首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The view that the seismic discontinuities bounding the mantle transition zone at 410- and 660-kilometer depths are caused by isochemical phase transformations of the olivine structure is debated. Combining converted-wave measurements in East Asia and Australia with seismic velocities from regional tomography studies, we observe a correlation of the thickness of, and wavespeed variations within, the transition zone that is consistent with olivine structural transformations. Moreover, the seismologically inferred Clapeyron slopes are in agreement with the mineralogical Clapeyron slopes of the (Mg,Fe)2SiO4 spinel and postspinel transformations.  相似文献   

2.
The 410-kilometer seismic discontinuity is generally considered to be caused by a phase transformation of the main constituent of the upper mantle, olivine, alpha-(Mg,Fe)(2)SiO(4), to beta-(Mg,Fe)(2)SiO(4). Recent data show that H(2)O dissolves in olivine and other nominally anhydrous mantle minerals and that the partitioning of H(2)O between olivine and beta-(Mg,Fe)(2)SiO(4) is about 1:10. Such behavior strongly affects the region over which the alpha to beta phase transformation occurs and hence the seismic discontinuity that results. The observed width of the discontinuity constrains the maximum H(2)O content of upper mantle olivine to about 200 parts per million by weight.  相似文献   

3.
The mechanisms of the phase transformations between the spinel (gamma) and modified spinel (beta) polymorphs of Mg(2)SiO(4) have been studied experimentally between 15 and 20 gigapascals and 800 degrees to 950 degrees C. The gamma to beta transformation occurs by a shear mechanism, whereas the beta to gamma transformation involves grain-boundary nucleation and interface-controlled growth. These contrasting mechanisms are a consequence of the number of independent slip systems that are available in the respective crystal structures. This result leads to the prediction that in subduction zones and perhaps also rising plumes in the Earth's mantle, the gamma to beta transformation should be accompanied by a transient reduction in strength.  相似文献   

4.
The single-crystal elastic moduli of the modified spinel structure (beta phase) of magnesium orthosilicate (Mg(2)SiO(4)) have been measured by Brillouin spectroscopy under ambient conditions. Single crystals with dimensions up to 500 micrometers were grown at 22 gigapascals and 2000 degrees C over a period of 1 hour. Growth of crystals larger than 100 micrometers was achieved only when the pressure was within 5 percent of the pressure of the phase boundary separating the beta- and gamma-phase stability fields. A comparison of the elastic properties of the modified spinel phase with those of the olivine phase suggests that the 400-kilometer seismic discontinuity in the earth's mantle can be described by a mantle with 40 percent olivine. These results confirm that the 400-kilometer discontinuity can be due to the transition from olivine to modified spinel. The amount of olivine that must be present is less than that in a pyrolite model, although the results do not exclude pyrolite as a possible mantle model.  相似文献   

5.
Garnet has been identified for the first time as a meteorite mineral in the Coorara chondrite from Western Australia. It replaces olivine grains in a 1-millimeter veinlet traversing the body of the meteorite. The associated olivine has abnormally low birefringence, which suggests a highly shocked condition. Microprobe analyses do not distinguish the garnet from the associated olivine, which has the composition (Mg(.75)Fe(.25))(2) SiO(4); the garnet may have the composition Mg(3)Fe(2)Si(3)O(12) but be unresolvable from the accompanying olivine, or alternatively is nonstoichiometric. Transformation of olivine to garnet under high pressure could have significant implications for the phase composition of the Earth's mantle.  相似文献   

6.
The pressure dependence of the elastic wave velocities for hot-pressed, elastically isotropic polycrystals of the beta (modified spinel) phase of magnesium orthosilicate (Mg(2)SiO(4)) has been determined at room temperature to 3 gigapascals (GPa) by ultrasonic pulse interferometry. Pressure derivatives of the bulk (dK/dP = 4.8) and shear (dG/dP = 1.7) moduli derived from the travel times of the compressional (P) and shear (S) waves clearly demonstrate that the velocity contrast between the olivine and beta phases of Mg(2)SiO(4) decreases with increasing pressure. When combined with plausible values for the (as yet unmeasured) temperature derivatives, these new data can be used to calculate the contrast in P and S wave velocities across an olivine-beta phase transformation occuaring at pressure-temperature conditions corresponding to about 400 kilometers depth in the earth. The seismologically observed contrasts DeltaV in both P and S wave velocities constrain the percentage of orthosilicate in a model mantle of uniform chemical composition for appropriate relative magnitudes of the temperature (T) derivatives of the bulk and shear moduli for the beta phase. Allowed combinations of orthosilicate content (percent), dK/dT, and dG/dT (both in gigapascals per Kelvin) for a pair of recent seismological models with DeltaV(p) = DeltaV(s) 4.6% include (65, -0.018, -0.020), (55, -0.015, -0.018), and (45, -0.012, -0.016).  相似文献   

7.
Mao HK  Bell PM 《Science (New York, N.Y.)》1972,176(4033):403-406
Above 100 kilobars the apparent absorption edges (approximately 3 electron volts) of single-crystal and polycrystalline samples of the metastable olivine and stable spinel forms of Fe(2)SiO(4) shift rapidly with pressure from the near-ultraviolet into the lower-energy infrared region. Simultaneously, an exponential increase in electrical conductivity occurs. These effects are reversible as pressure is reduced or reapplied and are not accompanied by a first-order phase change in olivine or spinel. These observations relate to fundamental concepts of electrical conductivity and photon absorption in complex transition-metal silicates in that they cannot be readily interpreted in terms of an intrinsic band-gap model. The intensity and energy changes are too great and the effect occurs at too low a pressure to be explained by processes such as spin-pairing and other crystal-field effects. The results suggest that a new mechanism of conduction, perhaps symbiotic and employing an efficient charge-transfer process, is induced at high pressure.  相似文献   

8.
The lower mantle of the Earth is believed to be largely composed of (Mg,Fe)O (magnesiowustite) and (Mg,Fe)SiO3 (perovskite). Radiative temperatures of single-crystal olivine [(Mg0.9,Fe0.1)2SiO4] decreased abruptly from 7040 +/- 315 to 4300 +/- 270 kelvin upon shock compression above 80 gigapascals. The data indicate that an upper bound to the solidus of the magnesiowustite and perovskite assemblage at 4300 +/- 270 kelvin is 130 +/- 3 gigapascals. These conditions correspond to those for partial melting at the base of the mantle, as has been suggested occurs within the ultralow-velocity zone beneath the central Pacific.  相似文献   

9.
Samples of olivine (Fo(0)Fa(100), Fo(60)Fa(40), Fo(80)Fa(20), and Fo(100)Fa(0)) and of spinel (Fo(50)Fa(50), Fo(2)Fa(100), where Fo is forsterite and Fa is fayalite) were subjected to pressures up to 250 kilobars in a diamond anvil press and were heated in situ up to ~ 1700 degrees C by an infrared beam from a continuous-wave YAG (yttrium-aluminum-garnet) laser. The brightness temperature was determined from the intensity of incandescence of the sample by means of an optical pyrometer. X-ray diffraction patterns of the samples, obtained after quenching and unloading, show conclusively that these compositions disproportionate to (Mg, Fe)O and SiO(s) (stishovite) under these conditions.  相似文献   

10.
The mechanical properties of polycrystalline materials are largely determined by the kinetics of the phase transformations during the production process. Progress in x-ray diffraction instrumentation at synchrotron sources has created an opportunity to study the transformation kinetics at the level of individual grains. Our measurements show that the activation energy for grain nucleation is at least two orders of magnitude smaller than that predicted by thermodynamic models. The observed growth curves of the newly formed grains confirm the parabolic growth model but also show three fundamentally different types of growth. Insight into the grain nucleation and growth mechanisms during phase transformations contributes to the development of materials with optimal mechanical properties.  相似文献   

11.
Shim SH  Duffy TS  Shen G 《Science (New York, N.Y.)》2001,293(5539):2437-2440
Unexplained features have been observed seismically near the middle (approximately 1700-kilometer depth) and bottom of the Earth's lower mantle, and these could have important implications for the dynamics and evolution of the planet. (Mg,Fe)SiO3 perovskite is expected to be the dominant mineral in the deep mantle, but experimental results are discrepant regarding its stability and structure. Here we report in situ x-ray diffraction observations of (Mg,Fe)SiO3 perovskite at conditions (50 to 106 gigapascals, 1600 to 2400 kelvin) close to a mantle geotherm from three different starting materials, (Mg0.9Fe0.1)SiO enstatite, MgSiO3 glass, and an MgO+SiO2 mixture. Our results confirm the stability of (Mg,Fe)SiO3 perovskite to at least 2300-kilometer depth in the mantle. However, diffraction patterns above 83 gigapascals and 1700 kelvin (1900-kilometer depth) cannot presently rule out a possible transformation from Pbnm perovskite to one of three other possible perovskite structures with space group P2(1)/m, Pmmn, or P4(2)/nmc.  相似文献   

12.
Karato S  Li P 《Science (New York, N.Y.)》1992,255(5049):1238-1240
High-temperature creep experiments on polycrystalline perovskite (CaTiO(3)), an analog of (Mg,Fe)SiO(3) perovskite of the lower mantle, suggest that (grain size-sensitive) diffusion creep is important in the lower mantle and show that creep rate is enhanced by the transformation from the orthorhombic to the tetragonal structure. These observations suggest that grain-size reduction after a subducting slab passes through the 670-kilometer discontinuity or after a phase transformation from orthorhombic to tetragonal in perovskite will result in rheological softening in the top portions of the lower mantle.  相似文献   

13.
The independent elastic constants of an upper mantle mineral, San Carlos olivine [(Mg(1.8)Fe(0.2))SiO(4)], were measured from 0 to 12.5 gigapascals. Evidence is offered in support of the proposition that the explicit temperature dependence of the bulk modulus is small over the range of temperatures and pressures thought to prevail above the 400-kilometer discontinuity, and thus the data can be extrapolated to estimate the properties of olivine under mantle conditions at a depth of 400 kilometers. In the absence of high-temperature data at high pressures, estimates are made of the properties of olivine under mantle conditions to a depth of 400 kilometers. In contrast with low-pressure laboratory data, the predicted covariance of shear and compressional velocities as a function of temperature nearly matches the seismically estimated value for the lower mantle.  相似文献   

14.
Transmission electron microscope (TEM) observations of an experimentally shock-deformed single crystal of natural peridot, (Mg(0.88)Fe(0.12))(2)SiO(4), recovered from peak pressures of about 56 x 10(9) pascals revealed the presence of amorphous zones located within crystalline regions with a high density of tangled dislocations. This is the first reported observation of olivine glass. The shocked sample exhibits a wide variation in the degree of shock deformation on a small scale, and the glass appears to be intimately associated with the highest density of dislocations. This study suggests that olivine glass may be formed as a result of shock at pressures above about 50 to 55 x 10(9) pascals and that further TEM observations of naturally shocked olivines may demonstrate the presence of glass.  相似文献   

15.
In three different experiments up to 100 gigapascals and 3000 kelvin, (Mg,Fe)SiO3-perovskite, the major component of the lower mantle, remained stable and did not decompose to its component oxides (Mg, Fe)O and SiO2. Perovskite was formed from these oxides when heated in a diamond anvil cell at pressures up to 100 gigapascals. Both MgSiO3 crystals and glasses heated to 3000 kelvin at 75 gigapascals also formed perovskite as a single phase, as evident from Raman spectra. Moreover, fluorescence measurements on chromium-doped samples synthesized at these conditions gave no indication of the presence of MgO.  相似文献   

16.
The phase boundary between spinel (gamma phase) and MgSiO3 perovskite + MgO periclase in Mg2SiO4 was determined by in situ x-ray measurements by a combination of the synchrotron radiation source (SPring-8) and a large multianvil high-pressure apparatus. The boundary was determined at temperatures between 1400 degrees to 1800 degreesC, demonstrating that the postspinel phase boundary has a negative Clapeyron slope as estimated by quench experiments and thermodynamic analyses. The boundary was located at 21.1 (+/-0.2) gigapascals, at 1600 degreesC, which is approximately 2 gigapascals lower than earlier estimates based on other high-pressure studies.  相似文献   

17.
During crystallization of lunar crystalline rocks 10022 and 10024, augite changes in composition almost continuously from titanaugite (Ca(36)Mg(47) Fe, (17) with TiO(2) 3 percent) to a very iron-rich variety (Ca(9)Mg(5)Fe(86)), pigeonite changes from Ca(9)Mg(66)Fe(25) to Ca(1O)Mg(51)Fe(39), and olivine changes (in 10022) from Mg(71)Fe(29) to Mg(41)Fe(59), whereas plagioclase stays as bytownite. These compositional variations, as well as the textural relations, may be explained by rapid crystallization of undercooled magmas. The residual liquids found as mesostasis are rhyolitic, which suggests that fractional crystallization of some lunar mafic magmas can generate rhyolitic magmas. Melting experiments were made on crystalline rocks to determine liquidus temperatures and crystallizing phases.  相似文献   

18.
Seismic studies indicate that beneath some regions the 520-kilometer seismic discontinuity in Earth's mantle splits into two separate discontinuities (at approximately 500 kilometers and approximately 560 kilometers). The discontinuity near 500 kilometers is most likely caused by the (Mg,Fe)2SiO4 beta-to-gamma phase transformation. We show that the formation of CaSiO3 perovskite from garnet can cause the deeper discontinuity, and by determining the temperature dependence for this reaction we demonstrate that regional variations in splitting of the discontinuity arise from variability in the calcium concentration of the mantle rather than from temperature changes. This discontinuity therefore is sensitive to large-scale chemical heterogeneity. Its occurrence and variability yield regional information on the fertility of the mantle or the proportion of recycled oceanic crust.  相似文献   

19.
Geophysical models show that electrical conductivity in Earth's mantle rises about two orders of magnitude through the transition zone in the depth range 410 to 660 kilometers. Impedance measurements obtained on Mg1.8Fe0.2SiO4 olivine, wadsleyite, and ringwoodite at up to 20 gigapascals and 1400 degreesC show that the electrical conductivities of wadsleyite and ringwoodite are similar and are almost two orders of magnitude higher than that of olivine. A conductivity-depth profile to 660 kilometers, based on these laboratory data, shows a conductivity increase of almost two orders of magnitude across the 410-kilometer discontinuity; such a profile favors a two-layer model for the upper mantle. Activation enthalpies of 1.2 to 1.7 electron volts permit appreciable lateral variations of conductivity with lateral temperature variations.  相似文献   

20.
Experimental determination of oxygen self-diffusion in CaTiO(3) perovskite, a structural analog of (Mg,Fe)SiO(3) perovskite, confirms a theoretical relation between diffusion constants and anion porosity. Oxygen diffusion rates in (Mg,Fe)SiO(3) perovskite calculated with this relation increase by about eight orders of magnitude through the lower mantle. Electrical conductivity values calculated from these diffusion rates are consistent with inferred conductivity values for the lower mantle. This result suggests that the dominant conductivity mechanism in the deep mantle is ionic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号