首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in larval walleye pollock feeding and condition: a synthesis   总被引:1,自引:0,他引:1  
There was a strong association among concentrations of microzooplankton prey sampled from the walleye pollock, Theragra chalcogramma , larval habitat, gut contents of larvae, and their nutritional condition. Subsequently, hypothesized survival potentials linked to food availability were validated by independently determined mortality rates. We present evidence that a significant number of walleye pollock larvae were starving in 1991 but that fewer were starving in 1992. At some stations where prey levels were anomalously low in 1991, up to 40% of the larvae were in poor condition. There appears to be a 2-week period after first feeding when walleye pollock are vulnerable to starvation.  相似文献   

2.
Between 1988 and 1993, 12 satellite-tracked buoys were deployed in four eddies in the south-eastern Bering Sea. Our success in finding eddies resulted from placing buoys in high concentrations of walleye pollock (Them-gra chalcogramma) larvae. We utilize data from hydro-graphic surveys, satellite-tracked buoys and moored current meters to describe the eddies. Small (< 25 km diameter) eddies likely transit along the slope of the eastern Bering Sea every 45–60 days. In previous studies such small features were not observed because their size fell within typical separation of hydrographic stations and the weak sea surface temperature gradients are not resolved by satellite-borne infrared imagery.  相似文献   

3.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

4.
Walleye pollock Theragra chalcogramma (pollock hereafter) is a key ecological and economic species in the eastern Bering Sea, yet detailed synthesis of the spatial and temporal patterns of pollock ichthyoplankton in this important region is lacking. This knowledge gap is particularly severe considering that egg and larval distribution are essential to reconstructing spawning locations and early life stages drift pathways. We used 19 yr of ichthyoplankton collections to determine the spatial and temporal patterns of egg and larval distribution. Generalized additive models (GAMs) identified two primary temporal pulses of pollock eggs, the first occurring from 20 February to 31 March and the second from 20 April to 20 May; larvae showed similar, but slightly lagged, pulses. Based on generalized cross‐validation and information theory, a GAM model that allowed for different seasonal patterns in egg density within three unique areas outperformed a GAM that assumed a single fixed seasonal pattern across the entire eastern Bering Sea. This ‘area‐dependent’ GAM predicted the highest densities of eggs (i.e., potential spawning locations) in three major areas of the eastern Bering Sea: near Bogoslof Island (February–April), north of Unimak Island and the Alaska Peninsula (March–April), and around the Pribilof Islands (April–August). Unique temporal patterns of egg density were observed for each area, suggesting that pollock spawning may be more spatially and temporally complex than previously assumed. Moreover, this work provides a valuable baseline of pollock spawning to which future changes, such as those resulting from climate variability, may be compared.  相似文献   

5.
6.
Interannual variability in growth of walleye pollock, Theragra chalcogramma, was examined. Adult walleye pollock were collected from the central Bering Sea (Aleutian Basin) from 1978 to 1999. Average fork lengths were found to be approximately 47 cm during the 1970–80s, this increased to 56 cm in the late 1990s. Age was determined for 4805 individuals using the otolith break and burn method. Ages ranged from 5–23 years and the year classes of 1978 and 1989 were dominant in the 1980s and the 1990s, respectively. Fish had significantly larger length-at-age in the 1990s compared to the 1970–80s, and interannual variability in age–length relationship was clearly observed. Taking into consideration a recent decrease of the walleye pollock biomass in the central Bering Sea, density-dependent growth was supported as one possibility of the growth variability. At the same time, we could not rule out the possibility that oceanographic variability affected the growth of walleye pollock in the area.  相似文献   

7.
Mortality rates of larval walleye pollock Theragra chakogramma were estimated from larval survey data from 1988 to 1991. Mortality estimates were based on cohort-specific losses between occupations of survey grids. Interannually, estimates of early feeding stage larval mortality rates ranged over an order of magnitude, from 0.045–0.43 day-1, and declined sharply with age. There is some evidence that mortality rates of early feeding larvae tend to be negatively correlated with temperature and postively correlated with wind mixing.  相似文献   

8.
Acoustic survey data were used to estimate the abundance and distribution of age-0 walleye pollock and zooplankton near the Pribilof Islands, Bering Sea, nursery area at two time periods in two consecutive years: the beginning of August, and mid-September, of 1996 and 1997. The 1996 pollock year class ultimately produced a large adult cohort in the eastern Bering Sea, while the 1997 year class produced a below-average adult cohort. Acoustic densities of age-0 pollock were significantly lower in August – and declined more strongly from August to September – in 1997 than in 1996, indicating that the trend to adult cohort strength was already set by August. Diet composition analyses revealed that age-0 pollock ate a much higher proportion of euphausiids in 1997 than in 1996, despite lower acoustic abundance of euphausiids in 1997. We infer that in 1996, age-0 pollock experienced greater feeding success by August, with high concentrations of copepods available for smaller fish to consume, and high concentrations of euphausiids available for larger individuals. In 1997, age-0 pollock had lower body condition in August and may have been limited by the availability of small (<2 mm) copepods. Bioenergetic modeling of prey consumption did not indicate a likelihood that age-0 pollock would begin to deplete euphausiids until late August in 1996, and not at all between August and mid-September in 1997.  相似文献   

9.
Analyses of climate effects often ignore differences in life history for individual species. We analyzed a 34‐year time series of eastern Bering Sea fish surveys to evaluate changes in distribution by length and between cold and warm shelf‐wide average water temperatures for 20 species over inhabited depth, temperature, and location. All species showed evidence of ontogenetic migration. Differences in distribution between years with warm and years with cold shelf‐wide water temperatures varied among species and within species at different lengths. For species where shelf‐wide temperature effects were detected, the mid‐sized fish were most active in changing spatial distribution. For aquatic organisms ontogenetic migration occurs because life history stages have different environmental requirements. This study illustrates the need to consider species responses to climate change over different life history stages, and that studies on ecosystem responses should take ontogenetic differences into consideration when assessing impacts.  相似文献   

10.
Differences in zooplankton populations in relation to climate have been explored extensively on the southeastern Bering Sea shelf, specifically in relation to recruitment of the commercially important species walleye pollock (Gadus chalcogrammus). We addressed two research questions in this study: (i) Does the relative abundance of individual copepod species life history stages differ across warm and cold periods and (ii) Do estimated secondary production rates for copepods differ across warm and cold periods? For most copepod species, warmer conditions resulted in increased abundances in May, the opposite was observed in colder conditions. Abundances of smaller‐sized copepod species did not differ significantly between the warm and cold periods, whereas abundances of larger‐sized Calanus spp. increased during the cold period during July and September. Estimated secondary production rates in the warm period were highest in May for smaller‐sized copepods; production in the cold period was dominated by the larger‐sized Calanus spp. in July and September. We hypothesize that these observed patterns are a function of temperature‐driven changes in phenology combined with shifts in size‐based trophic relationships with primary producers. Based on this hypothesis, we present a conceptual model that builds upon the Oscillating Control Hypothesis to explain how variability in copepod production links to pollock variability. Specifically, fluctuations in spring sea‐ice drive regime‐dependent copepod production over the southeastern Bering Sea, but greatest impacts to upper trophic levels are driven by cascading July/September differences in copepod production.  相似文献   

11.
Acoustic trawl surveys were conducted in 2000 and 2001 in two troughs located off the eastern coast of Kodiak Island in the Gulf of Alaska as part of a multiyear, multidisciplinary experiment to examine the influence of environmental conditions on the spatial distribution of adult and juvenile walleye pollock (Theragra chalcogramma) and capelin (Mallotus villosus). Continuous underway sea surface temperature samples and water column profiles collected in 2000 and 2001 showed the presence of a sharp shelf‐break front in Chiniak Trough and a mid‐trough front in Barnabas Trough. At distances <22 km from shore, the water column was well mixed, whereas a well‐defined mixed layer was present beyond approximately 22 km from shore. Satellite drifter tracks in Barnabas Trough entered along the upstream edge of the trough and appeared to follow the frontal boundary across the middle portion of the trough. A storm in 2001 weakened stratification and cooled surface water temperature by 1.6–2.1°C. Wind mixing associated with the storm event mixed subsurface chlorophyll a to the surface and enhanced nutrients in the surface waters. The storm event revealed spatial partitioning of summer production in Barnabas Trough, with production concentrated in regions inside the mid‐trough front. In contrast, post‐storm summer production was distributed throughout Chiniak Trough. The spatial distribution of walleye pollock and capelin differed and appeared to be related to differences in habitat characteristics. Acoustic survey data identified four acoustic sign types: age‐1 pollock, adult pollock, capelin, capelin–age‐0 pollock mix. The spatial distribution of these four sign types appears to be influenced by the oceanographic and topographic features of the two troughs. Adult pollock were broadly distributed throughout Chiniak Trough, whereas adult pollock were aggregated on the coastal side of the frontal system in Barnabas Trough. In 2000, capelin occurred with age‐0 pollock. In Chiniak Trough, capelin were most abundant along steep topographic gradients at the edges of the trough and in a deep region near Cape Chiniak, whereas the capelin–age‐0 mix (2000) or capelin (2001) concentrations were observed in slope water intrusions over the outer shelf in Barnabas Trough. Results suggest that habitat selection of walleye pollock and capelin are controlled by different processes. Capelin distributions appear to be limited by oceanographic conditions while other factors appear to be more important for pollock.  相似文献   

12.
This review summarizes results of an extensive series of laboratory studies on the behavioural responses of early life stages of walleye pollock, Theragra chakogramma to key environmental factors including light, temperature, gravity, turbulence, food availability and predator presence. Experiments focused on vertical distribution of egg through 0-age stages, and social interactions of age-0 juveniles. Key factors were modified either singly or in concert to determine their direct and indirect influence on fish behaviour. The observed results suggest that the behaviour of individual fish depends on the integration of a continually changing hierarchy of both intrinsic and extrinsic factors, with the relative importance of a specific factor varying with ontogeny and over time and space. The broad range of responses displayed by early life stages suggests that behaviour plays an important role in determining the consequences of environmental variability on walleye pollock populations. In general, results from our laboratory experiments are consistent with patterns observed in field studies, supporting the efficacy of using experimental behavioural research to define some of the underlying mechanisms controlling distribution and survival in the field, and eventual recruitment to adult populations.  相似文献   

13.
Recruitment of the northern Japan Sea stock (JSS) of walleye pollock has been decreasing since around 1990. In this study, I analyzed the factors causing this decrease in recruitment by investigating the relationship between recruitment, spawning stock biomass (SSB) and environmental factors using a generalized additive model (GAM). GAM fit to the data showed the importance of SSB, sea surface temperature (SST), ocean current strength (Tsushima Warm Current) and wind intensity (Asian monsoon) in determining the recruitment. Of these, the relationship between SSB and recruitment was positive and not negatively density‐dependent. On the other hand, the recruitment was negatively related to SST and ocean current strength, and a dome‐shaped relationship was observed between wind intensity and recruitment. Since around 1990, the values of SST and ocean current strength have mostly been high and that of wind intensity mostly low. In addition, SSB has been decreasing since the late 1990s. It is likely that the recruitment decline of JSS after approximately 1990 has been caused by warm water temperature, strong Tsushima Warm Current and weak Asian monsoon, and that the recent decrease in SSB has amplified this recruitment decline. According to the model’s estimation, a recruitment recovery due to environmental improvement will be highly restricted as long as SSB remains at its current low level. Significant recovery of SSB is urgently needed for JSS.  相似文献   

14.
Here we investigate processes affecting productivity of capelin and walleye pollock in the Gulf of Alaska. We examine pelagic habitat selection by comparing the distribution of juvenile fish and their prey with oceanographic properties and we evaluate the potential for interspecific competition by comparing diets and measures of foraging. The primary field study was conducted in Barnabus Trough, Kodiak Island, Alaska, during September 2005. The distribution of fish was assessed acoustically and trawls were used to collect individual fish for stomach content analyses. Physical and biological data were collected with conductivity–temperature–depth probes and zooplankton tows. Age‐0 pollock were distributed in cool waters offshore of a mid‐trough front, coincident with the distribution of euphausiids, their preferred prey. In contrast, capelin and their prey (copepods) were distributed throughout the trough. We observed that sympatric capelin (occurring with pollock) often had reduced foraging success compared to allopatric capelin (occurring alone). Results of a bioenergetic model also suggest that the exclusion of capelin from foraging on euphausiids can have negative consequences for capelin growth.  相似文献   

15.
Concern about impacts of climate change in the Bering Sea prompted several research programs to elucidate mechanistic links between climate and ecosystem responses. Following a detailed literature review, Hunt et al. (2011) (Deep‐Sea Res. II, 49, 2002, 5821) developed a conceptual framework, the Oscillating Control Hypothesis (OCH), linking climate‐related changes in physical oceanographic conditions to stock recruitment using walleye pollock (Theragra chalcogramma) as a model. The OCH conceptual model treats zooplankton as a single box, with reduced zooplankton production during cold conditions, producing bottom‐up control of apex predators and elevated zooplankton production during warm periods leading to top‐down control by apex predators. A recent warming trend followed by rapid cooling on the Bering Sea shelf permitted testing of the OCH. During warm years (2003–06), euphausiid and Calanus marshallae populations declined, post‐larval pollock diets shifted from a mixture of large zooplankton and small copepods to almost exclusively small copepods, and juvenile pollock dominated the diets of large predators. With cooling from 2006–09, populations of large zooplankton increased, post‐larval pollock consumed greater proportions of C. marshallae and other large zooplankton, and juvenile pollock virtually disappeared from the diets of large pollock and salmon. These shifts in energy flow were accompanied by large declines in pollock stocks attributed to poor recruitment between 2001 and 2005. Observations presented here indicate the need for revision of the OCH to account for shifts in energy flow through differing food‐web pathways due to warming and cooling on the southeastern Bering Sea shelf.  相似文献   

16.
17.
The Japanese Pacific stock (JPS) and the northern Japan Sea stock (JSS) of walleye pollock Theragra chalcogramma are mainly distributed in the Pacific Ocean and the Sea of Japan off northern Japan, respectively. This paper summarizes and compares the factors affecting the recruitment variability of these two stocks. Spawning season is from December to March for both stocks. JPS recruitment has a positive relationship with the water temperature in January and February, whereas that of JSS has a negative relationship with the water temperature in January, February, and April. One possible reason for this is that pollock larvae have an optimum growth temperature of approximately 5 °C in the field. Drift of early life stages also appears to be an important influence on the recruitment of both stocks. Because the current generated by the northwest wind carries eggs of JPS into the main larval nursery ground, JPS recruitment is enhanced in years when the northwest wind is predominant in February. On the other hand, early life stages of JSS are transported into the nursery ground by the Tsushima Warm Current. However, this current also carries early life stages into the Sea of Okhotsk and offshore, resulting in poor JSS recruitment in years when this current is strong in March. In contrast to JPS, the recruitment of which is significantly impacted by cannibalism, young pollock have not been found in the stomachs of adult JSS. Warm temperatures in the Sea of Japan seem to induce the separation of young and adult pollock, and the shape of the stock–recruitment relationship also suggests that cannibalism is not important for JSS. Based on this knowledge, and on the hatch date distributions of larvae and juveniles, we propose mechanisms that can explain the recruitment fluctuations for JPS and JSS pollock.  相似文献   

18.
Abiotic and biotic factors affecting the recruitment variability of the Japanese Pacific stock (JPS) of walleye pollock (Theragra chalcogramma) were examined using a bivariate regression and multivariate combined model. Of the abiotic variables around Funka Bay (spawning ground), February sea surface temperature (SST) and wind direction index showed significant bivariate relationships with recruitment. February SST was positively related to recruitment, suggesting that warmer water temperature in February favors JPS recruitment. On the other hand, the relationship between February wind direction index and recruitment predicts high JPS recruitment under predominant northwest winds in February. For the biotic variables in the Doto area (nursery ground), significant and negative bivariate relationships with recruitment were observed for catch per unit effort of Kamchatka flounder (Atheresthes evermanni), Pacific cod (Gadus macrocephalus), and walleye pollock, implying an important impact of predation by these groundfishes on JPS recruitment. The overall model incorporating these abiotic and biotic factors successfully reproduced the variability in JPS recruitment. Temperature and wind conditions around the spawning ground along with predator condition in the nursery ground appear to play a dominant role in the recruitment dynamics of JPS. Based on these results and prior knowledge, we propose a new hypothesis to explain the processes controlling JPS recruitment.  相似文献   

19.
Walleye pollock (Gadus chalcogrammus) supports one of the largest commercial fisheries in the world. Juvenile pollock are important forage fish in the eastern Bering Sea (EBS) ecosystem, often representing the largest fraction in the diets of major Bering Sea piscivores. Large variability in the EBS pollock stock biomass in recent years has been attributed primarily to fluctuations in recruitment. It has been hypothesized that predation rates on forage fishes increase when the cold pool (a body of cold water < 2°C) is extensive and covers much of the middle continental shelf, which tends to concentrate larger predatory fishes in the outer shelf and slope regions. In contrast, young pollock appear to tolerate colder temperatures than older fish and can stay in the cold pool, thereby reducing predation. We used a multispecies modeling approach to examine the effects of the cold pool size on predation of juvenile pollock. We found that predation on age‐1 pollock by age‐3+ pollock decreased, and predation on age‐1 and age‐2 pollock by arrowtooth flounder increased with increasing bottom temperature, which was used as a proxy for the cold pool size. These results suggest that the cold pool creates spatial separation between juvenile pollock and arrowtooth flounder, but not between adult and juvenile pollock. The model developed in this study could be used to examine the effects of other covariates on interspecific interactions, help explain observed changes in fish communities, and understand implications of climate change on ecosystems and their productivity.  相似文献   

20.
During 1997 and 1998, unusual physical conditions occurred in the Bering Sea: strong May storms and calm conditions in July; record high sea surface temperature; a shallow wind mixed layer; a fresher-than-normal water column; and abnormal cross-shelf currents. Accompanying these conditions were changes in the dominant phytoplankton, a die-off of seabirds, increased sightings of large whales and diminished returns of salmon. Changes to the physical environment during 1997 and 1998 are placed in context of historical meteorological and oceanographic data sets. Although 1997 had the warmest sea surface temperature ever observed on the south-east Bering Sea shelf, the heat content of the water column was cooler than average. In contrast, during 1998, the sea surface temperature was cooler than in 1997 but the water column had significantly higher heat content. During recent years, the water column has freshened over the middle shelf because of increased sea ice and reduction of on-shelf transport of the saline, high-nutrient water from the slope. The timing of the spring bloom is directly related to the presence of ice. When ice is advected over the south-east shelf during March/April an early, sharp phytoplankton bloom occurs. The absence of ice during this critical time is associated with a May/June bloom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号