首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
绿竹生态系统植硅体碳积累与分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
植硅体封存的有机碳(phytolith-occluded organic carbon, PhytOC)已被证明在生物地球化学碳硅循环中具有重要的作用。为了解绿竹Dendrocalamopsis oldhami生态系统中植硅体碳的分布与积累特征,于2014年12月在中心产区浙江省苍南县利用标准地调查方法,采集了不同年龄(1~3年生)、不同器官(叶、枝、秆)、凋落物和土壤样品,分析了硅、植硅体、植硅体碳质量分数。结果表明:绿竹地上部分硅、植硅体、植硅体碳质量分数大小表现均表现为凋落物>叶>枝>秆,其中植硅体碳的质量分数分别为4.28,3.16,0.28,0.04 gkg-1,植硅体碳总积累量为22.64 kghm-2,大小顺序为叶(13.22 kghm-2)>凋落物(5.74 kghm-2)>枝(2.71 kghm-2)>秆(0.96 kghm-2);林地土壤硅、植硅体、植硅体碳质量分数均随着土层厚度的增加而呈降低的趋势,0~100 cm土壤中植硅体碳储量为1 302.60 kghm-2。绿竹植株体内植硅体质量分数与硅、植硅体碳质量分数之间的相关性达极显著(P<0.01)或显著(P<0.05)水平,土壤植硅体碳质量分数与总有机碳质量分数之间也具有极显著(P<0.01)相关性。图4表3参33  相似文献   

2.
在浙江杭州西溪湿地选取18种植物,运用微波消解和Walkley-Black消解相结合的方法,研究了湿地生态系统中不同植物植硅体质量分数及其产生通量变化特征,为沼泽湿地生态系统植硅体碳汇调控提供科学依据。研究结果表明:①18种植物植硅体质量分数有较大的差异(P<0.05),其中蒲苇Cortaderia selloana(7.69%),狗尾草Setaria viridis(7.56%),三数马唐Digitaria ternata(6.88%)和芦苇Phragmites australis(6.60%)等植硅体质量分数较高,槐叶萍Salvinia natans(1.28%),美人蕉Canna indica(1.01%)和凤眼莲Halerpestes cymbalaria(1.11%)植硅体质量分数较低。②湿地植物植硅体与其二氧化硅质量分数有较强的正相关性。在湿地生态系统中,选择一种高植硅体质量分数和高生产力的植物芦苇Phragmites australis栽植,对提高地上植物植硅体的产生通量有重要的作用。③在西溪沼泽湿地生态系统中,地上植物植硅体产生通量为4.48 ~ 129.92 gm-2a-1,植硅体封闭碳的产生通量为0.16 ~1.03 gm-2 a-1,植硅体封闭碳的总产生速率为8.29 ta-1。图1表1参35  相似文献   

3.
【目的】探明植硅体和植硅体碳的形成对外源氮和硅的响应,开展外源氮和硅添加对毛竹Phyllostachys edulis植硅体碳碳汇能力的影响研究,以期为竹林碳汇提供理论参考。【方法】通过氮[尿素:0(N0)、250(N1)、500(N2)mg·kg-1]和硅[硅酸钠:0(Si0)、75(Si1)、150(Si2) mg·kg-1]二因素三水平正交栽培试验,采集毛竹叶、枝、秆、篼和凋落物样品,分析不同处理不同器官植硅体碳质量分数。【结果】随着硅添加量的增加毛竹不同器官及凋落物植硅体碳质量分数均呈上升趋势。不同处理叶、枝、秆、篼及凋落物植硅体碳质量分数分别为3.15~4.68、2.10~3.47、0.30~1.18、1.09~2.15和3.21~4.63 g·kg-1,均表现为N2Si2处理植硅体碳质量分数最高,N0Si...  相似文献   

4.
  目的  研究北亚热带麻栎Quercus acutissima林土壤植硅体碳(PhytOC)质量分数及剖面分布规律,探讨不同林龄麻栎林土壤植硅体碳储量的差异。  方法  以江苏省句容市不同林龄麻栎林土壤为研究对象,按照0~10、10~20、20~40、40~60 cm分层取土壤样品,测定植硅体和植硅体碳质量分数,并估算麻栎林土壤植硅体碳储量。  结果  土壤有效硅质量分数为45.7~153.3 mg·kg?1,随土层深度增加而增大,各分层之间有效硅质量分数差异不显著,不同林龄麻栎林土壤有效硅质量分数差异显著(P<0.05)。幼龄林和成熟林土壤植硅体、植硅体碳和植硅体中有机碳质量分数均随土层深度增加先增大后减小,而中龄林则随土层深度增加而减小;不同林龄之间土壤植硅体、植硅体碳、植硅体中有机碳质量分数差异显著(P<0.05),而各土层之间差异均不显著。土壤植硅体碳和总有机碳质量分数比值(PhytOC/TOC)为0.36%~1.49%,大致随土层深度的增加而增大;不同土层之间PhytOC/TOC差异不显著,但各林龄之间差异显著(P<0.05)。土壤植硅体与植硅体碳质量分数之间呈极显著正相关关系(P<0.01),植硅体碳与有效硅质量分数之间无相关性;麻栎林土壤植硅体碳储量为1.15~1.47 t·hm?2,幼龄林、中龄林、成熟林土壤的植硅体碳储量占有机碳储量的比例分别为0.80%~1.50%、0.73%~1.10%、0.36%~0.67%,占比较小。  结论  受土壤理化性质、淋溶作用等的影响,植硅体和植硅体碳质量分数在不同林龄麻栎林土壤剖面中的分布具有一定的差异性。植硅体碳储量占有机碳储量的比例较小,但随土层深度的增加而增大,表明植硅体碳较其他形式的碳更加稳定。从时间尺度上来讲,植硅体碳汇是森林长期碳汇的重要组成部分。图3表4参41  相似文献   

5.
植硅体闭蓄有机碳(phytolith—occluded organiccarbon,PhytOC)是封存在植硅体中的有机碳。在土壤环境中受到具有高度抗分解能力的植硅体的保护,它可以长期(数千年至万年以上)封存在土壤剖面中,从而成为陆地土壤长期(万年尺度)固碳的重要机制之一。以千年的时间尺度来衡量,估计全球土壤有机碳的平均积累率为2.4g·m^-2.a^-1,其中PhytOC积累贡献了15.0%~37.0%。通过选择种植高产PhytOC的植物物种来增加短期和长期碳汇的途径是存在的。大多数的农作物如大麦Hordeumvulgare,玉米Zeamays,水稻Oryzasativa,高粱Sorghumvulgare,甘蔗Saccharumofficinarum和小麦Triticumaestivum已知是植硅体的生产者。估计全球上述作物每年生产的PhytOC高达(5.08~12.01)×10^6t.a^-1。综述了植物生态系统中PhytOC的形成机制与特征、积累率、提高土壤PhytOC积累率的农学措施及其在全球土壤碳汇中的重要作用。  相似文献   

6.
为了揭示竹子植硅体表面形态和结构,探究植硅体在缓冲液浸泡后形态是否稳定,以毛竹Phyllostachys edulis叶片为研究材料,采用微波消解法、湿灰化法和干灰化法,提取毛竹叶片中的植硅体。对提取的植硅体经镀金膜处理,用扫描电子显微镜(SU-8000 Hitachi)观测。结果表明:毛竹植硅体具有多种形态。微波消解法提取的毛竹植体长为12~14 μm,宽为7~10 μm,植硅体呈现长鞍形(竹节形),图像细节清晰,植硅体形态完整;湿灰化法和干灰化法提取的毛竹植硅体呈哑铃形,长约为12 μm,连接处宽度约为4 μm,两端的宽度约8 μm,并且用湿灰化法提取的毛竹植硅体还可见微小突起。微波消解法是提取毛竹植硅体比较理想的方法。微波消解法提取的植硅体在pH 10的硼酸缓冲液中浸泡15 d后的微观形态可见:植硅体外表已出现溶蚀坑,表面变粗糙,可见硅质颗粒,呈现为聚集分布。说明植硅体表面已被破坏,呈现不稳定状态。  相似文献   

7.
为研究环境中稀土元素(REEs)和硅(Si)对植物植硅体固镧能力(PLSA)的影响,以水稻(Oryza sativa L.)为代表,通过设置不同浓度镧[La(Ⅲ)]和Si正交实验,利用微波消解法提取根、茎和叶植硅体,以电感耦合等离子体原子发射光谱和实时荧光定量PCR等实验手段揭示环境La(Ⅲ)对水稻各器官PLSA的影响。结果显示,低浓度La(Ⅲ)使叶哑铃型植硅体大小和根Lsi1表达增加,促进叶和根PLSA,而高浓度La(Ⅲ)会减少叶哑铃型植硅体大小,降低根Lsi1和Lsi2表达,抑制根、茎和叶PLSA。外源La(Ⅲ)是提高根、茎和叶植硅体镧固定效率的重要因素。与单一La(Ⅲ)浓度影响相比,La(Ⅲ)与Si的复合处理显著促进叶和茎PLSA,外源Si能够缓解高浓度La(Ⅲ)对根、茎和叶PLSA的抑制作用。研究证明不同浓度的外源La(Ⅲ)和Si能够改变水稻不同器官的PLSA。  相似文献   

8.
植硅体碳(phytolith-occluded organic carbon, PhytOC)是一个重要的长期(数千年)陆地碳组分,从而成为陆地土壤长期固碳的重要机制之一。植硅体碳的稳定性对全球陆地土壤碳库贡献比植硅体碳储量要大得多。综述了土壤植硅体碳的形成机制与特征,研究植硅体碳稳定性的重要意义以及影响植硅体碳稳定性的因素:不同植被类型产生的植硅体碳的稳定性存在显著差异,不同生长环境下同一植被类型的植硅体碳稳定性也存在差异;古土壤中的植硅体碳稳定性大于幼年中的土壤;植物植硅体的形态组合能够响应土壤盐碱浓度及pH值的变化;湿度和降水等影响植硅体的数量、大小、形态组合以及碳、氧同位素;大气二氧化碳浓度对植硅体的类型、大小比率等产生影响;植硅体的硅铝比值越低,稳定性越高。表1参90  相似文献   

9.
植硅体分析与稻作农业   总被引:1,自引:0,他引:1  
植硅体分析是植物考古研究的重要方法之一。回顾近三十年的研究历程,植硅体分析方法在我国的考古学研究中应用广泛,成果丰硕,主要集中于以稻为主的农作物种属鉴定与驯化、栽培与管理技术、收割与加工方式、粮食储存与食用等方面。随着多学科研究的加强和考古学研究的深化,植硅体分析的理论基础和研究方法仍需不断完善,以推进农业考古研究。  相似文献   

10.
  目的  植硅体封存有机碳(PhytOC)在减少大气二氧化碳含量、缓解温室效应等方面具有重要意义。本研究旨在研究不同种源马尾松Pinus massoniana树干植硅体碳封存潜力存在的差异,从而筛选出植硅体碳封存潜力较强的马尾松种源。  方法  在浙江淳安姥山林场采集20个马尾松种源树干样品,20个种源分别来自于全国11个省区的20个产地。以各样品总有机碳、植硅体、植硅体封存有机碳质量分数及树干生物量的测定结果来分析不同马尾松种源植硅体碳封存潜力的差异。  结果  20个马尾松种源树干的总有机碳、植硅体、植硅体封存有机碳、植硅体碳质量分数分别变动于467.6~489.6、0.305~0.845、126.8~210.2、0.049~0.128 g·kg?1;马尾松标准株树干生物量和植硅体碳储量的变动范围分别为76.48~295.39 kg·株?1和4.83~31.58 g·株?1;种源聚类分析可以将20个马尾松种源划分为4类,以湖北通山84、广西恭城111、江西吉安63和广西岑溪115植硅体碳封存能力较强的种源为1类;以河南桐柏21、湖南安化72、广东信宜105为代表的7个马尾松种源的植硅体碳封存能力次之;以浙江淳安56、贵州都匀123、福建永定95为代表的8个马尾松种源为第3类;浙江庆元54为植硅体碳封存能力最差的一类。  结论  不同种源马尾松树干的植硅体、植硅体封存有机碳和植硅体碳含量均具有显著性差异(P<0.05)。广西岑溪115的植硅体碳封存能力最强,因此在马尾松生态系统中,可通过推广广西岑溪115来提高植硅体碳封存量。图3表2参35  相似文献   

11.
 为优化出毛竹Phyllostachys edulis-多花黄精Polygonatum cyrtonema复合经营的立竹密度,以立地条件基本相似的3种立竹密度D1(1 500~2 500株·hm-2),D2(2 500~3 500株·hm-2),D3(3 500~4 500株·hm-2)的陡坡地粗放经营毛竹林为对象,调查分析了不同立竹密度毛竹林下多花黄精种群生长状况和生物量积累与分配规律。结果表明:毛竹林立竹密度对多花黄精地径、叶片叶绿素值和各构件生物量分配比例影响不明显,而对多花黄精种群密度、株高、各构件生物量和总生物量积累有一定的影响,均随着立竹密度的增大而减小。不同立竹密度毛竹林下的多花黄精生物量分配格局均为地下块茎>根、叶、地上茎,地下块茎生物量分配比例占70%以上,显著大于生物量分配比例差异不明显的其他器官(P<0.05)。立竹密度是影响毛竹林下多花黄精种群生长的重要因素,在试验毛竹林立地条件和经营水平情况下,毛竹?鄄多花黄精复合经营适宜的立竹密度为1 500~2 500株·hm-2。图1表6参22  相似文献   

12.
 毛竹Phyllostachys edulis竹材经拉丝可加工成竹席、竹筷和竹帘,是毛竹竹材加工利用中的重要产品。调查了179株不同胸径分布的毛竹,截取拉丝段竹杆按照4种不同的规格进行粗刨开片和拉丝,将毛竹拉丝段加工成竹席丝,竹筷条和竹帘丝。分析了不同规格竹片的刨片对竹拉丝碳转移的影响,不同胸径的竹拉丝对碳转移率的影响,并建立不同胸径单株毛竹与拉丝材产品的碳储量模型。结果表明:①4种不同规格竹片的竹青和竹黄粗刨碳转移率差异显著(P<0.05),竹筷条比竹席丝和竹帘丝碳转移要高;由于拉丝段的竹材随着壁厚的减小变窄的趋势,导致不同规格随着小头壁厚的减小,碳转移率呈逐渐下降。不同规格竹片的拉丝材平均综合碳转移率为34.11%。②不同胸径毛竹拉丝材生产的综合碳转移率为24.20%~41.83%,平均为32.51%。③不同胸径毛竹拉丝材生产的整株综合碳转移率为9.97%~29.30%,平均为18.09%;④建立不同胸径单株毛竹与拉丝材产品碳储量模型为y=0.006 5x2.236 2,R2=0.631 8。图5表3参12  相似文献   

13.
通过集成中分辨率成像光谱仪(MODIS)卫星影像数据与地面通量台站的观测数据,基于遥感的植被光合模型(VPM),估测了浙江省安吉县山川乡2011年的毛竹Phyllostachys edulis林总初级生产力(PGP)。研究表明:VPM模型估测的PGP(PGPVPM)在季节变化趋势上和通量站点数据获得的PGP(PGPobs)保持一致,VPM模型估算的2011年毛竹林总初级生产力为1 848.54 g·m-2,通量塔数据获得的2011年毛竹林总初级生产力为1 899.69 g·m-2,相对误差为2.69%。在全年累积总量上接近,但是估测值和观测值之间仍然存在一定的差异,尤其是在生长季节,PGPVPM的值要高于PGPobs;VPM模型估测的PGP和通量塔数据获取的PGP之间的决定系数为0.747,相关系数为0.864;且时间序列的增强植被指数(IEV)比PGP的相关关系强于归一化植被指数(INDV)与PGP的关系。研究表明:VPM对于站点和区域尺度的毛竹林生态系统PGP的模拟具有很大的潜力。  相似文献   

14.
毛竹催化热解动力学研究   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用热重技术在不同升温速率和氮气气氛下对毛竹Phyllostachys edulis的氯化亚铜催化热解失重行为进行了研究。结果显示:毛竹主要热解温度区间为200.0~379.0 ℃,当温度为328.5 ℃时达到最大热解速率17.18%·min-1;添加氯化亚铜后,毛竹的热解温度降低,热解速率增大,热解所需时间缩短。还通过Flynn-wall-Ozawa法求解了毛竹热解的动力学参数,纯毛竹的热解平均活化能为213.21 kJ·mol-1,平均指前因子约为1017;氯化亚铜的加入使指前因子增大了10倍,其值约为1018,平均活化能变化不明显。图6表3参12  相似文献   

15.
坡向坡位对毛竹林生物量与碳储量的影响   总被引:7,自引:1,他引:7       下载免费PDF全文
 利用双因素方差分析法研究坡向、坡位对毛竹Phyllostachy edulis林生物量与碳储量的影响。结果表明:①坡向、坡位对毛竹生物量、竹林生态系统碳储量及其空间分配均有一定程度的影响,坡位影响比坡向更显著。具体地,坡向对植被碳储量影响显著(P<0.05),对土壤碳储量和生态系统碳储量影响较显著(P<0.10),坡位对植被碳储量影响极显著(P<0.01),对土壤碳储量和生态系统碳储量影响显著(P<0.05),但两者交互作用不显著;②不同水平上的指标均值分析显示,毛竹林生态系统碳储量阳坡大于阴坡、中下坡大于上坡。其中阳坡下坡的林分密度(3 817株·hm-2)和林分生物量(48.705 t·hm-2)均值最大,阳坡中坡的土壤有机质质量分数(22.500 g·kg-1),土壤碳储量(107.273 t·hm-2)和生态系统碳储量(156.111 t·hm-2)均值最大,平均胸径和土壤容重均值变化不明显;③在毛竹林生态系统碳储量组成方面,18个样地生态系统碳储量均值为(101.352 ± 14.980) t·hm-2(变异系数为14.78%),其中植被占20.24%,土壤占79.76%。图3表4参19  相似文献   

16.
在地面调查的基础上,利用协同克里格插值法对研究区内毛竹Phyllostachys edulis林叶面积指数(LAI,leaf area index)和冠层郁闭度(CC,canopy closure)2个冠层参数进行空间分布估算研究,并与普通克里格插值法进行了比较。研究结果表明:①球状模型可以用来反映LAI和CC的空间变异,且两者具有强烈的空间自相关特征。②协同克里格插值得到的LAI预测值与实测值之间的决定系数R2为0.635 1,而CC的决定系数R2为0.428 5;与普通克里格法相比,基于协同克里格法的LAI和CC预测精度均得到改善,其中LAI预测精度提高了1.94%,均方根误差减少2.00%,平均标准误差减少0.18%,而CC预测精度提高了4.82%,均方根误差减少1.90%,平均标准误差减少1.30%。③安吉县毛竹林LAI和CC都具有从西南到东北逐渐递减空间分布格局,在一定程度上反映了安吉县不同区域毛竹林经营水平的差异。  相似文献   

17.
热处理工艺对竹材性能的影响   总被引:3,自引:0,他引:3  
采用热处理温度为160,180,200℃,热处理时间为2,4,6 h的高温热处理工艺对毛竹Phyllostachys edulis竹材进行改性处理,分析不同热处理工艺对竹材化学成分和力学性能的影响,将分别在160,180,200℃下处理4h后的竹材进行傅立叶变换红外光谱图表征。结果表明:热处理温度越高和时间越长,竹材中木质素质量分数也越高,综纤维素、α-纤维素质量分数呈现下降的趋势,竹材的纵向抗弯强度呈减小趋势,并且抗弯弹性模量呈减小趋势。200℃,6 h热处理竹材与未处理竹材相比,木质素质量分数上升了115.0 g·kg-1,综纤维素质量分数下降了93.1 g·kg-1,α-纤维素的质量分数下降了239.4 g·kg-1,毛竹竹材的抗弯强度较未处理材减小了84.5 MPa,抗弯弹性模量较未处理材减小了1.86 GPa。红外谱图中竹材表面羟基数目随热处理温度的上升和热处理时间的延长不断减少。  相似文献   

18.
利用涡度相关法,对安吉毛竹林生态系统的碳通量进行实时观测,同时用叶绿素荧光仪PAM 2500测定通量框架下毛竹的叶绿素荧光参数。分析了毛竹林净生态系统碳交换量(NEE)的日变化和月平均变化及荧光参数变化。结果表明,NEE值在6:00-7:00开始转为负值,至17:00-18:00转为正值;白天表现为碳汇,并且在数值上,NEE值的负值最高点表现为秋季(9月,10月,11月)>春季(3月,4月,5月)>冬季(12月,1月,2月),说明毛竹CO2通量具有明显的季节变化。逐月NEE值变化范围为-25.563 3~85.531 2 gC·m-2·月-1,12和1月份NEE值较低,1月份达到最低点。叶绿素荧光参数中PSⅡ的最大光合量子产量(Fv/Fm)先降后升,12月,1月和3月份Fv/Fm低于正常水平,与其他月份差异显著(P < 0.05),说明毛竹在这3个月份受到了胁迫,光化学效率降低;Fv/Fo与Fv/Fm趋势相同,12月,1月和3月份潜在活性最低,并且与其他月份差异显著(P<0.05);PSⅡ的实际光合量子产量(ФPSⅡ)变化趋势与Fv/Fm、光化学猝灭系数(qP)大致相同;在10月至翌年3月份,qP逐渐下降之后开始升高,同时伴随非光化学猝灭系数(qN)值的上升和下降。研究表明,毛竹在受到低温胁迫时,会导致其吸收的光能用于光化学电子传递的部分减少,光合碳同化率下降。  相似文献   

19.
毛竹催化热解动力学研究   总被引:1,自引:0,他引:1  
利用热重技术在不同升温速率和氮气气氛下对毛竹Phyllostachys edulis的氯化亚铜催化热解失重行为进行了研究。结果显示:毛竹主要热解温度区间为200.0~379.0℃,当温度为328.5℃时达到最大热解速率17.18%·Min-1;添加氯化亚铜后,毛竹的热解温度降低,热解速率增大,热解所需时间缩短。还通过Flynn-wall-Ozawa法求解了毛竹热解的动力学参数,纯毛竹的热解平均活化能为213.21kJ·mol-1,平均指前因子约为1017;氯化亚铜的加入使指前因子增大了10倍,其值约为1018,平均活化能变化不明显。图6表3参12  相似文献   

20.
为了探讨低温处理后毛竹Phyllostachys edulis叶片反射光谱特性与色素质量分数的相互关系,筛选出能够准确监测低温胁迫下毛竹伤害程度的光谱参数。测定了低温处理后毛竹叶片色素质量分数与反射光谱的变化参数,分析叶片光谱反射率、微分光谱及特征参数与色素质量分数的相关性。结果表明:随着温度的降低,叶绿素a和类胡萝卜素质量分数呈下降趋势(P<0.01)。反射光谱参数光谱反射指数、改良红边比、色素比值指数、归一化植被指数、红边归一化指数、改良类胡萝卜素指数和光化学反射指数等均随着温度的降低而降低(P<0.01);红边面积随着胁迫加深不断减小,红边位置向短波方向移动。在绿光区和红光区,叶绿素a和类胡萝卜素质量分数与光谱反射率及微分光谱显著相关(P<0.05),且与大部分光谱参数达到极显著相关(P<0.01),说明反射光谱特征及其参数可用来估算叶片色素质量分数。图4表5参40  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号