首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of dietary protein concentration (high, 18.5; low, 15.7%) and fermentable fiber (control; soyhulls, SH; and sugar beet pulp, SBP) on N excretion patterns and plasma urea were tested in a 2 x 3 factorial arrangement. The objectives were: 1) to determine if reduced dietary protein together with fermentable fiber would reduce urinary N excretion further than a single diet manipulation, 2) to determine if effects of diet manipulations were similar between pigs with restricted and free access of feed, and 3) to further develop predictions of urinary N excretion using plasma urea. Diets were formulated to 3.30 Mcal digestible energy (DE)/kg and 2.4 g of digestible lysine per Mcal DE, and supplemented with lysine, methionine, tryptophan, threonine, isoleucine, leucine, or valine to ensure meeting an ideal AA profile. Pigs (30.5 +/- 3 kg; n = 36) were housed in metabolism crates with restricted access to feed (3 x 110 kcal DE/kg BW(0.75)) from d 1 to 18, and free access from d 19 to 26. Feces and urine were collected from d 15 to 18 and d 23 to 26, and blood was sampled on d 17 and 25. With restricted access to feed, urinary N was reduced 28% and N retention was reduced 12% for the low- compared to high-protein diet (P < 0.01; as g/d). Fecal N was increased 4% units for SH and 6.5% units for SBP (P < 0.01; as % of N intake) and urinary N was reduced 5% units for SH (P < 0.10) and 9% units for SBP (P < 0.05) compared to the control. With free access to feed, urinary N was reduced 27% (P < 0.05; as g/d) and N retention was reduced 7% (P < 0.10) for the low- compared to high-protein diet. Fecal N was increased 5% units for SH and 9% units for SBP (P < 0.001; as % of N intake), and urinary N was reduced 9% units for SH and 10% units for SBP (P < 0.01) compared to the control. For either restricted or free access to feed, fermentable fiber did not affect N retention (P > 0.10). A protein x fiber interaction was not observed for urinary N excretion (P > 0.10), indicating that reducing dietary protein and including fermentable fiber reduced urinary N excretion in an additive manner. Daily urinary N excretion was related positively and linearly with plasma urea in pigs with free access to feed (R2 = 0.71; at 0800). In summary, reduction of dietary protein reduced urine N excretion, and fermentable fiber shifted N excretion from urine to feces. Effects of dietary protein and fermentable fiber on reducing urinary N excretion are additive.  相似文献   

2.
Two experiments were conducted to determine if ractopamine hydrochloride (RAC) could improve nutrient utilization and decrease water utilization, thus reducing the environmental footprint of hog operations. The tissue accretion experiment used comparative slaughter involving 120 barrows (95 ± 3 kg of BW), including 12 assigned to an initial slaughter group; the remaining pigs were slaughtered at 108 or 120 kg. Growth performance and nutrient retention were determined. The 15-d metabolism experiment consisted of 54 pigs (95 ± 3 kg of BW). Growth performance, feed and water intake, and urine and fecal output were measured. The metabolism experiment used 9 dietary treatments arranged as a 3 × 3 factorial: 3 quantities of RAC (0, 5, and 10 mg/kg) and 3 standardized ileal digestible-Lys:DE ratios (1.73, 2.14, and 2.63 g/Mcal of DE). The tissue accretion study was designed as a 3 × 3 × 2 factorial arrangement of treatments using the same 9 dietary treatments to include slaughter BW (108 and 120 kg of BW) as an additional factor. In the tissue accretion experiment, RAC had no effect on ADG, ADFI, or G:F (P>0.10). With increased Lys, G:F improved (P=0.029), but not ADG or ADFI (P>0.10). Protein deposition rates increased numerically (P=0.11); water deposition rates increased (P=0.050), whereas lipid deposition tended to decrease with RAC inclusion (P=0.055). With greater RAC and Lys, the pigs had improved ADG (P=0.002) and G:F (P<0.001) in the metabolism experiment. Daily water intake (P=0.017.) and water output (P=0.033) decreased with RAC inclusion. Lysine inclusion did not alter the water balance (P>0.10). Urinary N excretion (P<0.001), total N excretion (P=0.003), and the urine N:fecal N ratio (P<0.001) decreased with the addition of RAC; fecal N (P=0.008) increased with RAC inclusion. Retention of N improved with addition of RAC to the diet (P=0.003). With greater dietary Lys, fecal N was reduced (P<0.001). The pigs fed the 2.14 g of Lys/Mcal tended to have the least urinary N (P = 0.069) and total N excretion (P=0.086) and to have the greatest N retention (P=0.086) and urinary N:fecal N ratio (P=0.009). A RAC × Lys interaction was observed for N digestibility (P=0.001), excretion (P=0.001), and retention (P=0.002) and for fecal (P=0.001) and urinary N (P=0.036). By improving N and water utilization in finishing pigs, RAC-containing diets supplemented with sufficient Lys can reduce N excretion into the environment from swine facilities.  相似文献   

3.
Urea recycling in ruminants has been studied extensively in the past, but the mechanisms regulating the amount of urea recycled or excreted remain obscure. To elucidate the role of urea transporters (UT) in N recycling, nine Dorset-Finn ewe lambs (20.8 +/- 0.8 kg) were fed diets containing 15.5, 28.4, and 41.3 g of N/kg of DM for 25 d. Nitrogen balance and urea N kinetics were measured during the last 3 d of the period. Animals were then slaughtered and mucosa samples from the rumen, duodenum, ileum, and cecum, as well as kidney medulla and liver, were collected. Increasing N intake tended to increase N balance quadratically (1.5, 5.1, and 4.4 +/- 0.86 g of N/d, P < 0.09), and linearly increased urinary N excretion (2.4, 10, and 16.5 +/- 0.86 g N/d, P < 0.001) and plasma urea N concentration (4.3, 20.3, and 28.4 +/- 2.62 mg of urea N/dL, P < 0.001), but did not affect fecal N excretion (5.0 +/- 0.5 g of N/d; P < 0.94). Urea N production (2.4, 11.8, and 19.2 +/- 0.83 g of N/d; P < 0.001) and urinary urea N excretion (0.7, 7.0, and 13.4 +/- 0.73 g N/d; P < 0.001) increased linearly with N intake, as well as with the urea N recycled to the gastrointestinal tract (1.8, 4.8, and 5.8 +/- 0.40 g of N/d, P < 0.001). No changes due to N intake were observed for creatinine excretion (518 +/- 82.4 mg/d; P < 0.69) and clearance (46 +/- 10.7 mL/min; P < 0.56), but urea N clearance increased linearly with N intake (14.9, 24.4, and 34.9 +/- 5.9 mL/min; P < 0.04). Urea N reabsorption by the kidney tended to decrease (66.3, 38.5, 29.1 +/- 12.6%; P < 0.06) with increasing N content of the diet. Increasing the level of N intake increased linearly the weight of the liver as a proportion of BW (1.73, 1.88, and 2.22 +/- 0.15%, P < 0.03) but only tended to increase the weight of the kidneys (0.36, 0.37, and 0.50 +/- 0.05%, P < 0.08). Urea transporter B was present in all the tissues analyzed, but UT-A was detected only in kidney medulla, liver, and duodenum. Among animals on the three diets, no differences (P > 0.10) in UT abundance, quantified by densitometry, were found. Ruminal-wall urease activity decreased linearly (P < 0.02) with increasing level of N intake. Urease activity in duodenal, ileal, and cecal mucosa did not differ from zero (P > 0.10) in lambs on the high-protein diet. In the present experiment, urea transporter abundance in the kidney medulla and the gastrointestinal tract did not reflect the increase in urea-N reabsorption by the kidney and transferred into the gut.  相似文献   

4.
Ten 56-d-old, 15-kg barrows were surgically fitted with a postvalvular T-cecum cannula at the ileo-cecal junction to evaluate the effect of microbial phytase on apparent and true ileal AA digestibility and N utilization. A semipurified cornstarch- and soybean meal-based diet was formulated to contain 3.4 Mcal of DE/kg, 17.0% CP, 0.8% Ca, and 0.6% P but had a low phytate-P concentration (0.13%; all on an as-fed basis). Chromic oxide and dysprosium chloride were used as indigestible markers. The basal diet was supplemented with 0 or 1,000 phytase units/kg of microbial phytase. Postprandial plasma urea N and alpha-amino N concentrations, excretion of Ca, P, and N in feces and urine, and ileal AA digestibilities were determined 3 times at 4-wk intervals beginning at 70 d of age. The homoarginine (HA) method was used to determine endogenous AA flow by replacing 50% of the basal protein with guanidinated protein. Microbial phytase had no effect on apparent ileal digestibility (AID) or on true ileal digestibilities of N and most AA but did increase AID for arginine (P = 0.006) and methionine (P = 0.037). However, in HA diets, phytase increased the AID of CP (P = 0.01) and several AA. Addition of microbial phytase had no effect on the postprandial alpha-amino N concentrations in plasma but increased overall plasma urea N concentrations (P = 0.035). Barrows fed phytase-supplemented diets had decreased P in feces (P = 0.003) and greater P in urine (P = 0.001) but comparable total P excretion compared with barrows fed no phytase-supplemented diets. In conclusion, the addition of phytase to a semi-purified soybean meal-based diet did not affect the AID of several AA. In addition, differences between the basal and HA diets in N digestibilities indicated that that guanidination may limit the use of the HA method in determining endogenous protein losses.  相似文献   

5.
Two experiments were conducted to investigate the relationships between amino acids and DE for pigs weighing 20 to 50 kg. In Exp. 1, there were three dietary lysine levels that were either adjusted (1.50, 2.35 and 3.20 g/Mcal DE) for five DE levels (3.00 to 4.00 Mcal/kg) or unadjusted (.45, .71 and .96% of the diet) for three DE levels (3.50 to 4.00 Mcal/kg). In Exp. 2, diets containing six lysine:DE ratios (1.90 to 3.90 g/Mcal) at two DE levels (3.25 and 3.75 Mcal/kg) were fed. Pigs were housed individually, and could eat and drink ad libitum. When pigs weighed 50 kg, their empty body composition was determined by the urea dilution technique in Exp. 1 and by prediction equations based on backfat in Exp. 2. For the adjusted diets in Exp. 1, protein deposition and protein deposition:DE intake increased (P less than .01) slightly as DE levels increased. These criteria decreased linearly (P less than .001), and fat deposition increased (P = .11) as DE increased when lysine:DE ratios were not maintained. As lysine levels increased, protein deposition and protein deposition: DE intake increased (P less than .001) in both the adjusted and unadjusted diets. In Exp. 2, there was no effect of DE on either the rate or efficiency of protein deposition. Both protein deposition and protein deposition:DE intake increased (P less than .001) and fat deposition decreased as lysine:DE ratios increased up to 3.00 g lysine/Mcal DE. Protein deposition: lysine intake decreased (P less than .01) progressively as the lysine:DE ratio increased. Regression analyses indicated the protein deposition increased up to 3.00 g lysine/Mcal DE. The results demonstrate the need to adjust lysine according to energy levels and indicate that the optimum ratio for protein deposition was approximately 3.00 g lysine/Mcal DE (or 49 g of balanced protein/Mcal DE).  相似文献   

6.
Nitrogen metabolism and recycling in Holstein heifers   总被引:1,自引:0,他引:1  
To study the effect of dietary N level on urea kinetics and recycling, four Holstein heifers (267 +/- 3.6 kg) were used in a Youden square design. Isocaloric diets with a N content of 1.44, 1.89, 2.50, 2.97, and 3.40% were fed at approximately 1.8 times maintenance intake. Increasing the N content of the diet increased urinary N excretion (P < 0.001) and N balance (P < 0.01), but did not affect the fecal N excretion (P = 0.21). Increasing the level of dietary N, increased urea production (P < 0.001) and excretion (P < 0.001), but no effect (P = 0.24) could be detected in the amount of N recycled to the gut. Urea recycled with the saliva, however, increased (P < 0.001) both in absolute and relative terms, with increasing dietary N. No difference could be detected on the amount of recycled N that was used for anabolism or returned to the ornithine cycle, but less (P = 0.001) N originating from urea was excreted in feces as dietary N increased. Ruminal ammonia concentration increased (P < 0.001) with increasing N intake, but total tract neutral detergent fiber digestibility was depressed only on the lowest N intake diet. No difference (P = 0.30) was detected in ruminal microbial yield among diets, but more (P < 0.003) N was derived from blood urea at low N intakes, and the efficiency of use of the recycled N decreased (P < 0.001) with increasing levels of dietary N. Adaptive changes to low-N diets were a decrease (P < 0.003) in the renal clearance of urea and an increase (P < 0.001) in the gastrointestinal clearance of urea. Urea transporters were present in the rumen wall of the heifers and differentially expressed depending on dietary N content, but their role in the transfer of urea into the rumen remains uncertain. Different mechanisms of N salvage and recycling were involved when animals were fed low-N diets that ensured a supply of endogenous N to the gastrointestinal tract and, due to the reduced contribution of dietary N, an increased efficiency of the N recycled was observed.  相似文献   

7.
The effects of low-protein AA-supplemented diets on piglet performance, visceral organ mass, incidence of diarrhea, intestinal microbial population, and fermentation were studied in a 3-wk trial. After a 7-d adaptation period, 96 piglets (approximately 6.2 kg of initial BW) were assigned to 4 corn-wheat, soybean meal-based dietary treatments in a completely randomized design to give 6 replicate pens per treatment (n = 4 piglets per pen). The treatments were a control wheat-corn-soybean meal-based phase I diet containing 23% CP, or the same diet with CP reduced to 21%, 19%, or 17% and supplemented with crystalline AA to achieve equal standardized ileal digestible contents of Lys, Met plus Cys, Thr, and Trp in all diets. Diets were formulated to similar nutrient levels and provided ad libitum. Blood from all pigs was taken on d 0, 7, 14, and 21 for determining plasma urea N. Weekly feed intake, BW changes, and G:F were determined. On d 21, 2 pigs per pen were randomly selected and killed to determine small intestinal morphology, digesta pH and ammonia levels, and luminal microbial counts. Average daily feed intake, ADG, and G:F were not affected (P > 0.10) by reducing CP to 21%, but a reduction to 19% or 17% decreased ADFI (P < 0.001) and ADG (linear, P < 0.001; quadratic, P < 0.05) over the 3-wk study period. Reducing CP to 19% had no effect (P > 0.10) on G:F; however, this response criterion was decreased linearly (P < 0.001) over the 3-wk study period as dietary CP declined. Water usage was only numerically decreased (P > 0.10) with dietary CP reduction. Plasma urea N was decreased linearly (P < 0.01) with CP reduction. Reducing CP from 23 to 17% had a linear (P < 0.05) and cubic effect on stomach and liver weights, respectively. Although histological data showed some differences among diets, no distinct trend was evident. Ammonia N in ileal digesta was reduced linearly (P < 0.01) as dietary CP was decreased. With the exception of valeric acid, VFA levels in ileal digesta of piglets fed low-protein diets were generally lower (P < 0.05) compared with the control diet. Diet had no effect on intestinal microbial counts (P > 0.10). The results show that piglet performance may suffer when dietary CP is reduced by 4 or more percentage units from 23% and support the hypothesis that low-CP diets help maintain enteric health in pigs by lowering toxic microbial metabolites such as ammonia.  相似文献   

8.
The objective of this study was to determine how interactions between dietary ruminally degradable protein (RDP) level and ruminally fermentable carbohydrate (RFC) alter urea N transfer to the gastrointestinal tract (GIT) and the utilization of this recycled urea N in rapidly growing lambs fed high-N diets. Four Suffolk ram lambs (34.8 +/- 0.5 kg of BW) were used in a 4 x 4 Latin square design with 21-d periods and a 2 x 2 factorial arrangement of dietary treatments. The dietary factors studied were 1) dry-rolled vs. pelleted barley as the principal source of RFC and 2) dietary levels of RDP of 60 vs. 70% (% of CP). All diets contained 28.8 g of N/kg of DM. Experimental diets were composed of 80% concentrate mixture and 20% barley silage (DM basis) and were fed twice daily at 0900 and 1700 as total mixed rations. Nitrogen balance was measured from d 15 to 20, and urea N kinetics were measured from d 15 to 19 using intrajugular infusions of [(15)N(15)N]-urea. Nitrogen intake (P = 0.001) and fecal (P = 0.002) and urinary (P = 0.03) N excretion increased as dietary RDP level increased, but the method of barley processing had no effect. Feeding dry-rolled compared with pelleted barley (P = 0.04) as well as feeding 60% RDP compared with 70% RDP (P = 0.04) resulted in a greater N digestibility. Whole-body N retention was unaffected (P >/= 0.74) by dietary treatment. Dietary treatment had no effect on endogenous production of urea N and its recycling to the GIT; however, across dietary treatments, endogenous production of urea N (45.8 to 50.9 g/d) exceeded N intake (42.3 to 47.9 g/d). Across dietary treatments, 30.6 to 38.5 g/d of urea N were recycled to the GIT, representing 0.67 to 0.74 of endogenous urea N production; however, 0.64 to 0.76 of urea N recycled to the GIT was returned to the ornithine cycle. In summary, although dietary treatment did not alter urea N kinetics, substantial amounts of hepatic urea N output were recycled to the GIT under the dietary conditions used in this study, and additional research is required to determine how this recycled urea N can be efficiently captured by bacteria within the GIT.  相似文献   

9.
We evaluated the effect of energy supplementation on Met use in growing steers. Six ruminally cannulated Holstein steers (228 +/- 8 kg of BW) were used in a 6 x 6 Latin square and fed 2.8 kg of DM/d of a diet based on soybean hulls. Treatments were abomasal infusion of 2 amounts of Met (0 or 3 g/d) and supplementation with 3 amounts of energy (0, 1.3, or 2.6 Mcal of GE/d) in a 2 x 3 factorial arrangement. The 1.3 Mcal/d treatment was supplied through ruminal infusion of 90 g/d of acetate, 90 g/d of propionate, and 30 g/d of butyrate, and abomasal infusion of 30 g/d of glucose and 30 g/d of fat. The 2.6 Mcal/d treatment supplied twice these amounts. All steers received basal infusions of 400 g/d of acetate into the rumen and a mixture (125 g/d) containing all essential AA except Met into the abomasum. No interactions between Met and energy levels were observed. Nitrogen balance was increased (P < 0.05) by Met supplementation from 23.6 to 27.8 g/d, indicating that protein deposition was limited by Met. Nitrogen retention increased linearly (P < 0.05) from 23.6 to 27.7 g/d with increased energy supply. Increased energy supply also linearly reduced (P < 0.05) urinary N excretion from 44.6 to 39.7 g/d and reduced plasma urea concentrations from 2.8 to 2.1 mM. Total tract apparent OM and NDF digestibilities were reduced linearly (P < 0.05) by energy supplementation, from 78.2 and 78.7% to 74.3 and 74.5%, respectively. Whole-body protein synthesis and degradation were not affected significantly by energy supplementation. Energy supplementation linearly increased (P < 0.05) serum IGF-I from 694 to 818 ng/mL and quadratically increased (P < 0.05) serum insulin (0.38, 0.47, and 0.42 ng/mL for 0, 1.3, and 2.6 Mcal/d, respectively). In growing steers, N retention was improved by energy supplementation, even when Met limited protein deposition, suggesting that energy supplementation affects the efficiency of AA use.  相似文献   

10.
Two experiments were conducted to evaluate the effects of adding fiber sources to reduced-crude protein (CP), amino acid-supplemented diets on N excretion, growth performance, and carcass traits of growing-finishing pigs. In Exp. 1, six sets of four littermate barrows (initial weight = 36.3 kg) were allotted randomly to four dietary treatments to determine N balance and slurry composition. Dietary treatments were: 1) fortified corn-soybean meal, control, 2) as fortified corn-soybean meal with CP lowered by 4 percentage units and supplemented with lysine, threonine, methionine, tryptophan, isoleucine, and valine (LPAA), 3) same as Diet 2 plus 10% soybean hulls, and 4) same as Diet 2 with 10% dried beet pulp. Nitrogen intake, absorption, and retention (g/d) were reduced (P < 0.04) in pigs fed the low- protein diets, but they were not affected (P > 0.10) by addition of fiber sources to the LPAA diet. However, N absorption, as a percentage of intake, was not affected (P > 0.10) by dietary treatment. Nitrogen retention, expressed as a percentage of N intake, was increased (P < 0.02) in pigs fed the low-protein diets, but it was not affected by fiber addition to the LPAA diet. Urinary and total N excretion was reduced (P < 0.01) by 50 and 40%, respectively, in pigs fed the low- protein diets, but it was not affected (P > 0.10) by fiber addition. However, fiber addition to the LPAA diet tended to result in a greater proportion of N excreted in the feces than in the urine. Slurry pH, ammonium N content, and urinary urea N excretion were reduced (P < 0.10) in pigs fed LPAA, and a further reduction (P < 0.06) in slurry ammonium N content and urinary urea N was observed with fiber addition. Also, fiber addition to the LPAA diet increased (P < 0.02) slurry VFA concentrations. In Exp. 2, 72 pigs were blocked by body weight and sex and allotted randomly to three dietary treatments that were similar to those in Exp. 1, with a corn-soybean meal control diet, LPAA diet, and a LPAA diet with 10% soybean hulls. Pigs were fed the diets from 28.6 to 115 kg, and all pigs were killed for collection of carcass data. Growth performance and most carcass traits were not affected (P > 0.10) by dietary treatment. These data suggest that reducing CP with amino acid supplementation markedly decreased N excretion without influencing growth performance. Fiber addition to a LPAA diet had little effect on overall N balance or growth performance, but tended to further reduce slurry ammonium N concentration and increase volatile fatty acid concentrations.  相似文献   

11.
This study was conducted to evaluate the effects of dietary energy density and weaning environment on pig performance. Treatment diets were formulated to vary in DE concentration by changing the relative proportions of low (barley) and high (wheat, oat groats, and canola oil) energy ingredients. In Exp. 1, 84 pigs in each of 3 replications, providing a total of 252 pigs, were weaned at 17 x 2 d of age and randomly assigned to either an on-site or an off-site nursery and to 1 of 3 dietary DE concentrations (3.35, 3.50, or 3.65 Mcal/kg). Each site consisted of a nursery containing 6 pens; 3 pens housed 7 barrows and 3 housed 7 gilts. All pigs received nontreatment diets in phase I (17 to 19 d of age) and phase II (20 to 25 d of age), respectively. Dietary treatments were fed from 25 to 56 d of age. Off-site pigs were heavier at 56 d of age (23.4 vs. 21.3 kg; P < 0.05) and had greater ADFI (0.77 vs. 0.69 kg/d; P < 0.01) than on-site pigs. There was a linear decrease in ADG (P < 0.01) and ADFI (P < 0.001) with increasing DE concentration. Efficiency of gain improved (P < 0.01) with increasing DE concentration. There was no interaction between weaning site and diet DE concentration, indicating that on-site and off-site pigs responded similarly to changes in diet DE concentration. In Exp. 2, nutrient digestibility of the treatment diets used in Exp. 1 was determined using 36 pigs with either ad libitum or feed intake restricted to 5.5% of BW. Energy and N digestibility increased (P < 0.001) with increasing DE concentration. Nitrogen retention and daily DE intake increased with DE concentration in pigs fed the restricted amount of feed (P < 0.05). These results indicate that weaning off-site improves pig weight gain. The weanling pig was able to compensate for reduced dietary DE concentration through increased feed intake. Growth limitation in the weanling pig may not be overcome simply by increasing dietary DE concentration.  相似文献   

12.
The objective of these studies was to determine if dietary enzymes increase the digestibility of nutrients bound by nonstarch polysaccharides, such as arabinoxylans, or phytate in wheat millrun. Effects of millrun inclusion rates (20 or 40%), xylanase (0 or 4,375 units/kg of feed), and phytase (0 or 500 phytase units/kg of feed) on nutrient digestibility and growth performance were investigated in a 2 x 2 x 2 factorial arrangement with a wheat control diet (0% millrun). Diets were formulated to contain 3.34 Mcal of DE/kg and 3.0 g of true ileal digestible Lys/Mcal of DE and contained 0.4% chromic oxide. Each of 18 cannulated pigs (36.2 +/- 1.9 kg of BW) was fed 3 diets at 3x maintenance in successive 10-d periods for 6 observations per diet. Feces and ileal digesta were collected for 2 d. Ileal energy digestibility was reduced (P < 0.01) linearly by millrun and increased by xylanase (P < 0.01) and phytase (P < 0.05). Total tract energy digestibility was reduced linearly by millrun (P < 0.01) and increased by xylanase (P < 0.01). For 20% millrun, xylanase plus phytase improved DE content from 3.53 to 3.69 Mcal/kg of DM, a similar content to that of the wheat control diet (3.72 Mcal/kg of DM). Millrun linearly reduced (P < 0.01) ileal digestibility of Lys, Thr, Met, Ile, and Val. Xylanase improved (P < 0.05) ileal digestibility of Ile. Phytase improved ileal digestibility of Lys, Thr, Ile, and Val (P < 0.05). Millrun linearly reduced (P < 0.05) total tract P and Ca digestibility and retention. Phytase (P < 0.01) and xylanase (P < 0.05) improved total tract P digestibility, and phytase and xylanase tended to improve (P < 0.10) P retention. Phytase improved Ca digestibility (P < 0.05) and retention (P < 0.01). The 9 diets were also fed for 35 d to 8 individually housed pigs (36.2 +/- 3.4 kg of BW) per diet. Millrun reduced (P < 0.05) ADFI, ADG, and final BW. Xylanase increased (P < 0.05) G:F; phytase reduced (P < 0.05) ADFI; and xylanase tended to reduce (P = 0.07) ADFI. In summary, millrun reduced energy, AA, P, and Ca digestibility and growth performance compared with the wheat control diet. Xylanase and phytase improved energy, AA, and P digestibility, indicating that nonstarch polysaccharides and phytate limit nutrient digestibility in wheat byproducts. The improvement by xylanase of energy digestibility coincided with improved G:F but did not translate into improved ADG.  相似文献   

13.
The relationships between dietary amino acids and DE for pigs weighing 20 to 50 kg were investigated in two experiments. In Exp. 1, there were three dietary lysine levels that were either adjusted (1.50, 2.35 and 3.20 g/Mcal DE) for five DE levels (3.00 to 4.00 Mcal/kg) or unadjusted (.45, .71 and .96% of the diet) for three DE levels (3.50 to 4.00 Mcal/kg). In Exp. 2, the effects of six lysine:DE ratios (1.90 to 3.90 g/Mcal) at two DE levels (3.25 and 3.75 Mcal/kg) were investigated. In both experiments, diets were formulated using a constant ratio of corn and soybean meal. Pigs (equal numbers of barrows and gilts) were housed and fed individually and had ad libitum access to feed and water. Digestible energy intake was not affected by energy content of the diets. In Exp. 1, lysine intake did not differ with DE in the adjusted diets but decreased (P less than .001) as DE increased in the unadjusted diets. Weight gain was relatively consistent and gain:DE intake increased (P less than .001) as DE increased in the adjusted diets, but both decreased (P less than .005) with increasing DE in the unadjusted diets. Both criteria increased (P less than .001) in response to higher lysine:DE in the adjusted and lysine in the unadjusted diets. In Exp. 2, weight gain increased (P less than .005), but there was no effect (P greater than .05) on gain:DE intake as DE increased. Both weight gain and gain:DE intake increased (P less than .001) and backfat decreased (P less than .01) as lysine:DE ratios increased. The results demonstrate the need to increase dietary amino acid levels in concert with increases in energy contents. Regression analyses indicated that weight gain and gain:DE intake for 20- to 50-kg pigs were maximized at approximately 3.0 g lysine/Mcal DE (or 49 g of balanced protein/Mcal DE).  相似文献   

14.
Six ruminally cannulated Holstein steers (initial BW = 189 +/- 11 kg) housed in metabolism crates were used in a 6 x 6 Latin square to study effects of ruminal ammonia load on Leu utilization. All steers received a diet based on soybean hulls (2.7 kg of DM/d), ruminal infusions of 200 g of acetate/d, 200 g of propionate/d, and 50 g of butyrate/d, as well as an abomasal infusion of 300 g of glucose/d to provide energy without increasing microbial protein supply and an abomasal infusion of a mixture (238 g/d) of all essential AA except Leu. Treatments were arranged as a 3 x 2 factorial and included Leu (0, 4, or 8 g/d) infused abomasally and urea (0 or 80 g/d) infused ruminally. Abomasal Leu infusion linearly decreased (P < 0.05) both urinary and fecal N excretions and linearly increased (P < 0.05) retained N, but the decreases in urinary N excretion in response to Leu tended (P = 0.07) to be greater, and the increases in retained N in response to Leu were numerically greater in the presence of the urea infusion. Although urea infusions increased (P < 0.05) plasma urea concentrations, urinary N excretions, and urinary urea excretions, retained N also was increased (P < 0.05). The efficiency of deposition of supplemental Leu ranged from 24 to 43% when steers received 0 or 80 g of urea/d, respectively. Under our experimental conditions, increasing ammonia load improved whole-body protein deposition in growing steers when Leu supply was limiting.  相似文献   

15.
An experiment was done to determine manure output, N and P excretion, and apparent digestibilities of AA, CP, P, and DM in growing pigs fed barley-based diets containing micronized or raw peas with or without supplementation with enzyme containing primarily beta-glucanase and phytase (Biogal S+). Eight barrows (21.5 +/- 1.2 kg of initial BW) fitted with T-cannulas at the distal ileum were used in a 40-d trial and housed in metabolism cages. Pigs were assigned in a replicated 4 x 4 Latin square design to 4 experimental diets: 1) barley-raw peas control (BRP), 2) barley-micronized peas (BMP), 3) BRP plus enzyme, and 4) BMP plus enzyme (BMP+E). Pigs received 2.6 times maintenance energy requirements based on BW at the beginning of each experimental period. During each experimental period, pigs were acclimatized to their respective diets for 5 d followed by a 3-d period of total fecal and urine collection and another 2-d period of ileal digesta collection. Samples were analyzed for DM, AA (diets and digesta only), N, and P. Wet fecal output of BRP plus enzyme-fed pigs tended to be lower (P = 0.07) than the amount produced by BMP-fed pigs. The amounts of dry feces and urine produced were not different among treatments (P > 0.10). Supplementing the BRP and BMP diet with enzyme increased (P = 0.002) the daily P retained per pig. Pigs fed the enzyme-supplemented diets tended to have lower (P = 0.06) fecal P excretion and greater urinary P excretion (P = 0.001) compared with pigs fed the nonsupplemented diets, but total P excretion was not influenced by diet (P > 0.10). Pigs fed the BMP+E diet retained more (P = 0.006) N per day than pigs fed the BMP diet. However, N excretion was not influenced by dietary treatment (P > 0.10), although BMP+E-fed pigs excreted 13.2% less N in the feces compared with those fed the nonenzyme supplemented controls. Inclusion of micronized peas with or without enzyme supplementation did not affect urinary or fecal N excretion (P > 0.10) compared with the BRP. Dietary treatment had no effect (P > 0.10) on ileal or fecal DM or CP digestibilities. Apparent ileal digestibilities of AA were usually lower (P < 0.05) in the BRP diet compared with the other diets. Enzyme supplementation improved P digestibility at the ileal and fecal level. The current results indicate that utilizing micronized peas in barley-based pig grower diets enhances P retention.  相似文献   

16.
Three lamb metabolism experiments were conducted to investigate the effects of chronic administration of the novel urease inhibitor N (n-butyl) thiophosphoric triamide (NBPT) on ruminal N metabolism, fermentation, and N balance. In Exp. 1, ruminally cannulated wethers (n = 28; 45.0 +/- .9 kg) were administered one of seven doses of NBPT (0 [control], .125, .25, .5, 1, 2, or 4 g of NBPT daily) and fed a common cracked corn/cottonseed hull-based diet twice daily containing 2% urea at 2.5% of initial BW for the duration of the 15-d experiment. Overall, NBPT decreased (linear P < .0001; quadratic P < .001) ruminal urease activity, resulting in linear increases (P < .0001) in ruminal urea and decreases in ruminal NH3 N concentrations. However, the detection of an NBPT x day interaction (d 2 vs 15; P < .01) indicated that this depression in urea degradation diminished as the experiment progressed. Increasing NBPT linearly decreased (P < .01) total VFA concentrations on d 2 of the experiment, but it had no effect (P > .10) on d 15. Increasing NBPT had no effect (P > .10) on DM or ADF digestibilities, but it linearly decreased (P < .01) N digestibility. Supplementing NBPT produced a linear increase (P < .05) in urinary N excretion and a linear decrease (P < .01) in N retention. In Exp. 2, ruminally cannulated wethers (n = 30; 46.8 +/- .6 kg) were fed one of two basal diets (2.0 vs 1.1% dietary urea) at 2.5% of initial BW and dosed with either 0 (control), .25, or 2 g of NBPT daily for the duration of the 15-d experiment. There were no NBPT x dietary urea interactions (P > .10) for Exp. 2. Increasing NBPT depressed (linear and quadratic P < .0001) ruminal urease activity, producing linear (P < .0001) increases in urea N and linear decreases in NH3 N in the rumen. As in Exp. 1, an NBPT x day interaction (P < .05) was noted for urea, NH3 N, and total VFA concentrations; the maximum response to NBPT occurred on d 2 but diminished by d 15 of the experiment. Administration of NBPT did not influence (P > .10) DM, ADF, or N digestibilities in Exp. 2. In Exp. 3, wether lambs (n = 30; 26.4 +/- .7 kg) were subjected to the same treatment regimen as in Exp. 2 for a 14-d N balance experiment. Although several NBPT x dietary urea interactions (P < .05) were noted, increasing NBPT did not affect (P > .10) N digestibility. Administration of NBPT quadratically increased (P < .10) urinary N excretion, producing a linear decrease (P < .05) in N retention. These results suggest that although NBPT is capable of inhibiting ruminal urease short-term, the ruminal microflora may be capable of adapting to chronic NBPT administration, thereby limiting its practical use in improving the utilization of dietary urea.  相似文献   

17.
Growing goats, 45 Alpine and 45 Nubian, were used in a 3 x 3 factorial arrangement to quantify the influence of dietary energy and protein levels on daily DM intake and nutrient utilization for growth. Goats had ad libitum access to complete mixed diets containing either 2.46, 2.77 or 3.05 Mcal/kg ME plus 11.2, 12.7 or 15.1% CP for 16 wk. Dry matter intake decreased curvilinearly as dietary ME density increased (P less than .001). Dry matter intake increased linearly (P less than .05) as dietary CP level increased during all growth intervals except wk 25 to 28 of age. Average daily gain was 115, 113 and 99 g/d for goats fed diets containing 2.46, 2.77 and 3.05 Mcal/kg ME, respectively. Average daily gain was 104, 106 and 117 g/d for goats fed diets with 11.2, 12.7 and 15.1% CP, respectively. Dry matter intake was higher (P less than .01) for Alpine than for Nubian goats, whereas ADG was similar between breeds. Intake of ME was 248, 260 and 198 kcal/(kg.75.d) for goats fed the low- medium- and high-energy diets, respectively. Intake of CP was 9.1, 10.7 and 13.2 g/(kg.75.d) for goats fed low-, medium- and high-protein diets, respectively. Average requirements for growth derived from regression analysis of all data points were 4.6 kcal ME and .26 g CP/g ADG. The prediction equation for intake of growing goats of 4 to 8 mo of age was: DMI, g/d = 1,749 - 496 DE, kcal/g + 18 live weight, kg + 3 ADG, g/d; r2 = .73 (Sy.x = 127, P less than .0001, n = 90). The requirement of ME for growth was 33% lower than the value recommended in 1981 by the National Research Council.  相似文献   

18.
Emissions of ammonia, as well as other gases and particulates, to the atmosphere are a growing concern of livestock producers, the general public, and regulators. The concentration and ruminal degradability of CP in beef cattle diets may affect urinary and fecal excretion of N and thus may affect ammonia emissions from beef cattle feed yards. To determine the effects of dietary CP concentration and degradability on potential ammonia emissions, 54 steers were randomly assigned to nine dietary treatments in a 3 x 3 factorial arrangement of treatments. Treatments consisted of three dietary CP concentrations (11.5, 13, and 14.5%) and three supplemental urea:cottonseed meal ratios (100:0, 50:50, and 0:100 of supplemental N). Steers were confined to tie stalls, and feces and urine excreted were collected and frozen after approximately 30, 75, and 120 d on feed. One percent of daily urine and feces excretion were added to polyethylene chambers containing 1,550 g of soil. Chambers were sealed, and ammonia emissions were trapped in an acid solution for 7 d using a vacuum system. As the protein concentration in the diet increased from 11.5 to 13%, in vitro daily ammonia emissions increased (P < 0.01) 60 to 200%, due primarily to increased urinary N excretion. As days on feed increased, in vitro ammonia emissions also increased (P < 0.01). Potential ammonia losses were highly correlated (P < 0.01) to urinary N (r2 = 0.69), urinary urea-N (r2 = 0.58) excretion, serum urea-N concentration (r2 = 0.52), and intake of degradable protein N (r2 = 0.23). Although dietary composition can affect daily ammonia losses, daily ammonia emissions must be balanced with effects on animal performance to determine optimal protein concentrations and forms in the diet.  相似文献   

19.
Seven ruminally cannulated Holstein steers (194 +/- 16 kg) housed in metabolism crates were used in a 6 x 6 Latin square, with one additional steer, to study effects of ruminal ammonia load on methionine (Met) use. All steers received a diet based on soybean hulls (2.6 kg DM/d), ruminal infusions of 200 g/d of acetate, 200 g/d of propionate, and 50 g/d of butyrate, as well as abomasal infusion of 300 g/d of glucose to provide energy without increasing microbial protein supply, and abomasal infusions of a mixture (248 g/d) of all essential AA except Met. Treatments were arranged as a 3 x 2 factorial and included urea (0, 40, or 80 g/d) infused ruminally to supply metabolic ammonia loads and Met (2 or 5 g/d) infused abomasally. Supplementation with the greater amount of Met decreased (P < 0.05) urinary N excretion from 68.8 to 64.8 g/d and increased (P < 0.05) retained N from 22.0 to 27.5 g/d. Urea infusions linearly increased (P < 0.05) urinary N excretions, plasma urea concentrations, and urinary urea excretions, but retained N was not affected. The efficiency of deposition of supplemental Met, calculated by assuming that Met deposition is 2.0% of protein deposition (6.25 x retained N), ranged between 18 and 27% when steers received 0 or 80 g/d of urea, respectively. There were no (P > or = 0.40) effects of treatments on serum insulin or IGF-I concentrations. In our model, increasing ammonia load did not affect whole-body protein deposition in growing steers when Met was limiting.  相似文献   

20.
The optimal level of beet pulp (BP) inclusion in a meat-based dog diet and the effects of graded levels of dietary BP on fecal excretion responses and mean retention time of marked fiber in the gastrointestinal tract of the dog were evaluated using 30 female English Pointers assigned to isonitrogenous diets containing 0, 2.5, 5.0, 7.5, 10.0 or 12.5% BP (DM basis). Beet pulp replaced portions of dietary cornstarch. Digestibilities of DM and OM decreased by an average of 6% when comparing diets containing BP to the control diet, and quadratic and cubic responses were noted in digestibilities of fiber constituents (lower values at the 7.5 and 10.0% levels, higher values at the 2.5, 5.0 and 12.5% levels). Digestible energy (DE) and ME intakes (kcal/d) were not affected by treatment, but when expressed as a percentage of GE, values decreased (4.8% for DE; 6.2% for ME) linearly with increasing BP levels. Wet weight of feces increased (from 117 to 374 g/d) linearly as percentage of dietary BP increased. Frequency of defecation was higher (P less than .05) for dogs fed the diet containing 12.5% BP than for dogs fed the other diets (5.2 vs mean value of 2.8/24 h). Mean retention time of marked fiber decreased linearly (high value of 23.4 h for the 2.5% BP treatment, low value of 13.0 h for the 10.0% BP treatment) with increased level of BP. Beet pulp levels up to 7.5% of diet DM appear acceptable as a dietary fiber source in a meat-based canine diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号