首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Voyager 2 encounter with the Neptune system included radio science investigations of the masses and densities of Neptune and Triton, the low-order gravitational harmonics of Neptune, the vertical structures of the atmospheres and ionospheres of Neptune and Triton, the composition of the atmosphere of Neptune, and characteristics of ring material. Demanding experimental requirements were met successfully, and study of the large store of collected data has begun. The initial search of the data revealed no detectable effects of ring material with optical depth tau [unknown] 0.01. Preliminary representative results include the following: 1.0243 x 10(26) and 2.141 x 10(22) kilograms for the masses of Neptune and Triton; 1640 and 2054 kilograms per cubic meter for their respective densities; 1355 +/- 7 kilometers, provisionally, for the radius of Triton; and J(2) = 3411 +/- 10(x 10(-6)) and J(4) = -26(+12)(-20)(x10(-6)) for Neptune's gravity field (J>(2) and J(4) are harmonic coefficients of the gravity field). The equatorial and polar radii of Neptune are 24,764 +/- 20 and 24,340 +/- 30 kllometers, respectively, at the 10(5)-pascal (1 bar) pressure level. Neptune's atmosphere was probed to a pressure level of about 5 x 10(5) pascals, and effects of a methane cloud region and probable ammonia absorption below the cloud are evident in the data. Results for the mixing ratios of helium and ammonia are still being investigated; the methane abundance below the clouds is at least 1 percent by volume. Derived temperature-pressure profiles to 1.2 x 10(5) pascals and 78 kelvins (K) show a lapse rate corresponding to "frozen" equilibrium of the para- and ortho-hydrogen states. Neptune's ionosphere exhibits an extended topside at a temperature of 950 +/- 160 K if H(+) is the dominant ion, and narrow ionization layers of the type previously seen at the other three giant planets. Triton has a dense ionosphere with a peak electron concentration of 46 x 10(9) per cubic meter at an altitude of 340 kilometers measured during occultation egress. Its topside plasma temperature is about 80 +/- 16 K if N(2)(+) is the principal ion. The tenuous neutral atmosphere of Triton produced distinct signatures in the occultation data; however, the accuracy of the measurements is limited by uncertainties in the frequency of the spacecraft reference oscillator. Preliminary values for the surface pressure of 1.6 +/- 0.3 pascals and an equivalent isothermal temperature of 48 +/- 5 K are suggested, on the assumption that molecular nitrogen dominates the atmosphere. The radio data may be showing the effects of a thermal inversion near the surface; this and other evidence imply that the Triton atmosphere is controlled by vapor-pressure equilibrium with surface ices, at a temperature of 38 K and a methane mixing ratio of about 10(-4).  相似文献   

2.
Data from solar and stellar occultations of Uranus indicate a temperature of about 750 kelvins in the upper levels of the atmosphere (composed mostly of atomic and molecular hydrogen) and define the distributions of methane and acetylene in the lower levels. The ultraviolet spectrum of the sunlit hemisphere is dominated by emissions from atomic and molecular hydrogen, which are kmown as electroglow emissions. The energy source for these emissions is unknown, but the spectrum implies excitation by low-energy electrons (modeled with a 3-electron-volt Maxwellian energy distribution). The major energy sink for the electrons is dissociation of molecular hydrogen, producing hydrogen atoms at a rate of 10(29) per second. Approximately half the atoms have energies higher than the escape energy. The high temperature of the atmosphere, the small size of Uranus, and the number density of hydrogen atoms in the thermosphere imply an extensive thermal hydrogen corona that reduces the orbital lifetime of ring particles and biases the size distribution toward larger particles. This corona is augmented by the nonthermal hydrogen atoms associated with the electroglow. An aurora near the magnetic pole in the dark hemisphere arises from excitation of molecular hydrogen at the level where its vertical column abundance is about 10(20) per square centimeter with input power comparable to that of the sunlit electroglow (approximately 2x10(11) watts). An initial estimate of the acetylene volume mixing ratio, as judged from measurements of the far ultraviolet albedo, is about 2 x 10(-7) at a vertical column abundance of molecular hydrogen of 10(23) per square centimeter (pressure, approximately 0.3 millibar). Carbon emissions from the Uranian atmosphere were also detected.  相似文献   

3.
4.
The Voyager 2 plasma wave instrument detected many familiar plasma waves during the encounter with Neptune, including electron plasma oscillations in the solar wind upstream of the bow shock, electrostatic turbulence at the bow shock, and chorus, hiss, electron cyclotron waves, and upper hybrid resonance waves in the inner magnetosphere. Low-frequency radio emissions, believed to be generated by mode conversion from the upper hybrid resonance emissions, were also observed propagating outward in a disklike beam along the magnetic equatorial plane. At the two ring plane crossings many small micrometer-sized dust particles were detected striking the spacecraft. The maximum impact rates were about 280 impacts per second at the inbound ring plane crossing, and about 110 impacts per second at the outbound ring plane crossing. Most of the particles are concentrated in a dense disk, about 1000 kilometers thick, centered on the equatorial plane. However, a broader, more tenuous distribution also extends many tens of thousands of kilometers from the equatorial plane, including over the northern polar region.  相似文献   

5.
The plasma science experiment on Voyager 2 made observations of the plasma environment in Neptune's magnetosphere and in the surrounding solar wind. Because of the large tilt of the magnetic dipole and fortuitous timing, Voyager entered Neptune's magnetosphere through the cusp region, the first cusp observations at an outer planet. Thus the transition from the magnetosheath to the magnetosphere observed by Voyager 2 was not sharp but rather appeared as a gradual decrease in plasma density and temperature. The maximum plasma density observed in the magnetosphere is inferred to be 1.4 per cubic centimeter (the exact value depends on the composition), the smallest observed by Voyager in any magnetosphere. The plasma has at least two components; light ions (mass, 1 to 5) and heavy ions (mass, 10 to 40), but more precise species identification is not yet available. Most of the plasma is concentrated in a plasma sheet or plasma torus and near closest approach to the planet. A likely source of the heavy ions is Triton's atmosphere or ionosphere, whereas the light ions probably escape from Neptune. The large tilt of Neptune's magnetic dipole produces a dynamic magnetosphere that changes configuration every 16 hours as the planet rotates.  相似文献   

6.
The High Resolution Telescope and Spectrograph was flown on the Spacelab-2 shuttle mission to perform extended observations of the solar chromosphere and transition zone at high spatial and temporal resolution. Ultraviolet spectroheliograms show the temporal development of macrospicules at the solar limb. The C IV transition zone emission is produced in discrete emission elements that must be composed of exceedingly fine (less than 70 kilometers) subresolution structures.  相似文献   

7.
Several interesting cloud and atmospheric features of the Saturn system have been observed by the long-wavelength channel of the two-channel ultraviolet photometer aboard the Pioneer Saturn spacecraft. Reported are observations of the most obvious features, including a Titan-associated cloud, a ring cloud, and the variation of atmospheric emission across Saturn's disk. The long-wavelength data for Titan suggest that a cloud of atomic hydrogen extends at least 5 Saturn radii along its orbit and about 1.5 Saturn radii vertically. A ring cloud, thought to be atomic hydrogen, has also been observed by the long-wavelength channel of the photometer; it shows significant enhancement in the vicinity of the B ring. Finally, spatially resolved observations of Saturn's disk show significant latitudinal variation. Possible explanations of the variation include aurora or limb brightening.  相似文献   

8.
Photoelectric spectra have been obtained for a number of early-type stars in the 1100- to 2000-angstrom region with the Mariner 9 ultraviolet spectrometer. The resonance lines of H I, Si IV, and C IV are easily identified, as are features due to C II, C III, Si III, Fe II, N IV. The absolute energy distribution derived from the data lie about 20 percent below those of OAO-2 in the 1200- to 2000-angstrom region.  相似文献   

9.
Neptune receives only 1/900th of the earth's solar energy, but has wind speeds of nearly 600 meters per second. How the near-supersonic winds can be maintained has been a puzzle. A plausible mechanism, based on principles of angular momentum and energy conservation in conjunction with deep convection, leads to a regime of uniform angular momentum at low latitudes. In this model, the rapid retrograde winds observed are a manifestation of deep convection, and the high efficiency of the planet's heat engine is intrinsic from the room allowed at low latitudes for reversible processes, the high temperatures at which heat is added to the atmosphere, and the low temperatures at which heat is extracted.  相似文献   

10.
The grille spectrometer observed the setting and rising sun 18 times during the Spacelab 1 mission. In addition to solar absorption lines, many of which had not been observed before, atmospheric spectral absorptions due to carbon monoxide and carbon dioxide were observed at heights tangent to the thermosphere (greater than 85 kilometers), and absorptions due to ozone, water, methane, and nitrous oxide were observed in the mesosphere (greater than 50 kilometers). The strongly coupled molecules NO-NO(2) and HC1-HF were observed as pairs in the stratosphere. Methane is presented as an example of the instrumental operations because of the characteristic aspect of the Q branch of its v(3) band.  相似文献   

11.
An objective grating spectrometer on Mariner 10 has measured air-glow in the wavelength range 200 to 1700 angstroms. The data reveal the presence of significant concentrations of hydrogen, helium, carbon, and oxygen atoms in the upper atmosphere of Venus. A preliminary analysis of the hydrogen data indicates an exospheric temperature of 400 degrees K. There is evidence for intense air-glow emission at wavelengths longward of 1350 angstroms; the nature of this emission is unclear, but the radiation is spatially extensive and detectable on both day and night sides of the planet.  相似文献   

12.
Voyager observations suggest that three of Neptune's major cloud features oscillate in latitude by 2 degrees to 4 degrees and that two of them simultaneously oscillate in longitude by 7.8 degrees and 98 degrees about their mean drift longitudes. The observations define most convincingly the two orthogonal oscillations of the second dark spot (near 53 degrees south). These oscillations have similar periods near 800 hours and approximately satisfy a simple advective model in which a latitudinal oscillation produces a phase-shifted longitudinal oscillation proportional to the local wind shear. The latitudinal motion of the Great Dark Spot can be fit with an oscillation period of about 2550 hours, whereas its dominant longitudinal motion, if oscillatory at all, has such a long period that it is not well constrained by the Voyager data.  相似文献   

13.
The 24 May 1981 close approach of Neptune to an uncataloged star was photoelectrically monitored from two observatories separated by 6 kilometers parallel to the occultation track. An 8.1-second drop in signal, recorded simultaneously at both sites, is interpreted as resulting from the passage of a third satellite of Neptune in front of the star. From the duration of the event, the derived minimum diameter for an object sharing Neptune's motion is 180 kilometers. If the object was in Neptune's equatorial plane and there are no significant errors in the prediction ephemeris, the object was located at a distance of 3 Neptune radii from Neptune's center.  相似文献   

14.
The Voyager 2 cosmic ray system (CRS) measured significant fluxes of energetic [>/=1 megaelectron volt (MeV)] trapped electrons and protons in the magnetosphere of Neptune. The intensities are maximum near a magnetic L shell of 7, decreasing closer to the planet because of absorption by satellites and rings. In the region of the inner satellites of Neptune, the radiation belts have a complicated structure, which provides some constraints on the magnetic field geometry of the inner magnetosphere. Electron phase-space densities have a positive radial gradient, indicating that they diffuse inward from a source in the outer magnetosphere. Electron spectra from 1 to 5 MeV are generally well represented by power laws with indices near 6, which harden in the region of peak flux to power law indices of 4 to 5. Protons have significantly lower fluxes than electrons throughout the magnetosphere, with large anisotropies due to radial intensity gradients. The radiation belts resemble those of Uranus to the extent allowed by the different locations of the satellites, which limit the flux at each planet.  相似文献   

15.
Measurements of rotation rates and gravitational harmonics of Neptune made with the Voyager 2 spacecraft allow tighter constraints on models of the planet's interior. Shock measurements of material that may match the composition of Neptune, the so-calied planetary ;;ice,' have been carried out to pressures exceeding 200 gigapascals (2 megabars). Comparison of shock data with inferred pressure-density profiles for both Uranus and Neptune shows substantial similarity through most of the mass of both planets. Analysis of the effect of Neptune's strong differential rotation on its gravitational harmonics indicates that differential rotation involves only the outermost few percent of Neptune's mass.  相似文献   

16.
17.
Hapke's photometric model has been combined with a plane-parallel thin atmospheric haze model to describe Voyager whole-disk observations of Triton, in the violet (0.41 microm), blue (0.48 microm), and green (0.56 microm) wavelength bands, in order to obtain estimates of Triton's geometric albedo, phase integral, and Bond albedo. Phase angle coverage in these filters ranging from approximately 12 degrees to 159 degrees was obtained by combining narrow- and wide-angle camera images. An upturn in the data at the highest phase angles observed can be explained by including scattering in a thin atmospheric haze layer with optical depths systematically decreasing with wavelength from approximately 0.06 in the violet to 0.03 for the green filter data. The geometric albedo, phase integral, and spherical albedo of Triton in each filter corresponding to our best fit Hapke parameters yield an estimated Bond albedo of 0.82 +/- 0.05. If the 14-microbar N(2) atmosphere detected by Voyager is in vapor equilibrium with the surface (therefore implying a surface temperature of 37.5 K), our Bond albedo implies a surface emissivity of 0.59 +/- 0.16.  相似文献   

18.
The visual brightness and albedo of Neptune vary periodically during the 11-year solar cycle with an amplitude of 4%, anticorrelated with the variation of solar ultraviolet output. A seasonal trend in color suggests that Neptune, like Uranus, may have a slightly reddened pole.  相似文献   

19.
The near-infrared spectrum of Triton reveals ices of nitrogen, methane, carbon monoxide, and carbon dioxide, of which nitrogen is the dominant component. Carbon dioxide ice may be spatially segregated from the other more volatile ices, covering about 10 percent of Triton's surface. The absence of ices of other hydrocarbons and nitriles challenges existing models of methane and nitrogen photochemistry on Triton.  相似文献   

20.
《天津农业科学》2014,(10):89-91
为了解大仓鼠的耗氧情况,试验测定了大仓鼠在15,20,25,30℃下的耗氧量。试验结果表明,在15~30℃范围内,大仓鼠的耗氧量和耗氧率是随环境温度的升高而减少;初步判断体质量与耗氧量和耗氧率呈反比。大仓鼠的耗氧量和耗氧率与温度均呈线性回归关系,并得到温度t与耗氧量x0(mL·h-1)的一元线性回归方程:x0=-13.412t+502.82,温度t与耗氧率Q0(mL·kg-1·h-1)的一元线性回归方程Q0=-105.75t+4 255.5。大仓鼠的耗氧率随温度而发生变化说明大仓鼠的能量代谢随外界温度的变化而改变,在20~25℃梯度内耗氧量变化较少,这个温度可能更适合大仓鼠生活。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号