首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young trees were harvested to explore non-destructive methodologies to estimate live branch dry weights in young fast-growing Eucalyptus species under different spacing and fertilizer treatments. Branch growth can vary with silvicultural management such as spacing, fertilizing and thinning, and over relatively short periods in response to environmental conditions. Many published regressions based on standard measurements of height and diameter are site, age and treatment specific. The aim of this study was to improve our capacity to predict woody crown dry weight, based on stem measurements, and to minimize (or eliminate) treatment effects on the resulting model. In young trees, branches are temporary support structures for foliage and are often discarded as the base of the green crown rises. As temporary structures they represent an investment of biomass and nutrient elements, and are subject to selection pressures to maximize the return on investment by the tree. Trees were harvested from existing plantation experiments located in south-eastern Queensland for E. grandis W. Hill ex Maiden (ranging from 0.28 to 15.85 m in height, to 5 years old) and south-western Australia for E. globulus Labill. (0.10–34.4 m in height, to 10.2 years) in order to examine the impact of spacing, nitrogen and phosphorus fertilization on early growth. Relationships to estimate crown woody biomass from non-destructive measurements were developed, and these relationships tended to have different slopes and intercepts for trees with predominantly juvenile foliage and those with intermediate or adult foliage. Dry weight of whole-crown live branch wood (Wbranch) was related to heights and/or diameter at breast height (DBH), but the regressions parameters were different, depending on treatment. The relationships became more generic (i.e. less dependent on treatment effects) between Wbranch and stem sectional area at the height of the base of the green crown (SACB), consistent with the pipe model theory (R2 > 0.91 for the two species for trees with intermediate/adult leaves). However, Wbranch was more closely related again to the stem volume above the base of the green crown and treatment effects were not significant (VCon,gc, R2 > 0.93). Branches exit the stem below the green crown, and for E. grandis the best relationship was on stem volume above the lowest live branch (VCon,llb, R2 0.94). Limited sampling from four other species with similar or contrasting crown characteristics indicated that the relationship could be applied quite generally. Individual E. grandis branch woody dry weight was closely related to the conical volume of the main (first order) branch (Vcon,br, R2 0.98). The whole crown equivalent, branch woody dry weight plus stem dry weight above the lowest live branch, was also closely related to the stem volume within the woody crown (VCon,llb, R2 0.97–0.99). While the slope of this relationship was still significantly different between trees with juvenile and intermediate/adult foliage, it had a similar form, suggesting that trees with juvenile foliage allocated a different proportion of their woody biomass within the crown to branches than older trees.  相似文献   

2.
A bark beetle (Ips typographus) infestation caused the death of almost all Norway spruce (Picea abies) trees in a mountain forest in the Swiss Alps. We developed a tree regeneration model, ‘RegSnag’ (=REGeneration in a SNAG stand), to project the future amount and height of tree regeneration in these snag stands. The model combines a height-class structured tree module with a microsite-based module of snag decay and ground-vegetation succession. Microsite-specific rates of germination, mortality and height growth were modelled for four tree species (Picea abies, Sorbus aucuparia, Acer pseudoplatanus and Betula pendula) in eight height classes (from seedlings to saplings 5 m tall) and on 26 microsite types (e.g. moss, grass). Model tests with independent field data from 8 years after the Picea die-back demonstrated that microsites had a considerable effect on the development of tree regeneration on both the montane and the subalpine level. With microsite-specific parameters, the height and frequency of Picea in each microsite could be simulated more accurately than without considering microsite effects (e.g. bias of 8 vs. 119 saplings ha−1 on the montane level). Results of simulations 40 years into the future suggest that about 330–930 Picea saplings per ha out of those that germinated in 1994 and 1996 will reach a height of 5 m within 30–35 years after Picea die-back. This is due to differences in seed inflow and browsing intensities. Picea and not Betula or Sorbus trees will replace the current herbaceous vegetation in these snag stands.  相似文献   

3.
Agroforestry systems based on poplar (Populus deltoides) are becoming popular in eastern and northern parts of India. Therefore studies on the structure and function of the systems are important. The investigations included allometric equations for above- and belowground tree components, crop and plantation floor biomass and litter fall estimation at Pusa, Bihar, India. Biomass, floor litter mass, litter fall and net primary productivity (NPP) of plantations increased with an increase in age of trees whereas, crop biomass for any specific crop interplanted with poplar decreased with the age of the plantation. The total plantation biomass increased from 12.08 to 90.59 Mg ha−1 and NPP varied from 5.69 to 27.9 Mg ha−1 year−1. The biomass accumulation ratio ranged from 2.1 to 3.2. Total annual litter fall was in between 1.95 and 10.00 Mg ha−1 year−1, of which 92–94% was contributed by leaf litter. Compartmental models were developed for dry matter distribution in agroforestry systems involving young (3-year-old) and mature (9-year-old) poplar trees interplanted with various crops, the crops being grown in two rotations maize (Zea mays) – wheat (Triticum aestivum) – turmeric (Curcuma domestica) and pigeonpea (Cajanus cajan) – turmeric. This study substantiates the potential of Populus deltoides G3 under agroforestry combinations.  相似文献   

4.
The allometric relationships between mean weights of components, such as stems, branches and leaves and tree weight as well as their time-trajectories, were studied with data of self-thinning Pinus densiflora stands with different densities. The allometric relationships existed between the weights of stems, branches and leaves and the tree weight during the course of self-thinning. The stem weight ratio increased with increasing tree weight because the allometric coefficient in stem was higher than unity, whereas the branch weight ratio and the leaf weight ratio decreased because the allometric coefficients in branches and leaves were less than unity. An allometric power relationship existed between mean component weight and mean tree weight during the course of self-thinning. The time-trajectory of mean component weight (w o) and density (ρ) in the early growth stage was expressed as a mathematical model which incorporates the allometric power relationship into the Tadaki’s model, whereas the model for describing w o-ρ trajectory in the later growth stage was derived by combining the allometric power relationship with 3/2 power law. The two models, Tadaki’s model and 3/2 power law, showed a good fit to data from P. densiflora stands. The time-trajectories of mean tree weight (w)-density (ρ) or w o-ρ initially almost moves nearly vertically in the low-density stand, moves along a steep curve and an inclined curve in the medium- and high-density stands, respectively, and gradually approaches self-thinning line in the early stage of stand development, whereas they reached and moved along the self-thinning line in the later stage of stand development. The self-thinning exponents were determined to be 1.71, 1.19 and 1.13 for the trees, 2.38, 1.33 and 1.20 for the stem, 3.16, 1.55 and 1.46 for the branches, 2.66, 1.39 and 1.35 for the leaves in the low-, medium- and high-density stands, respectively. The 3/2 power law of self-thinning is derived on the basis of simple geometric model of space occupation by growing trees, but allometric growth of tree and components can make the slope of the self-thinning line being different from −3/2. The reasons that the self-thinning exponents of components in the low-density stand were greater than those in the medium- and high-density stands were discussed.  相似文献   

5.
I investigated the relationships between stem surface area outside bark and other stem dimensions for Japanese cedar (Cryptomeria japonica D. Don) and Japanese cypress (Chamaecyparis obtusa Endl.) trees. The stem dimensions used here were the basal area and the product of diameter at breast height (dbh) and total tree height. The regression equation of the stem surface area s against basal area g was s = 184.216g for the cedar trees and s = 156.878g for the cypress trees. The slope of the equation was significantly different between the two species. For the same dbh, the cedar trees tended to have a higher total tree height than the cypress trees. The cedar trees also had a larger surface area of relative stem form than the cypress trees. These results indicated that the difference in the slope was produced by the differences in both the stem slenderness and tapering between the two species. On the other hand, the regression equation between the stem surface area and the product of dbh and total tree height dh was s = 1.937dh for the cedar trees and s = 1.921dh for the cypress trees, whereas no significant difference in the slope was found. The obtained slopes for the cedar and cypress trees seemed to be in accord with that for other coniferous species reported in earlier studies, suggesting that the variation in the slope among coniferous species would be small. The estimation from the basal area would provide a simpler means for estimating the stem surface area and would be useful in obtaining an approximation of the surface area. By contrast, the estimation from the product of dbh and total tree height would provide a more accurate and precise estimate as well as a wider applicable range, i.e., a parameter for physiological growth models. In conclusion, it could not be judged which regression equation examined in the present study was superior to the other, and thus it was important to select an appropriate equation depending both on the purpose and on the time and labor available.  相似文献   

6.
We derive a two-way volume equation for estimating the apparent culm volume of one of the largest bamboo species, Phyllostachys pubescens Mazel ex Houz. The volume equation was derived from the assumptions that (1) the relative culm form can be expressed by Kunze’s equation and (2) normal form-factors at two different relative heights are steady at constants independent of culm sizes. A total number of 200 sample culms were collected from a stand of P. pubescens in Mt. Toshima, Kumamoto Prefecture, western Japan, and were randomly bisected into two sets of data, i.e. modeling and test data. For the modeling data, normal form-factors at 0.6 and 0.9 in relative height were steady at 0.908 and 0.448, respectively. The coefficients of the volume equation were determined based on these steady values of the normal form-factors. For the test data, the apparent culm volume was estimated from diameter at breast height and culm height with the determined volume equation. The mean error and root mean square error of the estimated culm volume were, respectively, 8.120 × 10−5 and 3.291 × 10−3 m3, and there was no significant difference between estimated and actual volume. In conclusion, the two-way volume equation presented here appears to be convenient for predicting the apparent culm volume for P. pubescens.  相似文献   

7.
The pine processionary moth (Thaumetopoea pityocampa) is an important defoliating insect of native cedar stands in Northern Africa. In 2002 and 2003, we studied the size of needles of Atlas cedar trees that had been defoliated or not in the previous year, and compared the oviposition preference and larval performance of processionary moth on these two types of trees in cedar stands of central Algeria. Needle length and their number per needle cluster were twice as high on non-defoliated trees than on defoliated trees. There were about ten times fewer egg batches on defoliated than on non-defoliated trees in both study years. Young larvae raised in the laboratory on the foliage of previously defoliated trees were smaller compared to those fed on the foliage from healthy trees. Larval colonies transferred to trees in the field showed two times higher mortality on defoliated trees. It was concluded that the decline in population density in defoliated stands often observed after outbreaks results both from the fact that the female moths avoid laying their eggs on defoliated trees and the lower performance of larvae which later feed on the new-grown needles.  相似文献   

8.
This study aims to estimate stand density and stand volume in Cryptomeria japonica and Chamaecyparis obtusa stands from high-resolution satellite data and verify the reliability and uncertainty of the data. Sixty circular sample plots of 0.04 ha each were established. Their stand densities were estimated from the number of tree crowns derived from high-resolution satellite data using the watershed method. Stand densities derived from field surveys in the sample plots were compared with those obtained from high-resolution satellite data by stand age class. As a result, there was a positive correlation between them for sample plots of 41 years of age and over (R = 0.82); however, there was no correlation between them for sample plots of 40 years and under. Individual diameters at breast height (DBH) were estimated from crown areas obtained from high-resolution satellite data for the two species. Using the estimated DBH, individual tree heights were predicted from the height–diameter curves. Stand volumes were estimated from the sum of individual volumes, which were derived from volume formulas having two variables, i.e., DBH and height. Stand volumes derived from the field survey were compared with those obtained from high-resolution satellite data. The correlation coefficient between them for stands of 41 years of age and over was 0.78.  相似文献   

9.
An allometric model that explains the mechanism of the difference in the slope of the Reineke equation (A) among species was proposed based on the allometric relationships of mean tree height (H) to quadratic mean diameter D (HD θ ) and stand density N (HN δ ), i.e., A = θ/δ. The proposed model was fitted to Japanese cypress (Chamaecyparis obtusa Endl.) and red pine (Pinus densiflora) stands. The allometric exponents θ and δ were, respectively, 0.8995 and −0.5000 for cypress and 0.8612 and −0.6619 for pine. The difference between cypress and pine was significant for δ but not for θ. Inserting the exponents into the model resulted in predicted slopes of −1.7991 for cypress and −1.3011 for pine. The difference in the slope of the Reineke equation between the two species was produced by characteristics related to the tree crown, rather than characteristics related to stem slenderness. The proposed model enables us to estimate the slope of the Reineke equation from commonly measured stand attributes, such as mean tree height and quadratic mean diameter. Therefore, the proposed model is expected to be practical and convenient for estimating the slope of the Reineke equation and for explaining the mechanism of its variation among species. The model should be also accepted as a generalized model of the stand density versus quadratic mean diameter relationship, whereas the original Reineke equation should be seen as a specific case of this model.  相似文献   

10.
The browse potential of black locust (Robinia pseudoacacia L.) and thornless honey locust [Gleditsia triacanthos f. inermis (L.) Zabel] has not been adequately tested. Our objective was to determine effects of fertilization and pollarding on biomass and foliar nutritive value in separate studies of black locust and thornless honey locust in Arkansas, USA. Shoots were sampled monthly for two consecutive growing seasons in 2002 and 2003 to determine foliar, shoot, and total aboveground biomass, shoot basal diameter, and foliar nutritive value (crude protein and in vitro digestibility). Black locust yielded more foliar biomass when pollarded at 50 or 100 cm and fertilized with 600 kg P ha−1, than at 5 cm with or without P, averaging 3.5 Mg dry matter ha−1. Black locust foliar crude protein and in vitro dry matter digestibility ( ≤ 170 and 534 g kg−1, respectively) decreased as leaves aged, but still met maintenance needs for beef cattle (Bos taurus L.). Thornless honey locust had little agronomic potential because of slow establishment, low foliar yield (330 kg ha−1), and a 2% reversion to undesirable thorny phenotype. Black locust should be considered for livestock browse when drought induces semi-dormancy of herbaceous forages.  相似文献   

11.
Growth and production in the first year, as additional selection criteria, were assessed for nine poplar clones to be used as short rotation woody crops (SRWC) in the production of biomass for energy purposes. In order to identify the most promising clones in terms of growth and yield and also to assess their stability, trials were established at different locations in Spain. The majority of these clones, which form part of the European list of base materials, have frequently been used in plantations aimed at timber production but not for biomass in Mediterranean conditions. Others, such as those selected in Italy specifically for biomass production (currently provisionally admitted), are being tested for the first time under different soil and climatic conditions in Southwest Europe. The early selection of clones for rapid juvenile growth provides a valuable additional input to the clonal selection process, especially where very short rotations are desired (no more than 3 years). In any case, determining clonal stability in terms of growth is of great use not only when deciding on the clones to be used in plantations but also when developing breeding programs. ANOVA and Genotype plus Genotype × Environment (GGE) biplot analyses were used to analyse the growth and stability of the clones, which were then ranked according to mean performance and stability. Differences were detected between clones as well as between the different environments tested. The biplot analysis allowed different groups of clones to be identified according to their performance and degree of interaction displayed, thus providing useful information for the selection process. The production of aboveground biomass in the first vegetative period ranged from 1.7 to 8.0 Mg DM ha−1 at the different sites. ‘Monviso’, ‘Guardi’, ‘AF2’ and ‘2000 verde’ were the most productive clones whereas ‘Unal’, ‘Pegaso’ and ‘USA 49-177’ were the least productive. The stability analysis identified ‘AF2’, ‘Guardi’, ‘I-214’ and ‘MC’ as more stable clones while ‘Monviso’, ‘2000 verde’, ‘Unal’, ‘Pegaso’ and ‘USA 49-177’ were found to be specifically adapted to certain environments. This implies that where information on site conditions is not available, the ‘AF2’ and ‘Guardi’ clones offer greater assurance of successful establishment and higher initial growth. The growth of ‘Monviso’ ‘2000 verde’ ‘Unal’ ‘Pegaso’ and ‘USA 49-177’ clones is highly dependent on site conditions during the establishment phase. Similarly, the SH (Shore Henares river) and LT (La Tallada) sites were identified as the most highly discriminative environments for the set of clones while CS (Cubo de la Solana) and AR (Atarfe) were identified as those where performance levels were average.  相似文献   

12.
An understanding of the inter-relationships between the traits characterising tree-to-tree variation in fruits and kernels is fundamental to the development of selected cultivars based on multiple trait selection. Using data from previously characterised marula (Sclerocarya birrea) trees in Bushbuckridge, South Africa and North Central Region of Namibia, this study examines the relationships between the different traits (fruit pulp, flesh/juice mass, and nut shell and kernel mass) as a means to determine the opportunities to develop cultivars. Strong and highly significant relationships were found between fruit mass and pulp mass in trees from South Africa and Namibia, indicating that size is a good predictor of fruit pulp production. However, fruit size is not a good predictor of nut or kernel production, as there were weak relationships between fruit and nut and/or kernel mass, which varied between sites and landuses. Generally, the relationships between fruit mass and kernel mass were weaker than between fruit mass and nut mass. Relationships between kernel mass and shell mass were generally weak. The lack of strong relationships between fruit and kernel mass does, however, imply that there are opportunities to identify trees with either big fruits/small nuts for pulp production, or trees with large kernels in relatively small fruits for kernel oil production. However, within fruits from the same tree, nuts could contain 0–4 kernels, indicating that even in trees with an inherent propensity for large kernels, improved pollination may be required to maximise kernel mass through an increase in kernel number. Finally, the relationships between percentage kernel oil content and the measured morphological traits were also very weak. The conclusions of these results are that there is merit in identifying different combinations of traits for the selection of trees producing either pulp or kernels. Consequently, fruit and kernel ‘ideotypes’ are presented as guides to the selection of elite trees for cultivar development. These results have important implications for the domestication of the species as a producer of fruits or kernels for food/beverages or cosmetic oils.  相似文献   

13.
A dramatic decline in forest cover in eastern Africa along with a growing population means that timber and poles for building and fuelwood are in short supply. To overcome this shortage, the region is increasingly turning to eucalyptus. But eucalyptus raises environmental concerns of its own. Fears that it will deplete water supply, affect wildlife and reduce associated crop yields have caused many countries in the region to discourage farmers from planting this exotic. This paper is part of a series of investigations on the growth and water use efficiency of faster growing eucalyptus hybrids, which was introduced from South Africa to Kenya. The hypothesis is that the new hybrids are more efficient in using water and more suitable for the semi-arid tropics than existing eucalyptus and two popular agroforestry species. Gas exchange characteristics of juvenile Eucalyptus grandis (W. Hill ex Maiden), two eucalyptus hybrids (E. grandis × Eucalyptus camaldulensis Dehnh.), Grevillea robusta (A. Cunn) and Cordia africana (Lam) was studied under field and pot conditions using an infrared gas analyzer was used to measure photosynthetic active radiation (PAR), net photosynthetic rate (A), stomatal conductance (g s) and transpiration rate (E) at CO2 concentrations of 360 μmol mol−1 and ambient humidity and temperature. A, E and g s varied between species, being highest in eucalyptus hybrid GC 15 (24.6 μmol m−2 s−1) compared to eucalyptus hybrid GC 584 (21.0 μmol m−2 s−1), E. grandis (19.2 μmol m−2 s−1), C. africana (17.7 μmol m−2 s−1) and G. robusta (11.1 μmol m−2 s−1). C. africana exhibited high E values (7.0 mmol m−2 s−1) at optimal soil moisture contents than G. robusta (3.9 mmol m−2 s−1) and eucalyptus (5.3 mmol m−2 s−1) in field experiment and G. robusta (3.2 mmol m−2 s−1) and eucalyptus (4.2 mmol m−2 s−1) in pot-grown trees. At very low soil moisture content, extremely small g s values were recorded in GC 15 and E. grandis (8 mmol m−2 s−1) and G. robusta (14 mmol m−2 s−1) compared to GC 584 (46.9 mmol m−2 s−1) and C. africana (90.0 mmol m−2 s−1) indicating strong stomatal control by the species. Instantaneous water use efficiency ranged between 3 and 5 μmol mmol−1 and generally decreased with decline in soil moisture in pot-grown trees but increased with declining soil moisture in field-grown trees.  相似文献   

14.
Abies nordmanniana and Abies lasiocarpa, established for Christmas tree production in southwestern Norway (58°44′N, 5°38′E), were treated with different weed control methods, including chemicals, use of black plastic mulch, grass or clover as ground cover, living mulch and mechanical hoeing. Ground cover with black plastic mulching resulted in the best growth and quality in A. lasiocarpa; the least favourable treatment was when grasses were allowed to grow close to the trees. Unless measures were taken to remove this competing vegetation, the ground cover grew over the trees, smothering 94% of them. A. nordmanniana plants grew to the same height on plots with no weed control as on plots with thorough weed eradication. Stem diameter decreased on plots with ground vegetation compared to seedlings grown in the weed-free environment. The use of Trifolium repens as ground cover decreased height growth by 30% compared to thorough weed control. Both grasses and clover sown as living mulch, damaged the trees more than did natural weed vegetation.  相似文献   

15.
The effects of stocking on wood stiffness (MoE) for three Eucalyptus species are quantified using a 6-year-old trial established in New South Wales, Australia. An acoustic time-of-flight tool measured the velocity between two probes in the outerwood, from which the stiffness was estimated. Four stocking levels (714, 1,250, 1,667 and 3,333 sph) were examined. Stiffness varied significantly between all species, with E. cloeziana showing the highest stiffness (14.2–15.7 GPa), followed by E. pilularis (12.2–13.5 GPa) and E. dunnii (10.7–12.6 GPa). There was a stiffness increase (around 11%) between 714 and 1,250 stems/ha for all species but thereafter differences between stockings were not always significant. Trees were also assessed for basic density, dbh, total height, crown area, green crown height and stem slenderness (height/dbh). Only stem slenderness had a significant association (0.41 ± 0.17) with stiffness. These findings suggest that, where stiffness is a priority, forest managers could reduce establishment costs with low stockings (around 1,250 stems/ha).
Luis Alejandro ApiolazaEmail:
  相似文献   

16.

Key message

A new system of additive tree biomass equations was developed for juvenile white birch plantations based on tree diameter at breast height (DBH) and tree height (HT). Compared with previous equations developed for natural white birch forests, the new system included one more biomass component and provided more accurate predictions.

Context

Accurate estimates of tree component and total biomass are necessary for evaluating alternative forest management strategies for biomass feedstock, carbon sequestration, and products. Previous biomass equations developed for white birch trees in natural stands provided substantially biased predictions for white birch plantations.

Aims

A new system of additive tree biomass equations was developed for juvenile white birch plantations in the northeastern China.

Methods

With destructive biomass sampling data from 501 trees sampled from white birch provenance and family trails at ages 7, 9, 10, and 13 in three provinces, a system of nonlinear additive tree biomass equations based on DBH and tree height was developed using the nonlinear seemingly unrelated regressions (NSUR) approach.

Results

Compared with previously published equations developed for natural white birch forests, the new system provided more accurate predictions of white birch tree component and aboveground and total biomass, especially of branch, foliage, and root biomass.

Conclusion

The new system extended the applicability of biomass equations to white birch plantations in the northeastern China.
  相似文献   

17.
A Tuber melanosporum plantation established in 1994/1995 on Kibbutz Bar’am (in the Upper Galilee, Israel) gradually lost its T. melanosporum mycorrhiza. In 1999, T. aestivum inoculated seedlings were inadvertently introduced into the plantation to fill the gaps between trees. A single T. melanosporum fruit body was found in 1999. Although no truffles were found after 1999 and until 2009, in that year and in 2010, truffles were collected. Morphological and molecular analyses proved these to be T. aestivum. Thus, the intentionally introduced T. melanosporum mycorrhiza was replaced by that of another introduced mycorrhizal fungus, T. aestivum. Local oak species produced higher yields compared to introduced host species known to be good T. melanosporum plant symbionts. The yield was comparable to that reported for young commercial orchards, but the fruiting season was earlier than in Europe.  相似文献   

18.
The fine root (diameter ≤2.0 mm) biomass and morphology of Japanese red pines (Pinus densiflora) grown under different aboveground conditions (i.e., high and low competitive environments) were examined in a pine–cypress mixed forest. All P. densiflora subject trees were about 40 years old, and the aboveground condition (i.e., size) of red pines appeared to be influenced by the surrounding Japanese cypress (Chamaecyparis obtusa). Smaller P. densiflora exhibited lower fine root biomasses, shorter root lengths, and lower root tip densities, but longer specific root lengths and higher specific root tip densities relative to larger pines. These results suggest that P. densiflora may adjust the morphological traits of fine roots to the different conditions in biomass allocation to fine roots of individuals with different aboveground growth.  相似文献   

19.
To study the growth and yield of Acacia mangium in the Caribbean region of Colombia, allometric equations of total volume and aboveground plus coarse roots biomass were fitted as a function of the tree’s diameter at breast height (dbh). The von Bertalanffy’s growth model and 59, 0.1 ha plots (0.55–9.55 years old) were used to develop site index (SI) curves at 6 years base age. Then, using the state-space approach, stand growth and yield models were developed for basal area, volume and biomass. The results show that A. mangium is a very promising species for timber production, atmospheric carbon removal and soil restoration because it grows very fast even in mining degraded soils. On average sites it reaches 15 m in height in 3 years. However, early and reiterated thinning coupled with initial mortality by cattle invasion of the very young understocked plantations are producing relatively low yields.  相似文献   

20.
The oak (Quercus robur L.) regeneration intensity was assessed in the core area of the Białowieża National Park (BNP) in Poland with respect to the selected ecological factors. The emphasis was placed on the response of oak regeneration to disturbances, including the large-scale dieback of spruce stands. Defining their effect could help predicting the role of oak in naturally developing lowland forest ecosystems in the European hemiboreal zone. The results of the study challenge the opinion that the ‘lime-oak-hornbeam forest’ is a ‘climax’ community, confirming a very poor regeneration represented by only two saplings taller than 0.5 m per hectare. By contrast, in spruce-dominated communities, from 49 to 848 taller saplings per hectare were found. The occurrence of saplings was associated with discontinuous canopy of late seral stage of stands, as well as with large gaps. Most of the best quality grown-up oak saplings developed in the immediate neighbourhood of spruce logs. The results of the research indicate that ‘lime-oak-hornbeam forest’ (Tilio-Carpinetum) should be rather perceived as a transient community, evolved from relict, culturally modified, oak woodlands. Because spruce had become a dominating species only after abandoning in mid-1800s the historical regime of anthropogenic disturbances (involving frequent forest fires), the observed phenomena related to the disintegration of spruce stands had probably no precedent over the last 500 years. To confirm whether the massive decline of spruce stands will finally result in the successful establishment of the new canopy oak generation, both in Białowieża and other forests of hemiboreal zone, further research is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号