首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
定量分析了北京顺义、通州区土壤高光谱反射特征,利用资源三号、高分一号、高分二号传感器的光谱响应函数,结合高光谱数据生成相应宽波段模拟数据;将土壤光谱数据、拟合宽波段数据分别与实测土壤有机质含量开展相关性分析,提取并筛选敏感波段,利用偏最小二乘法建立基于高光谱数据的土壤有机质含量预测模型;依据宽波段模拟数据和实测土壤有机质含量的相关性,提取并筛选敏感波段,建立土壤有机质含量预测模型。结果表明,在基于土壤高光谱数据建立的土壤有机质含量预测模型中,以对数的一阶微分为最优,其R和RMSE分别为0.697和0.195,偏最小二乘法得到的反演土壤有机质含量的模型是可靠的;在基于模拟宽波段构建的土壤有机质含量估测模型中,以高分一号的拟合精度最高,R和RMSE分别为0.334和0.240;受室外不可控因素的影响,模拟宽波段数据在估测北方地区土壤有机质含量方面仍需进一步研究。  相似文献   

2.
土壤有机质高光谱估算模型研究进展   总被引:2,自引:0,他引:2  
土壤有机质高光谱估算较传统土壤农化分析方法表现出极大优势,顺应了现代农业发展的迫切需要。国内外众多学者先后对土壤有机质高光谱估算模型进行了大量研究,估算模型由简单的一元线性模型逐渐发展为多元线性及非线性模型,常用的建模方法分为线性方法和非线性方法,重点分析了各种方法的适用性。通过总结分析前人研究,发现土壤有机质高光谱估算模型研究存在以下发展趋势:多种建模方法耦合使用增多;建模方法的复杂度逐渐增强;尝试消减外部环境因素对建模的影响;尝试将室内土壤有机质估算模型应用于野外实地研究。  相似文献   

3.
土壤有机质高光谱特征及其反演研究   总被引:1,自引:0,他引:1  
具有精细的光谱分辨率,可获取地物纳米级连续光谱信息的高光谱技术以其简便、快速、精度高和无损等优势成为获取土壤有机质(soil organic matter,SOM)含量的重要手段,在精确农业发展中发挥着重要作用。本文阐述了高光谱反演土壤有机质的机理,概述了土壤有机质含量的光谱反射特征,包括不同土壤类型、不同土壤有机质含量的光谱响应波段,以及土壤有机质含量的光谱反演方法和模型的研究进展。进一步分析了土壤有机质光谱特征研究中存在的问题并对发展趋势进行了展望和分析,以期为以后的研究提供一定的参考。  相似文献   

4.
黄土高原煤矿区复垦农田土壤有机质含量的高光谱预测   总被引:6,自引:0,他引:6  
南锋  朱洪芬  毕如田 《中国农业科学》2016,49(11):2126-2135
【目的】针对黄土高原丘陵地多、地形复杂、有机质含量低、采样困难以及因采煤活动引起大面积土地损毁等问题,在土地复垦与综合整治过程中,为快速定量监测与评估复垦农田土壤质量提供一种新的方法。【方法】以山西省襄垣县复垦农田土壤为研究对象,选取由北向南土地损毁中间条带状区域采集样品152个,进行室内土壤农化分析、光谱测定,运用ParLes 3.1软件对光谱曲线进行多元散射校正(multipication scatter correction,MSC)、基线偏移(baseline offset correction,BOC)和Savitzky-Golay filter平滑去噪预处理。对土壤原始光谱反射率(raw spectral reflectance,R)作一阶微分(first order differential reflectance,D(R))和倒数的对数变换(inverse-lg reflectance ,lg(1/R)),分析3种不同变换形式的光谱数据与土壤有机质含量的相关性,相关系数通过P=0.01水平显著性检验来确定显著性波段的范围。基于全波段(400-2400 nm)和显著性波段利用偏最小二乘回归(partial least squares regression,PLSR)分析方法建立该区域土壤有机质含量高光谱预测模型,通过模型精度评价指标:决定系数(coefficient of determination,R2)、均方根误差(root mean square error,RMSE)和相对预测偏差(residual prediction deviation,PRD)确定最优模型。【结果】通过P=0.01水平显著性检验的波段范围为:R的400-1 800、1880-2 400 nm;D(R)的420-790、1 020-1 040、2 150-2 200 nm;lg(1/R)的400-1 830、1 860-2 400 nm。光谱与有机质含量的相关系数绝对值最大的波段是R的800 nm;D(R)的600 nm;lg(1/R)的760 nm。进行D(R)变换,光谱曲线的吸收特征更加明显,相关系数在可见光(400-800 nm)波段范围内有所增加,其最大值由0.72提高到了0.82;基于显著性波段的PLSR建模效果优于全波段,其中lg(1/R)变换的预测精度为最佳,具有很好的预测能力,其校正模型的R2和RMSE分别为0.95、7.64,预测模型的R2、RMSE和RPD分别为0.85、3.00、2.56;基于全波段的R-PLSR和lg(1/R)-PLSR模型具有较好的预测能力,其预测模型的R2、RMSE和RPD分别为0.79、3.64、2.10和0.79、3.53、2.17,而D(R)-PLSR模型只能进行粗略估测,其预测模型的R2、RMSE和RPD分别为0.61、5.43、1.41。综合分析全波段和显著性波段3种光谱数据的预测精度,发现基于显著性波段的R-PLSR、D(R)-PLSR、lg(1/R)-PLSR模型均取得了显著的预测效果。【结论】研究区土壤光谱反射率与土壤有机质含量具有高度的相关性,应用偏最小二乘回归分析方法可以很好地建立土壤有机质含量反演模型。  相似文献   

5.
为了探索快速检测土壤有机质含量的方法,试验采用不同分解水平的Coiflet函数的小波(wavelet)分析方法,对山西关帝山土壤样品的近红外光谱信号进行了消噪处理,来快速获取土壤中有机质含量。结果表明:对有机质敏感波段的为450~600 nm,810~935 nm,1 030~1 315 nm,1 380~1 400 nm;有机质NIRS法与实验室标准法测定值之间的相关系数R2为0.9818;说明通过小波变换滤波,选择敏感波段,用偏最小二乘回归方法预测土壤有机质含量是可行的。  相似文献   

6.
[目的]以陕西杨凌示范区耕层土壤为对象,通过采集、测定耕层土壤的有机质含量,并结合野外相应高光谱数据和光谱响应函数,利用模拟宽波段数据估测土壤有机质含量。[方法]通过分析土壤有机质含量与光谱间的内在关系,筛选敏感波段,构建估测土壤有机质含量模型;以宽波段波段响应函数、土壤高光谱数据为基础,通过模拟宽波段数据,构建估测土壤有机质含量模型;通过高光谱与模拟宽波段数据的对比分析,研究基于宽波段遥感数据定量估测土壤有机质含量的可行性。[结果]基于宽波段数据估测土壤有机质的精度相对较高。[结论]利用宽波段数据估测土壤土壤有机质含量具有可行性,2%并非利用光谱数据估测土壤有机质含量的下限。  相似文献   

7.
为实现对土壤有机质含量的快速监测,在对土壤有机质含量作倒数变换的同时将土壤高光谱数据进行多种数据变换处理,筛选出与土壤有机质含量倒数变换后相关性最高的光谱指标,最后构建了土壤有机质含量高光谱反演的最佳模型,实现对土壤有机质含量的反演。结果表明:估算土壤有机质含量的最佳光谱指标为反射率一阶微分波段组合R_((587,126)*R_((734,049))*R_((1 095,892)),相关系数为0.769;在此基础上构建的土壤有机质含量高光谱反演模型最佳(Y=5×10~(16)x~3-5×10~(10)x~2+59 471.000 0x+0.101 1),其决定系数R~2为0.65,均方根误差(RMSE)为0.040 mg/kg。将其验证样本预测值与实测值进行比较,平均相对误差为27.00%,RMSE为4.19 mg/kg。该验证结果证明利用该模型进行华南地区土壤有机质含量的快速监测是可行的。  相似文献   

8.
基于Hyperion数据的耕地土壤有机质含量遥感反演   总被引:2,自引:0,他引:2  
为了探究耕地土壤有机质含量与卫星影像光谱间的关系,确定土壤有机质的光谱特征,构建土壤有机质含量反演模型.利用Hyperion高光谱卫星影像和福建省三明市80个土壤调查样点分析数据,对土壤有机质与光谱指数相关性进行了分析;在提取特征光谱指数的基础上,分别基于敏感波段和特征指数建立线性模型和多元逐步回归模型.结果表明:土壤有机质含量在Hyperion高光谱782.95~813.48 nm波段具有良好的响应能力;反射率的一阶导数所建立的模型拟合效果最优,其R2为0.777,RMSE为5.31,验证模型有机质实测值与预测值的R2为0.809,表明它能够用于区域有机质含量的快速测定.  相似文献   

9.
10.
博斯腾湖西岸湖滨带土壤盐分高光谱反演   总被引:3,自引:0,他引:3  
选取博斯腾湖西岸湖滨带为研究区,沿垂直湖岸线方向采集14个土壤剖面70个样本,利用ASD FieldSpec3地物光谱仪获取高光谱数据,基于Q型聚类分析研究不同含盐量土壤光谱特征,对土壤光谱反射率与含盐量做逐波段相关分析和显著性检验,筛选不同光谱变换下的敏感波段,通过多元逐步回归和偏最小二乘回归方法,分别以敏感波段和全波段光谱构建12个土壤含盐量反演模型,优选最佳反演模型。结果表明:17种高光谱变换中, 4种最优光谱变换使土壤含盐量与Savitzky-Golay平滑后的反射率极显著相关波段数明显增多,分别是反射率的一阶微分、平方根一阶微分、对数倒数一阶微分、倒数对数一阶微分,综合确定盐分敏感波段聚集在749、1 024、1 083、1 230、1 677和2 387 nm处;以对数倒数一阶微分光谱全波段建立的偏最小二乘回归模型更适合该区0~50 cm土壤含盐量的高光谱反演,其建模和验证决定系数R~2分别为0.93和0.85,均方根误差RMSE分别为0.37和0.42,相对预测偏差RPD为3.57。  相似文献   

11.
为研究不同土壤颗粒粒径对可见/近红外光谱分析技术在土壤有机质含量快速检测应用中的影响,获取粒径为0.169~2 mm和<0.169 mm的2种土壤样本(各53个)的可见/近红外光谱(325~1075 nm),分别建立各自的主成分-反向传播神经网络(PCA-BPNN)、最小二乘-支持向量机(LS-SVM)和偏最小二乘法(PLS)土壤有机质含量检测模型.结果表明:当土壤粒径为0.169~2 mm时,所建立模型的土壤有机质含量预测相关系数r均在0.84以上,且预测均方根误差(RMSEP)都在0.20以下;而当土壤粒径<0.169 mm时,所建立模型的预测相关系数r均不超过0.71.而RMSEP都在0.23以上;对于相同粒径的土壤,PLS模型对土壤有机质含量的预测效果优于LS-SVM和PCA-BPNN模型.说明不同土壤颗粒粒径会显著影响可见/近红外光谱对于土壤有机质含量的预测结果.  相似文献   

12.
为了探寻快速、准确估测土壤有机质含量的方法以推动精准农业化进程,以北疆绿洲农田灰漠土为研究对象,通过野外实地调查收集土壤样品,室内化学分析测得土壤样品有机质含量,暗室内利用SVC HR-768高光谱仪测定土壤样品光谱反射率。通过对土壤光谱反射率进行倒数、对数、一阶微分、倒数的一阶微分、对数的一阶微分变换,运用单相关分析法提取土壤光谱特征波段,采用多元逐步方法对土壤有机质含量定量反演,分析研究土壤有机质含量和室内土壤光谱的特征关系。结果表明,在波长567、1 697 nm和2 221 nm处,采用反射率对数的一阶微分建立的土壤有机质含量反演模型预测精度最高,模型决定系数达到0.82。北疆绿洲农田灰漠土土壤有机质含量高光谱反演模型的建立为土壤有机质的快速测定提供了新的途径。  相似文献   

13.
土壤有机质含量的高光谱特性及其反演   总被引:35,自引:2,他引:35  
【目的】应用高光谱技术阐释土壤有机质光谱规律及对有机质在土壤中的含量进行定量分析,为土壤肥力测定和评价提供指导。【方法】利用ASD FieldSpec Pro地物光谱仪在自然环境条件下对不同有机质含量的土壤样本进行光谱测量。通过对获取的土壤样品高光谱反射率进行倒数、导数、对数和标准化比值变换,运用统计单相关方法进行分析。【结果】确定了511 nm波长为诊断土壤有机质含量的敏感波段,采用450~750 nm可见光波段反射率均值对507~516 nm敏感范围反射率均值进行标准化比值处理后获得的有机质诊断指数(OII)对土壤有机质含量的估算精度较高,它们存在着简单的线性相关关系。【结论】土壤有机质诊断指数(OII)反演模型为土壤肥力的快速测定提供了新的途径。  相似文献   

14.
15.
[目的]快速、有效、非接触、非破坏性地提取土壤有机质含量信息.探索新疆绿洲农区如何应用高光谱遥感技术分析、模拟、评价、预测土壤有机质含量,促进高光谱分辨率遥感技术在农田土壤遥感诊断、作物科学种植、水肥分区管理、田间农情监测中的应用,为新疆实施精准农业提供科学理论参考.[方法]利用高光谱遥感技术提取土壤有机质含量信息的研究,采用美国ASD Field Spec Pro VNIR 2500型光谱辐射仪获取田间土壤不同有机质含量信息的高光谱反射率;通过光谱分析技术,运用各种土壤反射率数学变换形式,找出最具代表性的敏感波段,揭示土壤有机质含量与其光谱成因机理之间的内在联系.[结果]基于NDI预测土壤有机质含量的估算模型中以一元三次函数模型(YSOM=-4E+ 07XNDI3+ 2E+ 06XNDI2-21 338XNDI+ 110.44,R2=0.713 2)为最优,指数函数模型次之.[结论]基于归一化光谱指数NDI可以较好的估算土壤有机质含量,利用统计方法建立的经验模型,简单实用,将对特定区域、特定土壤的预测有较好的效果.  相似文献   

16.
【目的 】结合分数阶微分和异常值识别,提高土壤有机质模型反演精度,实现土壤有机质含量的快速、准确估计。【方法 】文章以吉林省伊通县黑土区为研究区,基于实地采集的213个土壤样本和HyMap-C机载高光谱传感器获取高光谱影像,选择S-G函数和分数阶微分进行光谱预处理,竞争性自适应重加权采样(Competitive Adaptive Reweighted Sampling,CARS)提取特征波段建立土壤有机质含量偏最小二乘回归(Partial Least Squares Regression,PLSR)反演模型,并使用蒙特卡洛交叉验证(Monte Carlo Cross-Validation,MCCV)进行异常值识别。【结果 】(1)将分数阶微分用于机载高光谱可以放大光谱特征,阶数越高、特征越明显,低阶分数微分对噪音不敏感;(2) CARS方法能有效压缩光谱信息;全样本建模中0.4阶分数阶微分CARS-PLSR建模表现较优,但总体精度仍然不高;(3)使用MCCV剔除异常值后,0.6阶分数阶微分CARS-PLSR建立的土壤有机质含量反演模型精度最高,训练集和测试集的均方误差分别为0.219%...  相似文献   

17.
针对土默川平原地区的土壤盐分含量提出了偏最小二乘与随机森林相结合(RF-PLSR、PLSR-RF)对土壤盐分含量进行预测的回归反演模型.该研究共采集45份土壤样本,随机选取35份为建模集,10份为验证集.试验首先对采集到的高光谱土壤图像进行分割处理提取出土壤在400~1000 nm的原始反射光谱,其次对原始反射光谱进行4种光谱变换(一阶微分、多元散射校正的一阶微分、SG平滑去噪的一阶微分、对数的一阶微分),并与土壤的实测盐分量进行相关性分析(CA),利用相关系数选取敏感波段,最后建立偏最小二乘与随机森林结合的回归反演模型.结果表明,与偏最小二乘回归、随机森林回归单独建模相比,2种模型结合后的预测精度有明显的改善.光谱经过对数的一阶微分变换建立的PLSR-RF反演模型更为明显,其建模集决定系数Rc 2为0.852,均方根误差RMSEc为0.102 g/kg,相对分析误差RPDc为2.600,验证集决定系数Rv 2为0.941,均方根误差RMSEv为0.049 g/kg,相对分析误差RPDv为4.117.  相似文献   

18.
[目的]高光谱技术被普遍应用于土壤有机质的检测,而土壤水分在近红外波段中的吸收特性对土壤有机质的检测有很强干扰,消除水分对土壤有机质检测影响是提高模型预测精度的关键,开展土壤水分光谱影响及其消除方法的研究具有重要意义。[方法]本研究获取了山西省晋中市太谷县内不同区域的50个土壤样本在5种含水率(干土、5%、10%、15%和17%)下共250条高光谱曲线,用非负矩阵分解(Nonnegative matrix factor,NMF)对光谱分解重构,以去除水分对土壤有机质检测的影响。采用偏最小二乘(Partial least-squares,PLS)建立的土壤有机质定量预测模型对重构前后湿土土样的有机质含量进行了预测。[结果]经NMF分解重构后的湿样吸光度谱图与对应的干样相近;重构后的光谱数据对有机质预测相关系数(R)较湿样提高了0.059,预测标准差(Predicted standard deviation,SEP)降低了0.154,均方根误差(Root-mean-square error,RMSEP)降低了0.718。[结论]NMF能够在很大程度上削弱土壤水分对有机质检测的影响,提高湿土土样有机质含量的高光谱预测精度。  相似文献   

19.
土壤有机质遥感制图研究进展与展望   总被引:1,自引:0,他引:1  
【目的】土壤有机质是衡量土壤肥力高低的重要指标,土壤有机质制图对了解土壤肥力空间分布格局,开展培肥地力、耕地质量评价、土壤碳循环研究、土壤污染治理等具有重要意义。基于遥感技术的土壤有机质制图是土壤学科新兴的研究方向和热点问题。文章全面总结土壤有机质遥感制图方法的发展和应用,展望未来土壤有机质遥感制图研究趋势,为土壤有机质制图工作提供参考。【方法】该文采用文献综述的方法,回顾和总结了近年来国内外土壤有机质遥感制图研究进展,对比分析了多光谱遥感法、结合遥感数据的土壤有机质预测性制图法、高光谱遥感影像直接法等3类土壤有机质遥感制图方法的优势和局限性;重点分析了影响成像高光谱土壤有机质制图精度的因素,阐述了土壤有机质光谱敏感波段、建模方法选择的研究进展、存在的问题及发展趋势。【结果 /结论】(1)多光谱遥感数据为土壤有机质制图提供了丰富的植被覆盖、土地利用、气候等土壤成土环境因素信息,广泛应用于大尺度范围或复杂地形区域的土壤有机质制图,但表达土壤有机质空间分布细微差异不够精细化;(2)高光谱遥感数据参与土壤有机质制图,提高了土壤有机质制图精细度,但需要加强土壤有机质光谱敏感波段优选以及适宜的土壤有机质高光谱建模方法研究;(3)中红外高光谱遥感具有土壤有机质预测和制图的潜力,该领域的发展值得期待。  相似文献   

20.
西平县高标准农田Zn含量高光谱反演研究   总被引:1,自引:0,他引:1  
为实现高标准农田土壤重金属Zn含量的快速测定,本文以西平县土壤Zn为研究对象,通过采集168个土壤样本进行室内实验,获得土壤高光谱数据(400~2 400 nm)并进行Savitzky-Golay平滑后,利用5种光谱变换,结合连续投影算法识别最佳特征波段,采用偏最小二乘回归方法构建Zn元素最佳反演模型。结果表明:二阶微...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号