首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J. A. Kolmer 《Euphytica》1992,61(2):123-130
Summary Leaf rust resistance gene Lr13 is present in many North American hard red spring wheat cultivars that have shown durable resistance to leaf rust. Fifteen pair-wise combinations of Lr13 and seedling leaf rust resistance genes were developed by intercrossing near isogenic Thatcher lines. In both seedling and adult plant tests, homozygous paired combinations of specific resistance genes with Lr13 had enhanced resistance relative to either parent to rust isolates that had intermediate avirulent infection types to the additional genes. In field tests, homozygous lines were more resistant than either parent if the additional leaf rust gene conditioned an effective level of resistance when present singly.  相似文献   

2.
P. L. Dyck  E. E. Sykes 《Euphytica》1995,81(3):291-297
Summary Common and durum wheat populations obtained from Sweden and originally collected in Ethiopia were screened for resistance to steum rust and leaf rust. Resistant selections of common wheat were crossed and backcrossed with either stem rust susceptible RL6071, or leaf rust susceptible Thatcher. Genetic studies, based largely on tests of backcross F2 families, showed that four of the selections had in common a recessive gene SrA. Plants with this gene were resistant (1+ infection type) to all stem rust races tested. This gene was neither Sr26 nor Sr29. The resistance of other selections, based on tests with an array of rust isolates, was due to various combinations of Sr6, 8a, 9a, 9d, 9c, 11, 13, 30, and 36. One of the selections had linked genes, Lr19/Sr25. Another selection had a dominant gene for resistance (;1 infection type) to all the races of leaf rust. With the possible exception of this gene for leaf rust resistance and SrA, no obviously new resistance was found.  相似文献   

3.
Summary The relation between flag leaf position and leaf rust severity was investigated in field experiments. Different leaf angles were obtained by attaching ends of flag leaves to strings stretched at different heights along wheat rows. Leaves with angles between lamina and stem of 0° and 45° were significantly less diseased than leaves with horizontal and pendulous positions. In the experiment with seedlings, spore settling and uredia number were significantly lower on erect than on horizontal leaves. The influence of wheat leaf position changes on leaf rust severity was discussed. It has been suggested that breeding of wheat cultivars with erect leaves can improve their resistance to airborne pathogens.  相似文献   

4.
Monogenic lines resistant to leaf rust of spring and winter wheats were grown in the world wheat-producing areas from 1970 through 1975. Lines containing the alleles Lr9 (Wi), Lr9 (Tc), and Lr19 (Tc) were more resistant to the leaf rust pathogen than those containing Lr1 (Tc), –1 (Wi), –1,3 (Wi), –2A (Tc), –2A (Wi), –2D (Tc), –3 (Tc), –3 (Wi), –10 (Tc), –16 (Tc), –17 (Tc), –18 (Tc), or –2D (Pld). Monogenic line Lr1 (Wi) possibly has more than one gene for resistance and resistance properties similar to cultivars with field resistance. A computer data base was created to produce the information used in this paper.Formerly Research Agronomist, Field Crops Laboratory, now Supervisoty Computer Specialist, DSAD; and Research Plant Pathologist, Germplasm Resources Laboratory, ARS, BARC-West, Beltsville, Maryland 20705.  相似文献   

5.
Summary Specific host-pathogen relationship is used to derive genetic information for resistance in commercial cultivars. Twenty-two cultivars were classified into 12 groups based on their reactions to 13 leaf rust (Puccinia recondita) races of India. The cultivars in each group were matched with the Lr gene carrying lines to see which genes they might possess. Confirmation of this information was sought through pedigree analyses.(1) Agra local and NP4 do not seem to have any resistance genes. (2) C306 has gene Lr14a, and NP824 one of the genes Lr12, Lr13, Lr14a or Lr22. (3) kalyansona carries Lr13 and another additional gene not in study. (4) Chhoti Lerma, NP852, Pusa Lerma, Sharbati Sonora, Shera, UP301 form one group and carry Lr1. (5) Sonalika seems to have Lr2a, Lr11 and additional genes. (6) Hy.65 has Lr10. (7) HS1076-2 and HW135 have the genes Lr2a and Lr3do. (8) HW124 carries the genes Lr1 and Lr3do. (9) Safed Lerma has Lr1 and Lr17. (10) NP846 has the genes Lr1 and Lr15. (11) HB117-107, Janak, UP215 form one group and possess the genes Lr3do and Lr15. (12) Girija possesses the genes Lr10 and Lr15.Based on such grouping of commercial cultivars for resistance genes a Catalogue system is advocated for the design of wheat breeding programmes like the development of multiline and multigene cultivars.  相似文献   

6.
J. K. Luthra  M. V. Rao 《Euphytica》1979,28(1):137-144
Summary To understand how multiline cultivars of wheat develop better protection against leaf rust, seven experimental multilines with 0, 28, 40, 50, 58, 60 and 70% susceptibility were subjected to leaf rust epiphytotics in the field along with their pure line components. A mixture comprising 12 leaf rust races, 10, 11, 12, 17, 20, 63, 77, 106, 107, 108, 162 and 162 A was used.Both the initial inoculum (Xo) and rate of increase (r) of leaf rust were substantially reduced in the multiline cultivars. Xo was reduced by 45–75% and the over-all infection rate (r) by as much as 16% over the average of components.As a result of reduced Xo and r, the intensity of leaf rust in the multilines was also significantly affected at all stages of rust development. It was reduced from 32,10 to 89.54% over the average of components differing from one multiline to another and also from time to time. The susceptible recurrent parent, Kalyansona at the peak period of rust infection exhibited 86.75% severity while in the multilines it ranged from 5.80 to 35%.The rate of increase in the multilines was found to be proportional to the logarithm of the proportion of susceptible plants in the host mixture.Further, it was found that even if as many as 50% susceptible plants are present in a multiline they would not suffer much from leaf rust damage.  相似文献   

7.
D. R. Knott 《Euphytica》1989,44(1-2):65-72
Summary Nine transfers of leaf rust (Puccinia recondita Rob. ex Desm.) resistance to wheat (Triticum aestivum L.) from Agropyron elongatum Host. Beauv., Triticum speltoides Tausch and rye (Secale cereale L.) were backcrossed up to 10 times to commercial wheat cultivars. The objective was to study the effect of the transfers on agronomic and quality characters and to make them available in desirable genetic backgrounds. The results varied greatly for different transfers. In four cases no promising material was obtained even after nine backcrosses. However, for the remaining five transfers material with potential as a new cultivar was obtained.  相似文献   

8.
Summary Five spring wheat cultivars differing in partial resistance (PR) to wheat leaf rust were tested at Wageningen (the Netherlands) on a sandy and a clay site, El Batan (CIMMYT, Mexico) and Ponta Grossa (Brazil) over two years. The cultivars were Skalavatis 56, Little Club (both very susceptible), Westphal 12A, Akabozu and BH 1146 (all three with high levels of PR). The results showed that PR was expressed at all four locations in both years. The level of expression was influenced by the environment but the cultivar ranking was hardly affected. Selection for PR in the field can therefore be carried out over a wide range of environments.  相似文献   

9.
Summary The leaf rust responses of wheat lines carrying the complementary genes Lr27 and Lr31 and the same genes in a Chinese Spring background which contains Lr34, indicate that Lr34 interacts with the complementary genes to give enhanced levels of field resistance to leaf rust. Lr34, particularly in combination with other genes, is considered to be an important gene for imparting a high degree of durable resistance to leaf rust. Its similarity to Sr2, an adult plant gene for resistance to stem rust and its association with adult plant resistances to stem and stripe rusts are discussed.  相似文献   

10.
J. A. Kolmer    L. M. Oelke    J. Q. Liu 《Plant Breeding》2007,126(2):152-157
A genetic analysis of the landrace‐derived wheat accessions Americano 25e, Americano 26n, and Americano 44d, from Uruguay was conducted to identify the leaf rust resistance genes present in these early wheat cultivars. The three cultivars were crossed with the leaf rust susceptible cultivar ‘Thatcher’ and approximately 80 backcross (BC1) F2 families were derived for each cross. The BC1F2 families and selected BC1F4 lines were tested for seedling and adult plant leaf rust resistance with selected isolates of leaf rust, Puccinia triticina. The segregation and infection type data indicated that Americano 25e had seedling resistance genes Lr3, Lr16, an additional unidentified seedling gene, and one adult plant resistance gene that was neither Lr12 nor Lr13, and did not phenotypically resemble Lr34. Americano 26n was postulated to have genes Lr11, Lr12, Lr13, and Lr14a. Americano 44d appeared to have two possibly unique adult plant leaf rust resistance genes.  相似文献   

11.
L. H. M. Broers 《Euphytica》1989,44(3):247-258
Summary Eighteen spring wheat cultivars were tested in microfields and race nurseries for their partial resistance PR to wheat leaf rust under low and high disease pressure respectively. Large differences existed between the 18 cultivars, Skalavatis 56 being the most susceptible and Ponta Grossa 1 being the most resistant cultivar. Of the three epidemic parameters, disease severity (DS) at the time that the susceptible check was severely diseased and area under the transformed disease severity curve (AUTC) and the logistic growth rate (r), AUTC and DS were highly correlated. Both seemed to be reliable estimators of PR but DS should be preferred for economical reasons. The logistic growth rate seemed to be unsuitable as an estimator of partial resistance.High and low disease pressure gave similar cultivar ranking. PR can be screened and selected equally well in race nurseries with low space, low time and low cost input as in microfields with high space, time and cost input.Cultivar differences in development rate had a large impact on the cultivar differences for amount of disease and can therefore greatly bias the estimation of cultivar resistance. The resistance of early cultivars tended to be underestimated whereas the resistance of late cultivars tended to be overestimated. The effect of differences in developmental rate was most pronounced in the flag leaf. It is advisable to avoid the assessment of disease levels on the flag leaf only and to incorporate in the tests several susceptible and resistant checks that cover the range of development rates in the material to be selected, because otherwise selection for resistance will tend to select also for lateness.Regression of the epidemiological parameters on three components of partial resistance revealed that latency period (LP) is an important factor in determining the resistance observed in the field explaining on average 67% of the observed variation. Adding infection frequency (IF) and urediosorus size (US) to the linear model increased the proportion of the observed variation in the field explained by the components to 80%. This result supports the idea that the components of PR inherit independently, at least, in part.  相似文献   

12.
Summary Forty F6 lines, the two parental lines, and a susceptible check cultivar of wheat (Triticum aestivum L.) were inoculated in the young flag leaf stage with leaf rust (Puccinia recondita f.sp. tritici) and evaluated for latent period, receptivity, and uredinium size in a greenhouse experiment. Genotypic (rg) and phenotypic (rp) correlations between latent period and uredinium size were –0.81 and –0.62, respectively. A negative correlation (rg=–0.50, rp=–0.41) was found between latent period and receptivity and a positive correlation (rg=0.28, rp=0.26) between uredinium size and receptivity was found. Area under the disease progress curve (AUDPC) and final rust severity (FRS) obtained from a subsequent field study with common entries were negatively correlated with latent period and positively correlated with uredinium size. Correlations of receptivity with both AUDPC and FRS were not significant. The distributions of F6 family mean uredinia size and latent period were continuous between slow rusting and fast rusting parents: however, the distribution for receptivity was discrete. Narrow-sense heritability estimates were 63%, 57%, and 47% for uredinium size, latent period, and receptivity, respectively. Estimates of the minimum number of effective factors were three for latent period and three or four for the uredinium size and receptivity. The components are controlled by closely linked genes or due to pleotropic effects of the same gene.Abbeviations AUDPC - Area under the disease progress curve - FRS - Final rust severity  相似文献   

13.
Summary A set of 21 monosomics of Novosadska Rana-1 was used to locate the rust resistance genes of Lüqiyu, a stripe rust resistant line developed by BAU and Yantar, a leaf rust resistant wheat introduced from Bulgaria. The resistance of the former to p. striiformis race C25 was conditioned by a dominant gene located on chromosome 2B, whereas that of the latter to P. recondita race CL3 was controlled by two complementary dominant genes located on chromosomes 5A and 1D, respectively. The relationship of the stripe rust resistance gene in Lüqiyu to Yr5, Yr7 or Yr Suwon' all located on chromosome 2B is unknown. The two complementary leaf rust resistance factors in Yantar appear to be new.  相似文献   

14.
D. Singh  R.F. Park  R.A. McIntosh 《Euphytica》2001,120(2):205-218
Multi-pathotype tests on 70 U.K. wheat cultivars permitted postulation of eight known seedling genes for resistance to Puccinia recondita f. sp.tritici either singly or in combinations. The most commonly detected gene was Lr13 (present in approximately 57% of cultivars), followed by Lr26 (22%), Lr37 (20%), Lr10 (17%), Lr17b (LrH) (10%), Lr1 (7%), Lr3a (6%) and Lr20(4%). This information permitted assessments of adult plant resistance (APR) in some cultivars, in field nurseries inoculated with pathotypes of P. recondita f. sp. tritici of known pathogenicities for characterized seedling resistance genes. APR was identified in eleven cultivars, including Avalon and Maris Ranger, which lacked detectable seedling resistance genes. The results provided a better understanding of specific resistances in the cultivars tested than was available from previous reports. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Using the cultivar Arina as the recurrent parent, six backcrosses were made with two donor lines carrying the leaf rust resistance genes Lr1 and Lr9, respectively. Selection for leaf rust resistance occurred at the seedling stage in the greenhouse; the first plants transferred to the field were BC6F4s. Frequency distribution of the 332 Lr1/7 × Arina and the 335 Lr9/7 × Arina lines showed continuous variation for yellow rust resistance and heading date in these leaf rust near-isogenic lines (NILs). Similar results were also obtained for plant height, for resistance to powdery mildew and glume blotch, as well as for baking quality characters in another set of more advanced NILs. The available information on the behaviour of one of the parents of cultivar Arina led to the conclusion that the expressed yellow rust resistance is quantitative and might possibly be durable.  相似文献   

16.
Summary Genetics of rust resistance against stem rust race 122 in Chhoti Lerma was studied both by conventional and aneuploid analysis. Observations on F1, F2 and F2 backcross progenies revealed the operation of two recessive genes, controlling resistance in Chhoti Lerma. Monosomic analysis confirmed the operation of two recessive genes conferring resistance to race 122 located on chromosomes 1D and 7D. A minor gene or modifier was also located on chromosome 1B. This was concluded from the fact that F2 of mono's x Chhoti Lerma exhibited skewness in favour of resistant plants.  相似文献   

17.
Summary The average size of wheat leaf rust colonies, measured using epifluorescence microscopy was significantly larger in the highly susceptible genotype Morocco than in the susceptible genotype Kaspar and the partially resistant genotypes Westphal 12A, Akabozu and BH 1146. This was already so three days after inoculation. Colony growth in partially resistant genotypes was continuously retarded compared to colonies in the highly susceptible genotype Morocco. No evidence was found for an initial inhibition of the growth of colonies in partially resistant genotypes. In partially resistant genotypes formation of uredial beds and sporulating areas started at a smaller colony size than in susceptible genotypes. Wheat leaf rust colonies in primary leaves of all genotypes studied were much larger than colonies in flag leaves measured at the same number of days after inoculation. Growth and sporulation of not intertwined colonies was not influenced by either a high or a low number of neighbouring colonies.  相似文献   

18.
Th. Jacobs 《Euphytica》1990,45(1):81-86
Summary Arrest of the growth of wheat leaf rust infection structures was studied with fluorescence microscopy in seedling leaves and flag leaves of the susceptible spring wheat genotypes Morocco and Kaspar and the partially resistant genotypes Westphal 12A and Akabozu. The percentages non-penetrants and substomatal vesicle abortion were low in all genotypes. In the partially resistant genotypes the percentage abortion of infection structures was higher than in the susceptible genotype Morocco. Aborted infection structures had formed one or two haustorial mother cells. In adult plants differences in the percentage aborted infection structures between susceptible and partially resistant genotypes were more pronounced than in seedlings. The so-called late abortion was not observed.  相似文献   

19.
L. H. M. Broers 《Euphytica》1989,44(3):273-282
Summary Partial resistance (PR) in wheat to wheat leaf rust (Puccinia recondita f.sp. tritici) is characterized by a slow epidemic build-up despite a susceptible infection type. Two greenhouse tests and two field tests, in which 11 spring wheat cultivars were exposed to five wheat leaf rust races, revealed some indication for race-specificity of PR.In the greenhouse, the expression of PR was highly dependent on the environment. Significant cultivar-race interactions in the first experiment were lost in the second experiment probably due to cultivar-environment and cultivar-race-environment interactions.In the polycyclic field tests several factors played a role in explaining the inconsistency of the cultivar-race interactions, such as differences in initial inoculum, genotypic differences in earliness, interplot interference or environmental conditions.One cultivar-race combination showed a significant but small interaction towards susceptibility in both field experiments. The interaction was probably too small to detect in the monocyclic greenhouse tests. The results do not conflict with the idea that a gene-for-gene relationship could exist between PR-genes in the host and genes in the pathogen.Some problems with regard to the selection of PR in wheat to wheat leaf rust are discussed.  相似文献   

20.
Summary A set of 105 European wheat cultivars, comprising 68 cultivars with known seedling resistance genes and 37 cultivars that had not been tested previously, was tested for resistance to selected Australian pathotypes of P. triticina in seedling greenhouse tests and adult plant field tests. Only 4% of the cultivars were susceptible at all growth stages. Twelve cultivars lacked detectable seedling resistance to leaf rust, and among the remaining cultivars, 10 designated genes were present either singly or in combination. Lr13 was the most frequently detected gene, present in 67 cultivars, followed by the rye-derived gene Lr26, present in 19 cultivars. Other genes present were Lr1, Lr3a, Lr3ka, Lr10, Lr14a, Lr17b, Lr20 and Lr37. There was evidence for unidentified seedling resistance in addition to known resistance genes in 11 cultivars. Field tests with known pathotypes of P. triticina demonstrated that 57% of the cultivars carried adult plant resistance (APR) to P. triticina. The genetic identity of the APR is largely unknown. Genetic studies on selected cultivars with unidentified seedling resistances as well as all of those identified to carry APR are required to determine the number and inheritance of the genes involved, to determine their relationships with previously designated rust resistance genes, and to assess their potential value in breeding for resistance to leaf rust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号