首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. Mutlu    P. Miklas    J. Reiser  D. Coyne 《Plant Breeding》2005,124(3):282-287
Common bacterial blight (CBB) caused by Xanthomonas campestris pv. phaseoli reduces common bean (Phaseolus vulgaris L.) yield and quality worldwide. Genetic resistance provides effective disease control; however. a high level of resistance is difficult to attain and does not exist in pinto bean, the most important dry bean market class in North America. Our objective was to determine if a backcross breeding approach with the aid of molecular markers linked to quantitative trait loci (QTL) for resistance to CBB in a donor parent could be used to attain higher levels of resistance to CBB in pinto bean. QTL conditioning CBB resistance from the donor parent XAN 159 were introgressed into the recurrent parent‘Chase’using classical backcross breeding and intermittent marker‐assisted selection.‘Chase’pinto bean is moderately resistant and the breeding line XAN 159 is highly resistant to Xanthomonas campestris. Marker assays confirmed the presence of independent QTL from GN no. 1 Sel 27 and XAN 159 in advanced backcross‐derived pinto bean lines with improved CBB resistance. Agronomic characteristics of‘Chase’were fully recovered in the backcross‐derived lines. An important QTL for CBB resistance from XAN 159 on linkage group B6 was not introgressed because tight linkage between this QTL and the dominant V allele that causes an unacceptable black‐mottled seed coat colour pattern in pinto bean could not be broken.  相似文献   

2.
Simple sequence repeat (SSR) marker is a powerful tool for construction of genetic linkage map which can be applied for quantitative trait loci (QTL) and marker‐assisted selection (MAS). In this study, a genetic map of faba bean was constructed with SSR markers using a 129 F2 individuals population derived from the cross of Chinese native variety 91825 (large seed) and K1563 (small seed). By screening 11 551 SSR primers between two parents, 149 primer pairs were detected polymorphic and used for F2 population analysis. This SSR‐based genetic linkage map consisted of 15 linkage groups with 128 SSR. The map encompassed 1587 cM with an average genetic distance of 12.4 cM. The genetic map generated in this study will be beneficial for genetic studies of faba bean for identification of marker‐locus‐trait associations as well as comparative mapping among faba bean, pea and grasspea.  相似文献   

3.
Summary Breeding for resistance to biotic and abiotic stresses of global importance in common bean is reviewed with emphasis on development and application of marker-assisted selection (MAS). The implementation and adoption of MAS in breeding for disease resistance is advanced compared to the implementation of MAS for insect and abiotic stress resistance. Highlighted examples of breeding in common bean using molecular markers reveal the role and success of MAS in gene pyramiding, rapidly deploying resistance genes via marker-assisted backcrossing, enabling simpler detection and selection of resistance genes in absence of the pathogen, and contributing to simplified breeding of complex traits by detection and indirect selection of quantitative trait loci (QTL) with major effects. The current status of MAS in breeding for resistance to angular leaf spot, anthracnose, Bean common mosaic and Bean common mosaic necrosis viruses, Beet curly top virus, Bean golden yellow mosaic virus, common bacterial blight, halo bacterial blight, rust, root rots, and white mold is reviewed in detail. Cumulative mapping of disease resistance traits has revealed new resistance gene clusters while adding to others, and reinforces the co-location of QTL conditioning resistance with specific resistance genes and defense-related genes. Breeding for resistance to insect pests is updated for bean pod weevil (Apion), bruchid seed weevils, leafhopper, thrips, bean fly, and whitefly, including the use of arcelin proteins as selectable markers for resistance to bruchid seed weevils. Breeding for resistance to abiotic stresses concentrates on drought, low soil phosphorus, and improved symbiotic nitrogen fixation. The combination of root growth and morphology traits, phosphorus uptake mechanisms, root acid exudation, and other traits in alleviating phosphorus deficiency, and identification of numerous QTL of relatively minor effect associated with each trait, reveals the complexity to be addressed in breeding for abiotic stress resistance in common bean.  相似文献   

4.
Increasing seed oil content is an important breeding goal for Brassica napus L. (B. napus). The identification of quantitative trait loci (QTL) for seed oil content and related traits is important for efficient selection of B. napus cultivars with high seed oil content. To get better knowledge on these traits, a molecular marker linkage map for B. napus was constructed with a recombinant inbred lines (RIL) population. The length of the map was 1,589 cM with 451 markers distributed over 25 linkage groups. QTL for seed oil content, seed hull content and seed coat color in three environments were detected by composite interval mapping (CIM) tests. Eleven QTL accounted for 5.19–13.57% of the variation for seed oil content. Twelve QTL associated with seed hull content were identified with contribution ranging from 5.80 to 22.71% and four QTL for seed coat color accounted for 5.23–15.99% of the variation. It is very interesting to found that co-localization between QTL for the three traits were found on N8. These results indicated the possibility to combine favorable alleles at different QTL to increase seed oil content, as well as to combine information about the relationship between seed oil content and other traits.  相似文献   

5.
P. Somta    A. Kaga    N. Tomooka    K. Kashiwaba    T. Isemura    B. Chaitieng    P. Srinives    D. A. Vaughan 《Plant Breeding》2006,125(1):77-84
To facilitate transfer of bruchid resistance to azuki bean (Vigna angularis) from its relatives an interspecific mapping population was made between rice bean, V. umbellata, and the related wild species V. nakashimae. The V. umbellata parent is completely resistant and V. nakashimae is completely susceptible to the bruchid beetle pests, azuki bean weevil (Callosobruchus chinensis) and cowpea weevil (C. maculatus). There is very low cross compatibility between V. umbellata and azuki bean. Therefore, V. nakashimae, that crosses with both V. umbellata and V. angularis without the need for embryo rescue, is used as a bridging species. A genetic linkage map was constructed based on an interspecific F2 mapping population between V. umbellata and V. nakashimae consisting of 74 plants. A total of 175 DNA marker loci (74 RFLPs and 101 SSRs) were mapped on to 11 linkage groups spanning a total length of 652 cM. Segregation distortion was observed but only three markers were not linked to any linkage group due to severe segregation distortion. This interspecific genome map was compared with the genome map of azuki bean. Of 121 common markers on the two maps, 114 (94.2%) were located on the same linkage groups in both maps. The marker order was highly conserved between the two genome maps. Fifty F2 plants that produced sufficient seeds were used for quantitative trait locus (QTL) analysis and locating gene(s) for C. chinensis and C. maculatus resistance in V. umbellata. The resistance reaction of these F2 plants differed between C. chinensis and C. maculatus. Both resistances were quantitatively inherited with no F2 plants completely susceptible to C. chinensis or C. maculatus. One putative QTL for resistance to each of these bruchid species was located on different linkage groups. Other putative QTLs associated with resistance to both C. chinensis and C. maculatus were localized on the same linkage group 1. Linked markers associated with the bruchid‐resistant QTL will facilitate their transfer to azuki bean breeding lines.  相似文献   

6.
A diversity arrays technology (DArT) map was constructed to identify quantitative trait loci (QTL) affecting seed colour, hairy leaf, seedling anthocyanin, leaf chlorosis and days to flowering in Brassica rapa using a F2 population from a cross between two parents with contrasting traits. Two genes with dominant epistatic interaction were responsible for seed colour. One major dominant gene controls the hairy leaf trait. Seedling anthocyanin was controlled by a major single dominant gene. The parents did not exhibit leaf chlorosis; however, 32% F2 plants showed leaf chlorosis in the population. A distorted segregation was observed for days to flowering in the F2 population. A linkage map was constructed with 376 DArT markers distributed over 12 linkage groups covering 579.7 cM. The DArT markers were assigned on different chromosomes of B. rapa using B. rapa genome sequences and DArT consensus map of B. napus. Two QTL (RSC1‐2 and RSC12‐56) located on chromosome A8 and chromosome A9 were identified for seed colour, which explained 19.4% and 18.2% of the phenotypic variation, respectively. The seed colour marker located in the ortholog to Arabidopsis thaliana Transparent Testa2 (AtTT2). Two QTL RLH6‐0 and RLH9‐16 were identified for hairy leaf, which explained 31.6% and 20.7% phenotypic variation, respectively. A single QTL (RSAn‐12‐157) on chromosome A7, which explained 12.8% of phenotypic variation was detected for seedling anthocyanin. The seedling anthocyanin marker is found within the A. thaliana Transparent Testa12 (AtTT12) ortholog. A QTL (RLC6‐04) for leaf chlorosis was identified, which explained 55.3% of phenotypic variation. QTL for hairy leaf and leaf chlorosis were located 0–4 cM apart on the same chromosome A1. A single QTL (RDF‐10‐0) for days to flowering was identified, which explained 21.4% phenotypic variation.  相似文献   

7.
Fusarium head blight (FHB), leaf rust and stem rust are among the most destructive wheat diseases. High‐yielding, native disease resistance sources are available in North America. The objective of this study was to map loci associated with FHB traits, leaf rust, stem rust and plant height in a “Vienna”/”25R47” population. DArT markers were used to generate a genetic map, and quantitative trait loci (QTL) analysis was performed by evaluating 113 doubled haploid lines across three environments in Ontario, Canada. FHB resistance QTL were identified on chromosomes 4D, 4B, 2D and 7A, while a QTL for leaf and stem rust resistance was identified on chromosome 1B. The dwarfing alleles of both Rht‐B1 and Rht‐D1 were associated with increased FHB index and DON content.  相似文献   

8.
Quantitative trait loci (QTL) analysis was conducted to identify QTL for seed yield and color retention following processing of a recombinant inbred line (RIL) black bean population. A population of 96 RILs were derived from the cross of black bean cultivars ‘Jaguar’ and 115M and evaluated in replicated trials at one location over 4 years (2004–2007) in Michigan. A 119-point genetic map constructed using simple sequence repeat (SSR), sequence related amplified polymorphism (SRAP), target region amplified polymorphism (TRAP) and phenotypic markers spanned fifteen linkage groups (LG) or 460 cM of the bean genome. Fourteen QTL for yield and color retention in four environments were identified by composite interval mapping on six linkage groups. A major QTL SY10.2J115 for seed yield was identified on LG B10 with additional QTL on B3, B5, and B11. Color retention following processing was associated with loci on B1, B3, B5, B8, and B11. 115M possessed positive alleles for yield, but negative alleles for color retention. Some QTL for yield and color retention co-localized with regions identified in previous studies while others, particularly for color retention, were unique. Additional QTL for agronomic and canning quality traits were detected and individual contributions to future black bean breeding are discussed.  相似文献   

9.
Fusarium head blight (FHB) is a devastating disease that reduces the yield, quality and economic value of wheat. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3:5 lines, derived from a ‘Wangshuibai’ (resistant)/‘Seri82’(susceptible) cross, were spray inoculated during 2001 and 2002, respectively. Artificial inoculation was carried out under field conditions. Of 420 markers, 258 amplified fragment length polymorphism and 39 simple sequence repeat (SSR) markers were mapped and yielded 44 linkage groups covering a total genetic distance of 2554 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve. The analyses revealed a QTL in the map interval Xgwm533‐Xs18/m12 on chromosome 3BS accounting for up to 17% of the phenotypic variation. In addition, a QTL was detected in the map interval Xgwm539‐Xs15/m24 on chromosome 2DL explaining up to 11% of the phenotypic variation. The QTL alleles originated from ‘Wangshuibai’ and were tagged with SSR markers. Using these SSR markers would facilitate marker‐assisted selection to improve FHB resistance in wheat.  相似文献   

10.
Resistance of chickpea against the disease caused by the ascomycete Ascochyta rabiei is encoded by two or three quantitative trait loci, QTL1, QTL2 and QTL3. A total of 94 recombinant inbred lines developed from a wide cross between a resistant chickpea line and a susceptible accession of Cicer reticulatum, a close relative of cultivated chickpea, was used to identify markers closely linked to QTL1 by DNA amplification fingerprinting in combination with bulked segregant analysis. Of 312 random 10mer oligonucleotides, 3 produced five polymorphic bands between the parents and bulks. Two of them were transferred to the population on which the recent genetic map of chickpea is based, and mapped to linkage group 4. These markers, OPS06-1 and OPS03-1, were linked at LOD-scores above 5 to markers UBC733B and UBC181A flanking the major ascochyta resistance locus. OPS06-1 mapped at the peak of the QTL between markers UBC733B (distance 4.1 cM) and UBC181A (distance 9.6 cM), while OPS03-1 mapped 25.1 cM away from marker UBC733B on the other flank of the resistance locus. STMS markers localised on this linkage group were transferred to the population segregating for ascochyta resistance. Three of these markers were closely linked to QTL1. Twelve of 14 STMS markers could be used in both populations. The order of STMS markers was essentially similar in both populations, with differences in map distances between them. The availability of flanking STMS markers for the major resistance locus QTL1 will help to elucidate the complex resistance against different Ascochyta pathotypes in future. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
B. Chaitieng    A. Kaga    O. K. Han    X. W. Wang    S. Wongkaew    P. Laosuwan    N. Tomooka  D. A. Vaughan 《Plant Breeding》2002,121(6):521-525
Both restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) analyses were employed to map a new source of resistance to powdery mildew in mungbean. Disease scores of an F2 population derived from the cross between a moderately resistant breeding line VC1210A and a susceptible wild relative (Vigna radiata var. sublobata, accession TC1966) showed a continuous distribution and was treated as a quantitative trait. Although no significant quantitative trait loci (QTL) that can explain the variation was detected by QTL analysis based on the reconstructed RFLP linkage map, new marker loci associated with resistance were discovered by AFLP analysis. The RFLP loci detected by two of the cloned AFLP bands are associated with resistance and constitute a new linkage group. A major resistance quantitative trait locus was found on this linkage group that accounted for 64.9% of the variation in resistance to powdery mildew. One of the probes developed in this study has the potential to assist in breeding for powdery mildew resistance in mungbean.  相似文献   

12.
Soybean is one of the most important crops worldwide for its protein and oil as well as the health beneficial phytoestrogens or isoflavone. This study reports a relatively dense single nucleotide polymorphism (SNP)‐based genetic map based on ‘Hamilton’ by ‘Spencer’ recombinant inbred line population and quantitative trait loci (QTL) for seed isoflavone contents. The genetic map is composed of 1502 SNP markers and covers about 1423.72 cM of the soybean genome. Two QTL for seed isoflavone contents have been identified in this population. One major QTL that controlled both daidzein (qDZ1) and total isoflavone contents (qTI1) was found on LG C2 (Chr 6). And a second QTL for glycitein content (qGT1) was identified on the LG G (Chr 18). These two QTL in addition to others identified in soybean could be used in soybean breeding to optimize isoflavone content. This newly assembled soybean linkage map is a useful tool to identify and map QTL for important agronomic traits and enhance the identification of the genes involved in these traits.  相似文献   

13.
Rhizoctonia root and crown rot caused by the fungus Rhizoctonia solani is a serious disease of sugar beet. An F2:3 population from a cross between a resistant and a susceptible parent has been tested for R. solani resistance and a genetic map has been constructed from the corresponding F2 parents. The map encompasses 38 expressed sequence tags (ESTs) with high similarity to genes which are involved in resistance reactions of plants (R‐ESTs) and 25 bacterial artificial chromosomes (BACs) containing nucleotide binding site (NBS)‐motifs typical for disease resistance genes. Three quantitative trait loci (QTL) for R. solani resistance were found on chromosomes 4, 5 and 7 collectively explaining 71% of the total phenotypic variation. A number of R‐ESTs were mapped in close distance to the R. solani resistance QTL. In contrast, the NBS‐BACs mapped to chromosomes 1, 3, 7 and 9 with two major clusters of NBS‐BACs on chromosome 3. No linkage between NBS‐BACs and R. solani resistance QTL was found. The data are discussed with regard to using R‐ESTs and NBS markers for mapping quantitative disease resistances.  相似文献   

14.
X. Shen    H. Ohm 《Plant Breeding》2006,125(5):424-429
The objective of this study was to assess the effectiveness of Fusarium head blight (FHB) resistance derived from wheatgrass Lophopyrum elongatum chromosome 7E and to determine whether this resistance can augment resistance in combination with other FHB resistance quantitative trait loci (QTL) or genes in wheat. The ‘Chinese Spring’–Lophopyrum elongatum disomic substitution line 7E(7B) was crossed to three wheat lines: ‘Ning 7840’, L3, and L4. F2 populations were evaluated for type II resistance with the single‐floret inoculation method in the greenhouse. Simple sequence repeat markers associated with Fhb1 in ‘Ning 7840’ and L4 and markers located on chromosome 7E were genotyped in each population. Marker–trait association was analysed with one‐way or two‐way analysis of variance. The research showed that, in the three populations, the average number of diseased spikelets (NDS) in plants with chromosome 7E is 1.2, 3.1 and 3.2, vs. NDS of 3.3, 7.2 and 9.1 in plants without 7E, a reduction in NDS of 2.1, 4.1 and 5.9 in the respective populations. The QTL on 7E and the Fhb1 gene augment disease resistance when combined. The effect of the QTL on 7E was greater than that on 3BS in this experiment. Data also suggest that the FHB resistance gene derived from L. elongatum is located on the long arm of 7E.  相似文献   

15.
Summary Polymorphism at isozyme loci was used to locate factors responsible for variation in quantitative traits of lentil. Eight sets of random single seed descent (RSSD) derived lines were developed by advancing individual F3 plants of interspecific (L. culinaris Medik. × L. orientalis Boiss.) hybrids to the F6. The RSSD lines in each of the eight sets differed for alleles at 2–8 isozyme loci. In each set, association of isozyme loci with variation in seven quantitative traits (days to flower, days to mature, plant height, biomass, seed yield, harvest index, seed weight) was determined for each pairwise combination of a quantitative trait with a marker locus. Loci affecting variation in all seven quantitative traits were detected by their association with 14 isozyme markers (Aat-c, Aat-m, Aat-p, Adh-1, Fk, Gal-1, Gal-2, Lap-1, Lap-2, Pgd-p, Pgi, Pgm-c, Pgm-p, Skdh). The known position of 10 the 14 isozyme loci on the lentil genetic map was used to mark the genomic regions for possible location of associated quantitative trait loci (QTL). Detected QTL were found to be located in six of the seven linkage groups on lentil genetic map. Regions of the genome represented by linkage groups, 1, 5 and 7 appeared to affect a greater number of traits than other genomic regions represented by linkage groups 2, 3 and 4. Results indicated that the mean expression of quantitative traits at segregating marker locus classes can be used to locate the genetic factors in lentil which influence the behavior of economically important traits.  相似文献   

16.
Y. Bougot    J. Lemoine    M.T. Pavoine    H. Guyomar'ch    V. Gautier    H. Muranty    D. Barloy 《Plant Breeding》2006,125(6):550-556
Powdery mildew is one of the major diseases of wheat in regions with a maritime or semi‐continental climate which can strongly affect grain yield. The objective of the study was to identify and compare quantitative resistance to powdery mildew of line RE9001 at the adult plant and vernalized seedling stages. RE9001 has no known Pm gene and shows a high level of adult plant resistance in the field. Using 104 recombinant inbred lines (RILs) of an RE9001 × ‘Courtot’ F8 population, a genetic map was developed with 363 markers distributed over 26 linkage groups and covering 3825 cM. The global map density was 1 locus/10.3 cM. RILs were assessed under field and tunnel greenhouse conditions for 2 years in two locations. Eleven quantitative trait loci (QTL) were detected at the adult stage and they explained 63% of the variation, depending on the environment. Three QTLs were found, at least, in the two environments. One QTL from RE9001, mapped on chromosome 2B, was stable in each environment. This QTL, QPm.inra.2B, explained 10.3–36.6% of the variation and could be mapped in the vicinity of the Pm6 gene. At the vernalized seedling stage, one QTL detected by the isolate 93‐27 could be an allele of the Pm3g gene present in ‘Courtot’. No residual effect of the Pm3g gene was detected at either stage. Markers flanking the QTL 2B could be useful tools to combine resistance to powdery mildew in wheat cultivars.  相似文献   

17.
Alfalfa (Medicago sativa L.) is an internationally significant forage crop. Forage yield, lodging resistance and spring vigor are important agronomic traits conditioned by quantitative genetic and environmental effects. The objective of this study was to identify quantitative trait loci (QTL) and molecular markers associated with increased forage yield, resistance to lodging, and spring vigor. A backcross population composed of 128 progeny was developed by crossing the breeding parents DW000577 (lodging susceptible) and NL002724 (lodging-resistant) and back-crossing an individual F1 plant to the maternal parent (i.e. DW000577). A linkage map of NL002724 was developed based upon the segregation of 236 AFLP, SRAP, and SSR markers among the backcross progeny. The markers were distributed among 14 linkage groups, covering an estimated recombination distance of 1497.6 centiMorgans (cM). Replicated clones of both parents and backcross progeny were evaluated in the field for estimated forage yield, lodging, and spring vigor in Washington and Wisconsin during 2007 and 2008. Significant QTL were found for all three traits. In particular, two QTL for lodging resistance were identified that explained ≥14 % of trait variation, and were significant in all years and locations. Major QTL explaining over 25 % of trait variation for forage yield were detected in multiple environments at two separate locations on chromosome III. Several QTL for spring vigor were located in the same or similar positions as QTL for forage yield, possibly explaining the significant correlation between these traits. Molecular markers associated with the aforementioned QTL were also identified.  相似文献   

18.
Ascochyta blight (AB) caused by Ascochyta rabiei, is globally the most important foliar disease that limits the productivity of chickpea (Cicer arietinum L.). An intraspecific linkage map of cultivated chickpea was constructed using an F2 population derived from a cross between an AB susceptible parent ICC 4991 (Pb 7) and an AB resistant parent ICCV 04516. The resultant map consisted of 82 simple sequence repeat (SSR) markers and 2 expressed sequence tag (EST) markers covering 10 linkage groups, spanning a distance of 724.4 cM with an average marker density of 1 marker per 8.6 cM. Three quantitative trait loci (QTLs) were identified that contributed to resistance to an Indian isolate of AB, based on the seedling and adult plant reaction. QTL1 was mapped to LG3 linked to marker TR58 and explained 18.6% of the phenotypic variance (R 2) for AB resistance at the adult plant stage. QTL2 and QTL3 were both mapped to LG4 close to four SSR markers and accounted for 7.7% and 9.3%, respectively, of the total phenotypic variance for AB resistance at seedling stage. The SSR markers which flanked the AB QTLs were validated in a half-sib population derived from the same resistant parent ICCV 04516. Markers TA146 and TR20, linked to QTL2 were shown to be significantly associated with AB resistance at the seedling stage in this half-sib population. The markers linked to these QTLs can be utilized in marker-assisted breeding for AB resistance in chickpea.  相似文献   

19.
M. Mardi    L. Pazouki    H. Delavar    M. B. Kazemi    B. Ghareyazie    B. Steiner    R. Nolz    M. Lemmens    H. Buerstmayr 《Plant Breeding》2006,125(4):313-317
Fusarium head blight (FHB or head scab) has become a major limiting factor for sustainable wheat (Triticum aestivum L.) production around the world. For quantitative trait loci (QTL) analysis of resistance to FHB, F3 plants and F3 : 5 lines, derived from a ‘Frontana’ (moderately resistant)/‘Seri82’ (susceptible) cross, were spray‐inoculated in 2001 and 2002, respectively. Artificial inoculations were carried out under field conditions. Of 273 SSR and AFLP markers, 250 could be mapped and they yielded 42 linkage groups, covering a genetic distance of 1931 cM. QTL analysis was based on the constructed linkage map and area under the disease progress curve (AUDPC). The analyses revealed three consistent QTLs associated with FHB resistance on chromosomes 1BL, 3AL and 7AS explaining 7.9%, 7.7% and 7.6% of the phenotypic variation, respectively, above 2 years. The results confirmed the previously described resistance QTL of ‘Frontana’ on chromosome 3AL. A combination of ‘Frontana’ resistance with ‘Sumai‐3’ resistance may lead to lines with augmented resistance expression.  相似文献   

20.
A quantitative trait loci (QTL) associated with resistance to pea rust, caused by the fungus Uromyces pisi (Pers.) Wint., has been identified in a F2 population derived from an intraspecific cross between two wild pea (Pisum fulvum L.) accessions, IFPI3260 (resistant) and IFPI3251 (susceptible). Both parental lines and all the segregating population displayed a fully compatible interaction (high infection type), which indicates absence of hypersensitive response. Nevertheless, differences on the percentage of symptomatic area of the whole plant (disease severity) were observed. A genetic map was developed covering 1283.3 cM and including 146 markers (144 random amplified polymorphic DNA (RAPDs) and two sequence tagged sites (STSs) markers) distributed in 9 linkage groups. A QTL explaining 63% of the total phenotypic variation was located in linkage group 3. RAPDs markers (OPY111316 and OPV171078) flanking this QTL should allow, after their conversion in SCARs, a reliable marker-assisted selection for rust resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号