首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 195 毫秒
1.
采用木聚糖类似物诱导法,对64种食用真菌进行诱导培养,得到产木聚糖酶较高的食用菌株—黑木耳LK8。利用正交试验法对黑木耳LK8的液体培养条件进行优化,结果显示:在液体培养基pH=7.5、底物木聚糖浓度为1 g/100 m L、培养20天的条件下产酶效果最佳,产酶水平为605.6 IU/m L,较优化前提高近7倍。同时,试验结果证明培养液pH值是影响诱导效果的主要因素,利用盐沉和冷冻干燥法制备木聚糖酶粗酶制剂,得率为43%。  相似文献   

2.
木聚糖相对分子质量分布对里氏木霉合成木聚糖酶的影响   总被引:3,自引:2,他引:1  
以里氏木霉(Trichoderma reesei)Rut C-30为产酶茵,研究了相对分子质量(Mw)分布不同的木聚糖对木聚糖酶合成的影响。通过SephadexG一100凝胶过滤色谱分级分离发现木聚糖A中低Mw组分较多,木聚糖B中低Mw组分较少,木聚糖C中低Mw组分最少。分别以这3种木聚糖为碳源合成木聚糖酶,最高木聚糖酶活力分别为153.64、120.84和110.84IU/mL,产酶时间分别为60、72和96h。用这3种碳源合成的木聚糖酶酶解粗木聚糖,酶解2h时,产物中低聚木糖分别占总糖的80.70%、68.56%和66.92%。这表明低Mw组分较多的木聚糖不仅有利于促进木聚糖酶的诱导合成,而且有利于促进内切-1,4-木聚糖酶的合成。  相似文献   

3.
以木聚糖为底物、木聚糖酶为催化剂,在木聚糖质量浓度为30.0g/L,操作压力16kPa,进料速度400mL/min,时间12h,pH值5.0,温度为48摄氏度的条件下研究了超滤膜反应器中木聚糖的酶水解反应。结果表明,木聚糖的酶水解总糖得率为60.10%,未水解木聚糖聚合度为10左右,碱溶对聚合度没有影响,未水解木聚糖重新水解,总糖得率为7.50%。  相似文献   

4.
分批和分批补料培养合成低纤维素酶酶活力的木聚糖酶   总被引:1,自引:0,他引:1  
研究了里氏木霉RutC30在分批培养和分批补料培养模式下合成低纤维素酶酶活力的木聚糖酶及其在生物漂白上的应用。底物质量浓度为15g/L的木聚糖分批培养合成木聚糖酶,酶活力为152.09IU/mL、酶产率为2112.4IU/(L·h)、酶得率为10139.3IU(以每克木聚糖计,下同)。底物质量浓度为17g/L的木聚糖分批补料合成木聚糖酶,酶活力为252.14IU/mL、酶产率为3501.9IU/(L·h)、酶得率为14831.8IU,产酶效果远优于分批培养模式。该木聚糖酶用于草浆预漂白,在相同有效氯用量下,与对照浆相比可使白度提高2%~5%,SBD;在达到相同白度条件下,木聚糖酶预处理的纸浆后续漂白有效氯用量可降低43%。  相似文献   

5.
纸浆漂白用木聚糖酶的选择性合成   总被引:5,自引:2,他引:3  
以里氏木霉(Trichoderma reesei) Rut C-30为产酶菌,研究了碳源、培养温度、初始pH值、碳氮比对木聚糖酶和纤维素酶合成的影响.结果表明,粗木聚糖和亚硫酸盐纸浆混合作为碳源有利于木聚糖酶和纤维素酶的合成;低温有利于木聚糖酶和纤维素酶的合成,但产酶时间较长,高温对木聚糖酶的合成有一定的影响,对纤维素酶的合成能有效地抑制,且产酶时间较短;初始pH值低有利于纤维素酶的合成,初始pH值高则延长了木聚糖酶的合成时间,且强烈抑制纤维素酶的合成;低碳氮比有利于纤维素酶的合成,高碳氮比使得木聚糖酶的合成滞后,能够有效抑制纤维素酶的合成.以粗木聚糖和亚硫酸盐纸浆混合作为碳源,调控培养温度、初始pH值和碳氮比能有效地促进木聚糖酶的合成,抑制纤维素酶的合成,致使木聚糖酶活与纤维素酶活的比值提高,从而有利于选择性合成纸浆漂白用木聚糖酶,调控培养方式为:提高碳氮比(7.2)和初始pH值(6.0),在培养初期(1 d)培养温度为35~36 ℃,中后期培养温度25~26 ℃,调控6 d后,木聚糖酶酶活和纤维素酶酶活分别为186.93和0.156 IU/mL,酶活比为1 198.  相似文献   

6.
氮源对里氏木霉木聚糖酶和纤维素酶生物合成的影响   总被引:1,自引:3,他引:1  
研究了氮源种类和比例、碳氮比(C/N)等因素对里氏木霉木聚糖酶和纤维素酶生物合成的影响。在各种氮源中,蛋白胨是最好的氮源。复合氮源中当硫酸铵N和尿素N的比例为1:3时,木聚糖酶活力最高,达93.3IU/mL;当比例为1:1时,滤纸酶活力和羧甲基纤维素(CMC)酶活力达到最大值,分别为0.263FPIU/mL和0.026IU/mL。当控制培养基的C/N为8.0和6.0时,它们对木聚糖酶和纤维素酶的诱导作用最强,分别为95.1IU/mL和0.310FPIU/mL。  相似文献   

7.
纤维素和木聚糖复合诱导合成木聚糖酶的研究   总被引:4,自引:0,他引:4  
以里氏木霉(Rrichoderma reesei)为产酶菌,分别对纤维素、纤维素和木聚糖诱导产酶的功能进行了研究。研究发现,纤维素具有诱导木聚糖酶合成的功能;纤维素和木聚糖混合对木聚糖酶合成具有促进作用,可大幅度提高木聚酶活力。与纯木聚糖(5g/L)产酶相比,纯木聚糖(4g/L)和纸浆(1g/L)混合产酶木聚糖酶活可以提高45%。研究成果为采用富含木聚糖的植物纤维料作碳源制备木聚糖酶提供了理论依据。  相似文献   

8.
链霉菌D21产木聚糖酶的发酵条件研究   总被引:3,自引:0,他引:3  
研究了链霉菌D21产木聚糖酶发酵条件的优化.单因素优化试验结果表明,水不溶玉米芯木聚糖为最佳碳源和诱导物,牛肉蛋白胨为最佳氮源,最适pH值为6.0,最适培养温度40℃.在此条件下,培养4d木聚糖酶活力达到1128U/mL.  相似文献   

9.
以酶解渣为碳源制备木聚糖酶的研究   总被引:3,自引:6,他引:3  
以里氏木霉(Tichoderma reesei)Rut C-30为产酶菌,低聚木糖制备过程中酶解渣为碳源可透导产生含低纤维素酶活(0.106IU/mL)的木聚糖酶(154.67IU/mL),两种酶活的比值达1459,与粗木聚糖为碳源产木聚糖酶相比,木聚糖酶活提高了1.67倍,而纤维素酶活没有增加。此酶在50℃条件下酶解粗木聚糖和酶解渣时,pH值5时酶解效率最高,酶解产物通过HPLC分析,主要是木糖。该酶系的组成主要是外切-β-木糖苷酶。  相似文献   

10.
水聚糖酶菌种库的建立及霉菌木聚糖酶的合成条件   总被引:1,自引:0,他引:1  
从某造纸厂周围环境中筛选得到约220株木聚糖酶产生菌株,并在此基础上建立了木聚糖酶菌种库。从该菌种库中筛选得到1株新型的产耐性木聚糖酶的细菌WXULI-11及3株高产酸性木聚糖酶的霉菌XY04B、XY07C和XY12D。对3株霉菌木聚糖酶产生菌的产酶条件进行了初步研究。结果表明XY04B、XY12D在48h内产酶分别达136.74和257.29IU/mL,XY07C在60h左右产酶达169.94IU/mL,它们的木聚糖酶产率分别为68370,128654和67576IU(L.d)。  相似文献   

11.
研究了酶处理对相思木EMCC(延伸改良连续蒸煮)硫酸盐浆(KP浆)氧脱木质素效果的影响。结果表明,由白腐菌直接合成的漆酶/木聚糖酶体系(LXS)预处理相思木EMCC硫酸盐浆的的适宜酶用量为7 IU/g;LXS预处理后浆料氧脱木质素的适宜反应时间、最高反应温度及用碱量分别为60 min、100℃和2.5%;利用LXS进行氧脱木质素后处理的适宜反应时间及酶用量分别为2 h和5 IU/g。SEM观察到经过酶处理后纤维表面及横切面出现大量的裂隙及孔隙,其中以酶后处理最为明显,为后续漂白中化学药品的渗透和漂白降解产物的溶出创造条件。  相似文献   

12.
以一株从腐朽竹子上分离得到的侧耳菌(Pleurotus sp.)GH196为产酶菌,研究了其在静置和振荡两种液体培养方式下的木质纤维素降解酶系的产生。结果表明:在含有稻草和麦麸的液体培养基中生长,可以产生木聚糖酶、纤维素酶和依赖锰过氧化物酶-漆酶型(MnPLaccas型)木质素降解酶。振荡条件可以促进菌丝生长,有利于多糖水解酶的产生,其中以木聚糖酶的合成为主;150r/min振荡培养5d,木聚糖酶酶活达到44.7U/mL。  相似文献   

13.
酶法提取葛根渣中异黄酮的研究   总被引:9,自引:1,他引:8  
葛粉提取后形成的葛根渣含有活性成分异黄酮,将葛根渣的酶法预处理与乙醇抽提工艺相结合,可使异黄酮的提取率明显提高。以10 g葛根渣为原料,当纤维素酶用量为10 FPIU(以每克葛根渣计,下同),处理12 h后,总异黄酮得率可增至1.14%,为常规醇提法的1.36倍;在木聚糖酶用量为300 IU的条件下,处理6 h后,总异黄酮得率1.28%,为常规醇提法的1.52倍。纤维素酶和木聚糖酶之间存在着协同作用:每克葛根渣采用300 IU的木聚糖酶和7.5 FPIU的纤维素酶协同处理6 h后,总异黄酮得率可达1.38%,为常规醇提法的1.64倍。  相似文献   

14.
通过正交试验和单因素试验对防治人参土传病害的生防菌B59和X1菌株的培养基组成和培养条件进行优化研究。B59菌株培养基成分和最适培养条件为:葡萄糖15g/L,牛肉膏5.0g/L,NaH2PO4+Na2HPO45g/L,pH8,250mL三角瓶中装入25mL培养基,接种量为1.5%,30℃,160r/min培养。X1菌株的最佳培养基成分和培养条件为:葡萄糖15g/L,牛肉膏+酵母膏(1∶1)10.0g/L,NaH2PO4+Na2HPO42.5g/L,pH8,250mL三角瓶中装入25mL培养基,接种量为1%,25℃,160r/min培养。优化培养的枯草芽孢杆菌X1和B59菌株对人参腐皮镰刀菌抑菌能力显著提高。  相似文献   

15.
采用双层平板法对已分离出的15株油茶根际解钾细菌进行筛选,获得3株解钾能力较强的菌株CoPDB 6、CoPDB 13和CoPDB 15,并对3个菌株的培养基、pH、装液量、接种量、温度和摇床转速等发酵培养条件进行优化.结果 表明,解钾细菌的最佳发酵培养条件为培养基A(蔗糖5.0g,磷酸氢二钠0.5g,云母粉1.0g,M...  相似文献   

16.
木聚糖酶预处理对麦草化学机械浆可漂性及白度的改善   总被引:9,自引:1,他引:9  
探讨了以玉米芯片为碳源制备木聚糖酶及麦草化学机械浆经该木聚糖酶预处理后可漂性和白度的改善效果。结果表明,直接以玉米芯为底物、里氏木霉为菌种产酶效果较好,当底物浓度为18g/L时,木聚糖酶活力可达38.34IU/mL。木聚糖酶预处理有利于改善麦草化机浆的可漂性,促进其过氧化氢漂白,有提高漂白浆白度,降低漂剂消耗。研究表明,当经单段H2O2漂至相同白度时,木聚糖酶预处理后可节约50%的H2O2用量。若麦草CMP酶处理后采用高浓度两段过氧化氢漂白,即XP3P3漂序(H2O2总量为6%0时,白度可达60%(ISO)以上。  相似文献   

17.
通过优化复合微生物菌肥主要功能菌的发酵培养基配方及其发酵条件,提高发酵液中功能菌的活菌含量,以期为大规模生产复合微生物菌肥奠定基础。利用单因素实验结合正交的方法,以菌体生长量(OD600)为测定指标,对复合微生物菌肥主要功能菌中的固氮菌、溶磷菌和解钾菌的发酵培养基进行优化。结论:①固氮菌培养基的最优组合为麦芽糖7.5g、蛋白胨15g、NaH2PO4·H2O0.3g、K2HPO40.5g、FeCl30.2g、MgSO4·7H20.5g,最佳pH值6.8,最佳接种量为100mL,最佳转速为180r·min-1最佳发酵温度为30℃;②溶磷菌培养基的最优组合为麦芽糖7.5g、蛋白胨15g、NaH2PO4·H2O0.3g、K2HPO40.5g、FeCl30.5g、MgSO4·7H20.5g,最佳pH值6.4,最佳接种量为300mL,最佳转速为180r·min^-1最佳发酵温度为30℃;③解钾菌培养基的最优组合为甘露醇7.5g、牛肉膏15g、NaH2PO4·H2O0.3g、K2HPO40.5g、FeCl30.5g、MgSO4·7H20.5g,最佳pH值7.6,最佳接种量为100mL,最佳转速为180r·min^-1最佳发酵温度为34℃。  相似文献   

18.
里氏木霉与黑曲霉混合发酵产纤维素酶的研究   总被引:5,自引:0,他引:5  
研究了利用里氏木霉和黑曲霉混合培养的形式产纤维素酶,以两个菌种的不同接种比和延迟黑曲霉的接种时间来寻找两个菌种发挥最大协同作用的结合点.以农林废弃物之一的玉米秸秆为底物,经过蒸汽爆破预处理后,用作产酶碳源.以里氏木霉单一培养与黑曲霉单一培养为参照进行对比研究.结果表明,黑曲霉接种较里氏木霉延迟48h,里氏木霉与黑曲霉接种量比为5: 1时,滤纸酶活最高,达3.295IU/mL,高于里氏木霉单一培养(2.480IU/mL),β - 葡萄糖苷酶活达1.010IU/mL,也远远高于里氏木霉单一培养(0.243IU/mL).本实验充分证明里氏木霉与黑曲霉混合培养产酶是可行的,并优于单一菌种培养.  相似文献   

19.
分别用木聚糖酶和纤维素酶对漂白稻草浆进行处理,发现经酶处理后的浆料,它们的滤水性均得到明显改善,且白度亦有不同程度提高,其中纤维素酶的效果更好,但纤维素酶用量过多,则会对纤维造成损伤,影响浆料强度。  相似文献   

20.
都百凤桃树离体植株再生培养的研究   总被引:1,自引:0,他引:1  
以从日本引进的桃树品种都百凤为试材,采用正交设计,研究了6-BA,NAA,接种芽数,活性炭对不定芽增殖与壮苗的影响,探讨了激素、培养基盐浓度、活性炭对都百凤组培苗生根的影响。结果表明,都百风桃树离体植株再生继代增殖培养基为MS+6BA3mg/L~5mg/L+NAA0.1mg/L~0.2mg/L+蔗糖30g/L,培养基pH值为5.9,以3芽为1个转接单位,培养温度为25℃,光照强度2000Lx,光照时间16h/d;生根培养基为1/2MS+IBA0.2mg/L+蔗糖20g/L+琼脂7g/L+活性炭0.4g/L,培养基pH值为6.0,培养温度为22℃,光照强度1600Lx,光照时间16h/d;组培苗转入生根培养基舌暗处理2d,再转到光照下培养有利于生根。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号