首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
(40)Ar/(39)Ar dating of tektites discovered recently in Cretaceous-Tertiary (K-T) boundary marine sedimentary rocks on Haiti indicates that the K-T boundary and impact event are coeval at 64.5 +/- 0.1 million years ago. Sanidine from a bentonite that lies directly above the K-T boundary in continental, coal-bearing, sedimentary rocks of Montana was also dated and has a (40)Ar/(39)Ar age of 64.6 +/- 0.2 million years ago, which is indistinguishable statistically from the age of the tektites.  相似文献   

2.
An extremely diverse lower Paleocene (64.1 million years ago) fossil leaf site from Castle Rock, Colorado, contains fossil litter that is similar to the litter of extant equatorial rainforests. The presence of a high-diversity tropical rainforest is unexpected, because other Paleocene floras are species-poor, a feature generally attributed to the Cretaceous-Tertiary (K-T) extinction. The site occurs on the margin of the Denver Basin in synorogenic sedimentary rocks associated with the rise of the Laramide Front Range. Orographic conditions caused by local topography, combined with equable climate, appear to have allowed for the establishment of rainforests within 1.4 million years of the K-T boundary.  相似文献   

3.
Analyses of marine carbonates through the interval 63.9 to 65.4 million years ago indicate a near-constant flux of extraterrestrial helium-3, a tracer of the accretion rate of interplanetary dust to Earth. This observation indicates that the bolide associated with the Cretaceous-Tertiary (K-T) extinction event was not accompanied by enhanced solar system dustiness and so could not have been a member of a comet shower. The use of helium-3 as a constant-flux proxy of sedimentation rate implies deposition of the K-T boundary clay in (10 +/- 2) x 10(3) years, precluding the possibility of a long hiatus at the boundary and requiring extremely rapid faunal turnover.  相似文献   

4.
The mineralogy of shocked mineral and lithic grains in the Cretaceous-Tertiary (K-T) boundary claystone worldwide is most consistent with a bolide impact on a continent. Both the concentrations and sizes of these shocked grains are greatest in the western interior of North America. These data suggest that the Manson impact structure in north-central Iowa is a viable candidate for the K-T boundary impact event. Argon-40-argon-39 age spectrum dating of shocked microcline from the crystalline central uplift of the Manson impact structure indicates that there was severe argon-40 loss at 65.7 +/- 1.0 million years ago, an age that is indistinguishable from that of the K-T boundary, within the limits of analytical precision.  相似文献   

5.
One hypothesis for the origin of the nanometer-size diamonds found at the Cretaceous-Tertiary (K-T) boundary is that they are relict interstellar diamond grains carried by a postulated asteroid. The (13)C/(12)C and (15)N/(14)N ratios of the diamonds from two sites in North America, however, show that the diamonds are two component mixtures differing in carbon and nitrogen isotopic composition and nitrogen abundance. Samples from a site from Italy show no evidence for either diamond component. All the isotopic signatures obtained from the K-T boundary are material well distinguished from known meteoritic diamonds, particularly the fine-grain interstellar diamonds that are abundant in primitive chondrites. The K-T diamonds were most likely produced during the impact of the asteroid with Earth or in a plasma resulting from the associated fireball.  相似文献   

6.
Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary (K-T) boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact. On the southern peninsula of Haiti, a approximately 50-centimeter-thick ejecta layer occurs at the K-T boundary. This ejecta layer is approximately 25 times as thick as that at any known K-T site and suggests an impact site within approximately 1000 kilometers. Seismic reflection profiles suggest that a buried approximately 300-km-diameter candidate structure occurs in the Colombian Basin.  相似文献   

7.
The Permian-Triassic boundary (PTB) event, which occurred about 251.4 million years ago, is marked by the most severe mass extinction in the geologic record. Recent studies of some PTB sites indicate that the extinctions occurred very abruptly, consistent with a catastrophic, possibly extraterrestrial, cause. Fullerenes (C60 to C200) from sediments at the PTB contain trapped helium and argon with isotope ratios similar to the planetary component of carbonaceous chondrites. These data imply that an impact event (asteroidal or cometary) accompanied the extinction, as was the case for the Cretaceous-Tertiary extinction event about 65 million years ago.  相似文献   

8.
Observations on shocked quartz in Cretaceous-Tertiary (K-T) boundary sediments compellingly tied to Chicxulub crater raise three problems. First, in North America shocked quartz occurs above the main K-T ejecta layer. Second, shocked quartz is more abundant west than east of Chicxulub. Third, shocked quartz reached distances requiring initial velocities up to 8 kilometers per second, corresponding to shock pressures that would produce melt, not the moderate-pressure shock lamellae observed. Shock devolatilization and the expansion of carbon dioxide and water from impacted wet carbonate, producing a warm, accelerating fireball after the initial hot fireball of silicate vapor, may explain all three problems.  相似文献   

9.
Explanations for the causes of climatic changes and associated faunal and floral extinctions at the close of the Eocene Epoch have long been controversial because of, in part, uncertainties in correlation and dating of global events. New single-crystal laser fusion (SCLF) (40)Ar/(39)Ar dates on tephra from key magnetostratigraphic and fossilbearing sections necessitate significant revision in North American late Paleogene chronology. The Chadronian-Orellan North American Land Mammal "Age" boundary, as a result, is shifted from 32.4 to 34.0 Ma (million years ago), the Orellan-Whitneyan boundary is shifted from 30.8 to 32.0 Ma, and the Whitneyan-Arikareean boundary is now approximately 29.0 Ma. The new dates shift the correlation of Chron C12R from the Chadronian to within the Orellan-Whitneyan interval, the Chadronian becomes late Eocene in age, and the North American Oligocene is restricted to the Orellan, Whitneyan, and early Arikareean. The Eocene-Oligocene boundary, and its associated climate change and extinction events, as a result, correlates with the Chadronian-Orellan boundary, not the Duchesnean-Chadronian boundary.  相似文献   

10.
Fullerenes (C60 and C70) have been identified by laser desorption, laser desorption post-ionization, and high-resolution electron-impact mass spectrometry in shock-produced breccias (Onaping Formation) of the Sudbury impact structure in Ontario, Canada. The C60 isotope is present at a level of a few parts per million. The fullerenes were likely synthesized within the impact plume from the carbon contained in the bolide. The oxidation of the fullerenes during the 1.85 billion years of exposure was apparently prevented by the presence of sulfur in the form of sulfide-silicate complexes associated with the fullerenes.  相似文献   

11.
The Central Atlantic Magmatic Province (CAMP) is defined by tholeiitic basalts that crop out in once-contiguous parts of North America, Europe, Africa, and South America and is associated with the breakup of Pangea. 40Ar/39Ar and paleomagnetic data indicate that CAMP magmatism extended over an area of 2.5 million square kilometers in north and central Brazil, and the total aerial extent of the magmatism exceeded 7 million square kilometers in a few million years, with peak activity at 200 million years ago. The magmatism coincided closely in time with a major mass extinction at the Triassic-Jurassic boundary.  相似文献   

12.
The buried Chicxulub impact structure in Mexico, which is linked to the Cretaceous- Tertiary (K-T) boundary layer, may be significantly larger than previously suspected. Reprocessed gravity data over Northern Yucatan reveal three major rings and parts of a fourth ring, spaced similarly to those observed at multiring impact basins on other planets. The outer ring, probably corresponding to the basin's topographic rim, is almost 300 kilometers in diameter, indicating that Chicxulub may be one of the largest impact structures produced in the inner solar system since the period of early bombardment ended nearly 4 billion years ago.  相似文献   

13.
Kyte FT  Wasson JT 《Science (New York, N.Y.)》1986,232(4755):1225-1229
Iridium measured in 149 samples of a continuous 9-meter section of Pacific abyssal clay covering the time span 33 to 67 million years ago shows a well-defined peak only at the Cretaceous/Tertiary boundary. In the rest of the section iridium ranges from a minimum concentration near 0.35 nanograms per gram in the Paleocene to a maximum near 1.7 in the Eocene; between 63 and 33 million years ago the mean iridium accumulation rate is approximately 13 nanograms per square centimeter per million years. Correction for terrestrial iridium leads to an extraterrestrial flux of9 +/- 3 nanograms of iridium per square centimeter per million years, and an estimated annual global influx of 78 billion grams of chondritic matter, consistent with recent estimates of the influx of dust, meteorites, and crater-producing bodies with masses ranging from 10(-13) to 10(18 )grams. Combining the recent flux of objects ranging in mass from 10(6) to 10(7) grams with the flux of 10(14) - to 10(15) -gram objects indicates that the number of objects is equal to 0.54 divided by the radius (in kilometers) to the 2.1 power. Periodic comet showers should increase the cometary iridium flux by a factor of 200 to 600 on a time scale of 1 to 3 million years; the predicted iridium maxima (more than 30 times background) are not present in the intervals associated with the Cretaceous/Tertiary boundary or the tektiteproducing late Eocene events.  相似文献   

14.
The mass extinction at the end of the Permian was the most profound in the history of life. Fundamental to understanding its cause is determining the tempo and duration of the extinction. Uranium/lead zircon data from Late Permian and Early Triassic rocks from south China place the Permian-Triassic boundary at 251.4 +/- 0.3 million years ago. Biostratigraphic controls from strata intercalated with ash beds below the boundary indicate that the Changhsingian pulse of the end-Permian extinction, corresponding to the disappearance of about 85 percent of marine species, lasted less than 1 million years. At Meishan, a negative excursion in delta13C at the boundary had a duration of 165,000 years or less, suggesting a catastrophic addition of light carbon.  相似文献   

15.
The Meishan section across the Permian-Triassic boundary in South China is the most thoroughly investigated in the world. A statistical analysis of the occurrences of 162 genera and 333 species confirms a sudden extinction event at 251.4 million years ago, coincident with a dramatic depletion of delta13C(carbonate) and an increase in microspherules.  相似文献   

16.
The (40)Ar/(39)Ar ages of a sanidine clast from a melt-matrix breccia of the Manson, Iowa, impact structure (MIS) indicate that the MIS formed 73.8 +/- 0.3 million years ago (Ma) and is not coincident with the Cretaceous-Tertiary boundary (64.43 +/- 0.05 Ma). The MIS sanidine is 9 million years older than (40)Ar/(39)Ar age spectra of MIS shock-metamorphosed microcline and melt-matrix breccia interpreted earlier to be 64 to 65 Ma. Grains of shock-metamorphosed quartz, feldspar, and zircon were found in the Crow Creek Member (upper Campanian) at a biostratigraphic level constrained by radiometric ages in the Pierre Shale of South Dakota that are consistent with the (40)Ar/(39)Ar age of 73.8 +/- 0.3 Ma for MIS reported herein.  相似文献   

17.
Analysis of tetrapod footprints and skeletal material from more than 70 localities in eastern North America shows that large theropod dinosaurs appeared less than 10,000 years after the Triassic-Jurassic boundary and less than 30,000 years after the last Triassic taxa, synchronous with a terrestrial mass extinction. This extraordinary turnover is associated with an iridium anomaly (up to 285 parts per trillion, with an average maximum of 141 parts per trillion) and a fern spore spike, suggesting that a bolide impact was the cause. Eastern North American dinosaurian diversity reached a stable maximum less than 100,000 years after the boundary, marking the establishment of dinosaur-dominated communities that prevailed for the next 135 million years.  相似文献   

18.
The Permian-Triassic boundary records the most severe mass extinctions in Earth's history. Siberian flood volcanism, the most profuse known such subaerial event, produced 2 million to 3 million cubic kilometers of volcanic ejecta in approximately 1 million years or less. Analysis of (40)Ar/(39)Ar data from two tuffs in southern China yielded a date of 250.0 +/- 0.2 million years ago for the Permian-Triassic boundary, which is comparable to the inception of main stage Siberian flood volcanism at 250.0 +/- 0.3 million years ago. Volcanogenic sulfate aerosols and the dynamic effects of the Siberian plume likely contributed to environmental extrema that led to the mass extinctions.  相似文献   

19.
Pelagic cherts of Japan and British Columbia, Canada, recorded a long-term and worldwide deep-sea anoxic (oxygen-depleted) event across the Permo-Triassic (or Paleozoic and Mesozoic) boundary (251 ± 2 million years ago). The symmetry in lithostratigraphy and redox condition of the boundary sections suggest that the superocean Panthalassa became totally stratified for nearly 20 million years across the boundary. The timing of onset, climax, and termination of the oceanic stratification correspond to global biotic events including the end-Guadalupian decline, the end-Permian extinction, and mid-Triassic recovery.  相似文献   

20.
From radioisotopic (potassium-argon) age determinations of tuffs and magnetostratigraphy of Late Tertiary mammal-bearing beds in Catamarca Province, northwest Argentina, refined estimates have been obtained for the durations and boundaries of beds of Chasicoan (Middle Miocene) through Chapadmalalan (Pliocene) age. An age of 9.0 million years is tentatively accepted for the Chasicoan-Huayquerian boundary, 5.0 million years for the Huayquerian-Montehermosan boundary, and 3.0 million years for the Montehermosan-Chapadmalalan boundary. Procyonids (raccoons and their allies), a group of North American origin, are first recorded in South America in a level immediately below a unit dated at 6.0 million years. Cricetine rodents of the tribe Sigmodontini are first recorded in South America in beds of Montehermosan age in Argentina. Ground sloths, a group of South American origin, first appear in North America in Early Hemphillian time in beds dated between 9.5 and 9.0 million years. The Panamanian land bridge was established by 3.0 million years ago, and an interchange of the terrestrial faunas was well under way by Late Blancan time (around 2.5 million years before present) in North America and by Chapadmalalan time in South America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号