首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diamonds and the african lithosphere   总被引:1,自引:0,他引:1  
Data and inferences drawn from studies of diamond inclusions, xenocrysts, and xenoliths in the kimberlites of southern Africa are combined to characterize the structure of that portion of the Kaapvaal craton that lies within the mantle. The craton has a root composed in large part of peridotites that are strongly depleted in basaltic components. The asthenosphere boundary shelves from depths of 170 to 190 kilometers beneath the craton to approximately 140 kilometers beneath the mobile belts bordering the craton on the south and west. The root formed earlier than 3 billion years ago, and at that time ambient temperatures in it were 900 degrees to 1200 degrees C; these temperatures are near those estimated from data for xenoliths erupted in the Late Cretaceous or from present-day heat-flow measurements. Many of the diamonds in southern Africa are believed to have crystallized in this root in Archean time and were xenocrysts in the kimberlites that brought them to the surface.  相似文献   

2.
3.
Mantle plumes and continental tectonics   总被引:2,自引:0,他引:2  
Mantle plumes and plate tectonics, the result of two distinct modes of convection within the Earth, operate largely independently. Although plumes are secondary in terms of heat transport, they have probably played an important role in continental geology. A new plume starts with a large spherical head that can cause uplift and flood basalt volcanism, and may be responsible for regional-scale metamorphism or crustal melting and varying amounts of crustal extension. Plume heads are followed by narrow tails that give rise to the familiar hot-spot tracks. The cumulative effect of processes associated with tail volcanism may also significantly affect continental crust.  相似文献   

4.
Metasomatized lithosphere and the origin of alkaline lavas   总被引:6,自引:0,他引:6  
Recycled oceanic crust, with or without sediment, is often invoked as a source component of continental and oceanic alkaline magmas to account for their trace-element and isotopic characteristics. Alternatively, these features have been attributed to sources containing veined, metasomatized lithosphere. In melting experiments on natural amphibole-rich veins at 1.5 gigapascals, we found that partial melts of metasomatic veins can reproduce key major- and trace-element features of oceanic and continental alkaline magmas. Moreover, experiments with hornblendite plus lherzolite showed that reaction of melts of amphibole-rich veins with surrounding lherzolite can explain observed compositional trends from nephelinites to alkali olivine basalts. We conclude that melting of metasomatized lithosphere is a viable alternative to models of alkaline basalt formation by melting of recycled oceanic crust with or without sediment.  相似文献   

5.
Aftershocks of the Oroville, California, earthquake of 1 August 1975 define a 16- by 12-kilometer fault plane striking north-south and dipping 60 degrees to the west to a depth of 10 kilometers. Focal mechanisms from P-wave first motions indicate normal faulting with the western, Great Valley side downdropped relative to the Sierra Nevada block. The northward projection of the fault plane passes beneath Oroville Dam and crops out under the reservoir.  相似文献   

6.
Mantle plumes and entrainment: isotopic evidence   总被引:8,自引:0,他引:8  
Many oceanic island basalts show sublinear subparallel arrays in Sr-Nd-Pb isotopic space. The depleted upper mantle is rarely a mixing end-member of these arrays, as would be expected if mantle plumes originated at a 670-kilometer boundary layer and entrained upper mantle during ascent. Instead, the arrays are fan-shaped and appear to converge on a volume in isotopic space characterized by low (87)Sr/(86)Sr and high (143)Nd/(144)Nd, (206)Pb/(204)Pb, and (3)He/(4)He ratios. This new isotopic component may be the lower mantle, entrained into plumes originating from the core-mantle boundary layer.  相似文献   

7.
Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.  相似文献   

8.
We have heated ferropericlases (Mg(0.60)Fe(0.40))O and (Mg(0.50)Fe(0.50))O to temperatures of 1000 kelvin at pressures of 86 gigapascals, simulating the stability of the solid solution at physical conditions relevant to Earth's lower mantle. The in situ x-ray study of the externally heated samples in a Mao-Bell-type diamond anvil cell shows that ferropericlase may dissociate into magnesium-rich and iron-rich oxide components. The result is important because the decomposition of ferropericlase into lighter and heavier phases will cause dynamic effects that could lead to mantle heterogeneity.  相似文献   

9.
Electrical conductivity in the precambrian lithosphere of western canada   总被引:1,自引:0,他引:1  
The subcrustal lithosphere underlying the southern Archean Churchill Province (ACP) in western Canada is at least one order of magnitude more electrically conductive than the lithosphere beneath adjacent Paleoproterozoic crust. The measured electrical properties of the lithosphere underlying most of the Paleoproterozoic crust can be explained by the conductivity of olivine. Mantle xenolith and geological mapping evidence indicate that the lithosphere beneath the southern ACP was substantially modified as a result of being trapped between two nearly synchronous Paleoproterozoic subduction zones. Tectonically induced metasomatism thus may have enhanced the subcrustal lithosphere conductivity of the southern ACP.  相似文献   

10.
Detailed studies of the seismicity of several subduction zones demonstrate that shallow-dipping thrust zones turn to steeper angles at depths of about 40 kilometers. An increased downward body force resulting from shallow phase changes in subducted oceanic crust may be the cause of this increased dip angle. In addition, the volume reduction associated with phase changes may produce sufficiently large stresses in neighboring rocks to cause the seismicity of the upper Benioff zone.  相似文献   

11.
12.
An anomalous topographic high located close to the intersection of the Owen Fracture Zone with the Mid-Indian Ridge exposes exclusively ultramafic rocks for a thickness of more than 2 kilometers. The rocks, consisting of partly serpentinized spinel lherzolites, with minor harzburgites and dunites, display protogranular to porphyroclastic fabrics, but no cumulate textures. The chemistry of olivine, ortho-and clinopyroxene, and spinel crystals suggests that the rocks originated at a depth of at least 25 kilometers in the oceanic lithosphere and were partially reequilibrated and recrystallized during subsequent upwelling. Thus, field, textural, and mineral chemistry data indicate the presence of an uplifted block of upper mantle. The considerable vertical uplift can be explained by a two-stage process: mantle upwelling in the axial zone of plate accretion, followed by vertical tectonic uplift along the fracture zone. The rate of uplift in the fracture zone was of the order of 1 millimeter per year.  相似文献   

13.
The 1.1-megaton nuclear test Benham caused movement on previously mapped faults and was followed by a sequence of small earthquakes. These effects were confined to a zone extending not more than 13 kilometers from ground zero; they are apparently related to the release of natural tectonic strain.  相似文献   

14.
Pseudotachylytes are typically interpreted to have formed by frictional melting during coseismic faulting within the upper to middle crust. Pseudotachylytes in the Bergen arcs of western Norway contain microlites including omphacite, garnet, plagioclase, and quartz. This eclogite facies assemblage is stable at temperatures of about 800 degrees C and pressures of 18 to 19 kilobars, corresponding to depths of 60 kilometers or more. The pseudotachylytes are exposed in Grenvillian granulites that locally underwent fluid-induced eclogitization and corresponding volume reduction of approximately 10 percent during the Caledonian continental collision. The pseudotachylytes may have formed as a result of the rapid relaxation of stresses caused by the eclogitization process.  相似文献   

15.
H Thybo  E Perchuc 《Science (New York, N.Y.)》1997,275(5306):1626-1629
Strong, scattered reflections beyond 8 degrees (8degrees) offset are characteristic features of all high-resolution seismic sections from the continents. The reflections identify a low-velocity zone below approximately 100 kilometers depth beneath generally stratified mantle. This zone may be caused by partial melting, globally initiated at equal depth in the continental mantle. Solid state is again attained at the Lehmann discontinuity in cold, stable areas, whereas the zone extends to near the 400-kilometer discontinuity in hot, tectonically active areas. Thus, the depth to the Lehmann discontinuity may be an indicator of the thermal state of the continental mantle.  相似文献   

16.
Kao H  Chen WP 《Science (New York, N.Y.)》2000,288(5475):2346-2349
We combined precise focal depths and fault plane solutions of more than 40 events from the 20 September 1999 Chi-Chi earthquake sequence with a synthesis of subsurface geology to show that the dominant structure for generating earthquakes in central Taiwan is a moderately dipping (20 degrees to 30 degrees ) thrust fault away from the deformation front. A second, subparallel seismic zone lies about 15 kilometers below the main thrust. These seismic zones differ from previous models, indicating that both the basal decollement and relic normal faults are aseismic.  相似文献   

17.
Origin of mountains on Io by thrust faulting and large-scale mass movements   总被引:1,自引:0,他引:1  
Voyager stereoimages of Euboea Montes, Io, indicate that this mountain formed when a large crustal block was uplifted 10.5 kilometers and tilted by approximately 6 degrees. Uplift triggered a massive slope failure on the northwest flank, forming one of the largest debris aprons in the solar system. This slope failure probably involved relatively unconsolidated layers totaling approximately 2 kilometers in thickness, overlying a rigid crust (or lithosphere) at least 11 kilometers thick. Mountain formation on Io may involve localized deep-rooted thrust faulting and block rotation, due to compression at depth induced during vertical recycling of Io's crust.  相似文献   

18.
Three-dimensional, spherical models of mantle convection in the earth reveal that upwelling cylindrical plumes and downwelling planar sheets are the primary features of mantle circulation. Thus, subduction zones and descending sheetlike slabs in the mantle are fundamental characteristics of thermal convection in a spherical shell and are not merely the consequences of the rigidity of the slabs, which are cooler than the surrounding mantle. Cylindrical mantle plumes that cause hotspots such as Hawaii are probably the only form of active upwelling and are therefore not just secondary convective currents separate from the large-scale mantle circulation. Active sheetlike upwellings that could be associated with mid-ocean ridges did not develop in the model simulations, a result that is in agreement with evidence suggesting that ridges are passive phenomena resulting from the tearing of surface plates by the pull of descending slabs.  相似文献   

19.
Ocean-floor spreading tore southern Baja California from mainland Mexico 4 million years ago and has subsequently rafted it 260 kilometers to the northwest along the Tamayo Fracture Zone. Magnetic-anomaly profiles indicate spreading at the mouth of the gulf at 3.0 centimeters per year and a rise-crest offset of 75 kilometers inside the gulf across the Tamayo Fracture Zone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号