇功能。2)蔬菜是主要的碳汇,占比为73.31%,6种碳排放途径中,农田灌溉是主要的碳源,占比为87.32%。3)农田生态系统碳足迹从2003年的38.990万hm2减少到2012年38.769万hm2,碳足迹平均占生态生产性土地面积的1.456%,比例较低。10年间碳足迹强度均值为0.14 hm2/万元,2003—2012年潍坊市农田生态系统每增加1万元的产值可以制造0.14 hm2的碳足迹。  相似文献   

9.
长白山阔叶红松林碳收支特征   总被引:8,自引:0,他引:8  
植被-大气间CO2交换研究对准确评价陆地生态系统碳收支有重要意义.该研究采用开路式涡动相关系统对长白山阔叶红松林的C O2交换特征进行了整年连续监测.结果表明,该森林生态系统的碳交换季节变化明显,2003年森林净生态系统碳交换量(NEE)变化范围在-6.37~2.13 g/(m2·d)之间,5—9月均表现为碳汇,其余月份为碳源,其中净碳吸收量与释放量最大的月份分别为6和10月;全年森林净吸收的碳量为-191.3 g/m2,整体表现为一定强度的碳汇.影响NEE的环境因子主要是光合有效辐射(PAR)和土壤温度等,白天NEE对PAR 的响应符合直角双曲线方程,夜间的NEE与5 cm深土壤温度有较好的指数关系.生态系统呼吸释放对温度响应的敏感性(Q10)为3.17.   相似文献   

10.
Herbivory in rocks and the weathering of a desert   总被引:2,自引:0,他引:2  
Two species of snail, Euchondrus albulus and Euchondrus desertorum, eat endolithic lichens growing under the surface of limestone rocks in the Negev Desert, Israel. This unusual type of herbivory has the unexpected and major impact of weathering this rocky desert at a rate of 0.7 to 1.1 metric tons per hectare per year. The biotic weathering contributes to the process of soil formation at a rate that is similar to wind-borne dust deposition. These findings demonstrate that herbivores can have a significant regulatory impact on ecosystem processes, even in cases where the total amount of primary production consumed is small.  相似文献   

11.
Wong CS 《Science (New York, N.Y.)》1978,200(4338):197-200
The atmospheric input of carbon dioxide from burning wood, in particular from forest fires in boreal and temperate regions resulting from both natural and man-made causes and predominantly from forest fires in tropical regions caused by shifting cultivation, is estimated to be 5.7 x 10(15) grams of carbon per year as gross input and 1.5 x 10(15) grams of carbon per year as net input. This is a significant amount as compared to the fossil fuel carbon dioxide produced from the utilization of oil, gas, coal, and limestone, and bears on the hypothesis of the enhanced sedimentation of marine detritus as a removal mechanism of excess atmospheric carbon dioxide.  相似文献   

12.
Carbon dioxide emission from european estuaries   总被引:1,自引:0,他引:1  
The partial pressure of carbon dioxide (pCO2) in surface waters and related atmospheric exchanges were measured in nine European estuaries. Averaged fluxes over the entire estuaries are usually in the range of 0.1 to 0.5 mole of CO2 per square meter per day. For wide estuaries, net daily fluxes to the atmosphere amount to several hundred tons of carbon (up to 790 tons of carbon per day in the Scheldt estuary). European estuaries emit between 30 and 60 million tons of carbon per year to the atmosphere, representing 5 to 10% of present anthropogenic CO2 emissions for Western Europe.  相似文献   

13.
Biomass of tropical forests: a new estimate based on forest volumes   总被引:7,自引:0,他引:7  
Brown S  Lugo AE 《Science (New York, N.Y.)》1984,223(4642):1290-1293
Recent assessments of areas of different tropical forest types and their corresponding stand volumes were used to calculate the biomass densities and total biomass of tropical forests. Total biomass was estimated at 205 x 10(9) tons, and weighted biomass densities for undisturbed closed and open broadleaf forests were 176 and 61 tons per hectare, respectively. These values are considerably lower than those previously reported and raise questions about the role of the terrestrial biota in the global carbon budget.  相似文献   

14.
Documentation of settlement patterns and deforestation in the southeastern United States allows evaluation of regional carbon dynamics since A.D. 1750. From 1750 to 1950, the Southeast was a net source for carbon at an average rate of 0.13 gigaton per year. Only in the past 20 to 30 years has increased productivity of commercial forests resulted in a sink for atmospheric carbon dioxide of 0.07 gigaton per year.  相似文献   

15.
厚朴人工林生物量的研究   总被引:3,自引:1,他引:3  
本文对浙江景宁高演林场19年生的厚朴人工林进行了生物量的研究。结果表明,林分总生物量为71.16t/hm~2,平均净生产量为4.02t/hm~2·a。其中乔木层总生物量和净生产量分别为62.78t/hm~2·a和3.30t/hm~2·a;树皮生物量为6.64t/hm~2,净生产量为0.35t/hm~2·a。  相似文献   

16.
本文对浙江景宁高演林场19年生的厚朴人工林进行了生物量的研究。结果表明,林分总生物量为71.16t/hm2,平均净生产量为4.02t/hm2·a。其中乔木层总生物量和净生产量分别为62.78t/hm2·a和3.30t/hm2·a;树皮生物量为6.64t/hm2,净生产量为0.35t/hm2·a。  相似文献   

17.
为深入了解农田生态系统碳交换规律以及碳循环的机理和过程,本研究采用涡度相关技术,对湘中地区稻油两熟农田生态系统进行了全年的通量观测,分析了碳通量及其各组分在不同时间尺度上的变化特征,探讨了水稻、油菜生长季内碳通量对主要环境因子的响应。结果表明:稻油两熟农田生态系统净碳交换日尺度变化特征总体呈"U"型单峰曲线变化,季节变化特征呈现单峰双谷"W"曲线变化,存在两个明显的碳吸收期;净碳交换吸收峰值水稻普遍高于油菜,总初级生产力和生态系统呼吸的累积速率水稻高于油菜;稻油两熟农田生态系统全年的净碳交换累积总量为-206.26 g/m^(2),总初级生产力累积总量为1 173.9 g/m^(2),生态系统总呼吸累积总量为967.64 g/m^(2),生态系统的碳利用效率为17.6%,总体表现为碳吸收旺盛;水稻和油菜生长季内碳通量与环境因子的相关性不同,白天的净碳交换与光合有效辐射呈负相关,夜间生态系统呼吸随土壤温度的升高呈指数曲线变化,油菜的温度敏感性要高于水稻。本研究结果可为农田固碳减排提供理论依据和数据支持。  相似文献   

18.
A comprehensive soil-plant-atmosphere computer simulation model (SPAM) predicted up to a 45 percent increase in carbon dioxide uptake by a crop enriched with carbon dioxide at ground level. Enrichment rates of 225 and 450 kilograms of carbon dioxide per hectare per hour were used. Simulations covered a wide range of wind speed, crop height, and leaf area display.  相似文献   

19.
Here we provide global estimates of the seasonal flux of sediment, on a river-by-river basis, under modern and prehuman conditions. Humans have simultaneously increased the sediment transport by global rivers through soil erosion (by 2.3 +/- 0.6 billion metric tons per year), yet reduced the flux of sediment reaching the world's coasts (by 1.4 +/- 0.3 billion metric tons per year) because of retention within reservoirs. Over 100 billion metric tons of sediment and 1 to 3 billion metric tons of carbon are now sequestered in reservoirs constructed largely within the past 50 years. African and Asian rivers carry a greatly reduced sediment load; Indonesian rivers deliver much more sediment to coastal areas.  相似文献   

20.
A study of effects of terrestrial biota on the amount of carbon dioxide in the atmosphere suggests that the global net release of carbon due to forest clearing between 1860 and 1980 was between 135 x 10(15) and 228 x 10(15) grams. Between 1.8 x 10(15) and 4.7 x 10(15) grams of carbon were released in 1980, of which nearly 80 percent was due to deforestation, principally in the tropics. The annual release of carbon from the biota and soils exceeded the release from fossil fuels until about 1960. Because the biotic release has been and remains much larger than is commonly assumed, the airborne fraction, usually considered to be about 50 percent of the release from fossil fuels, was probably between 22 and 43 percent of the total carbon released in 1980. The increase in carbon dioxide in the atmosphere is thought by some to be increasing the storage of carbon in the earth's remaining forests sufficiently to offset the release from deforestation. The interpretation of the evidence presented here suggests no such effect; deforestation appears to be the dominant biotic effect on atmospheric carbon dioxide. If deforestation increases in proportion to population, the biotic release of carbon will reach 9 x 10(15) grams per year before forests are exhausted early in the next century. The possibilities for limiting the accumulation of carbon dioxide in the atmosphere through reduction in use of fossil fuels and through management of forests may be greater than is commonly assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号