首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of soil solarization combined or not with millet residues or paunch contents amendments, on the survival ofMacrophomina phaseolina (Tassi) Goid. and development of charcoal rot of cowpea (Vigna unguiculata), were assessed in a naturally infested soil. Solarization increased the soil temperature to 50°C for at least 4 h per day during June, leading to a significant reduction (44%) in soil inoculum ofM. phaseolina. Paunch contents or millet residues amendment (3 t ha−1) caused 16% or 35% reduction of initial inoculum density, respectively. The combination of paunch contents or millet residues amendments followed by solarization, resulted in the strongest effects on inoculum density, with reductions of 46% or 66%, respectively. The reduction in disease severity, as expressed by the area under the disease progress curve, was 78% or 96% for the combination of millet residues or paunch contents amendments and solarization, respectively. The stronger effect of the treatments on disease severity than on inoculum density may be explained by a weakening effect caused by the treatments on the remaining inoculum. Our results suggest that in the Sahelian zone the combination of solarization and organic amendment can be a credible alternative to pesticides for managing charcoal rot disease and improving cowpea yield in fields with heavy infestations withM. phaseolina.  相似文献   

2.
Samples of heavily infested crop residues were incorporated in static compost heaps (2.5–4.6 m3) of the Indore type. Temperature increased to 50–70°C within 6 days depending on the type of crop residues used and the location within the heap. The heat phase (>40 °C) lasted 2–3 weeks and was followed by a c. 5-months maturation phase (<40 °c).=" among=" the=" 17=" pathogens=" tested,=">Olpidium brassicae and one of the four formae speciales ofFusarium oxysporum that were tested survived composting, but also their inoculum was greatly reduced.Survival during specific phases of composting was studied by incorporation and retrieval of samples at various stages of the process.F. oxysporum f. sp.melonis was completely inactivated andO. brassicae andPlasmodiophora brassicae were almost completely inactivated during the short heat phase. The three pathogens survived the long-lasting maturation phase without loss of viability. Heat evolved during composting was found to be the most important factor involved with sanitation of crop residues. The possible involvement of fungitoxic conversion products and microbial antagonism is discussed.  相似文献   

3.
The objective of this study was to estimate the effects of tillage systems and cover crops on the incidence of root rot in melon and to identify the fungal pathogens associated with the disease. Two consecutive trials were carried out in a randomized complete block design with four replications in each trial. The treatments were arranged in split-plots. Two tillage systems (no-tillage (NT) and conventional tillage (CT)) were assigned in the main plots and in the subplot the six types of ground cover crops were tested (sunn hemp, pearl millet, sunn hemp + pearl millet, corn + brachiaria, spontaneous vegetation, spontaneous vegetation + polyethylene film) or bare soil. At the end of the trials all melon plants were collected and assessed for disease incidence, isolations from symptomatic plants were made for fungal identification. Root rot incidence was lower in the NT treatments with sunn hemp, pearl millet, and spontaneous vegetation. The main fungi isolated from symptomatic roots were Fusarium solani, Macrophomina phaseolina, Monosporascus cannonballus and Rhizoctonia solani, but F. solani was the most frequently isolated fungus in both tillage systems. The results suggest that the NT system has the potential to control incidence of root rot of muskmelon, but is necessary to realize crop rotation between the planting cycles.  相似文献   

4.
Bottom rot caused by Rhizoctonia solani is an increasing problem in field-grown lettuce in Germany. During the growing seasons of 1999 and 2000, 95 isolates of R. solani from lettuce plants with bottom rot symptoms were collected from eight locations. The isolates were characterised using hyphal anastomosis, pectic zymograms and morphological characteristics. Ninety-three isolates were identified as anastomosis group (AG) 1-IB, one as AG 1-IC and one as AG 2-1. Optimum hyphal growth was measured over a temperature range of 20–30 °C with an optimum at 25 °C. Aggressiveness of the AG 1-IB isolates varied from weak to strong when tested on detached lettuce leaves. The pathogenic potential of six AG 1-IB isolates was determined on 14 plant species in comparison with lettuce under conditions favourable for the fungus. Radish, broccoli, kohlrabi, spinach and millet seedlings were as severely infected as lettuce seedlings. The same isolates caused little symptoms on maize, tomato and onion. Knowledge about the host range of AGs of R. solani are important for planning an effective crop rotation as part of a control management system.  相似文献   

5.
Tissue homogenates of pearl millet seedlings (cultivars HB 3, 843 B, ICMP 451 and IP 18292), with varying degree of resistance to downy mildew disease were tested for ribonuclease (RNase) enzyme activity and the profile of major RNase isozymes by substrate based gel assay. Polyacrylamide gel electrophoresis (PAGE) of the four pearl millet homogenates revealed 15–20 isozymes, varying in size from 6.5 to 121.0kDa. Most of the RNases were highly active between pH 6 and 8 with maximum activity at pH 7. Tissue specific expression of RNase was observed with more activity in the root, i.e., 38.84, 59.61, 39.90 and 49.23 units in HB 3, 843 B, ICMP 451 and IP 18292, respectively than in shoot 11.54, 9.95, 9.46 and 9.49 units in HB 3, 843 B, ICMP 451 and IP 18292, respectively. Effect of metal ions on the RNase profile indicates Zn++ at 2, 20 and 200M concentrations to be inhibitory. Ca++ and Mg++ at 1mM concentration enhanced the enzyme activity while at 10mM inhibition of enzyme activity was observed. Inoculation with the downy mildew pathogen Sclerospora graminicola reduced RNase activity by 4–13% in compatible interactions while in incompatible combinations, the enzyme activity increased by 10–27%. The significance of RNase in pearl millet-downy mildew interaction and its involvement of in systemic acquired resistance of pearl millet against the downy mildew pathogen are discussed.  相似文献   

6.
The effectiveness ofTrichoderma harzianum in suppression of tomato stem rot caused byBotrytis cinerea was examined on tomato stem pieces and on whole plants. Ten days after simultanous inoculation withB. cinerea andT. harzianum, the incidence of infected stem pieces was reduced by 62–84%, the severity of infection by 68–71% and the intensity of sporulation by 87%. Seventeen days after inoculation of wounds on whole plants, the incidence of stem rot was reduced by 50 and 33% at 15 and 26 °C, respectively, and the incidence of rot at leaf scar sites on the main stem was reduced by 60 and 50%, respectively. Simultanous inoculation and pre-inoculation withT. harzianum gave good control ofB. cinerea (50 and 90% disease reduction, 10 days after inoculation). The rate of rotting was not reduced by the biocontrol agent once infection was established. However, sporulation byB. cinerea was specifically reduced on these rotting stem pieces. Temperature had a greater effect than vapour pressure deficit (VPD) on the efficacy of biocontrol. Suppression ofB. cinerea incidence byT. harzianum on stem pieces was significant at 10 °C and higher temperatures up to 26 °C. Control of infection was significantly lower at a VPD of 1.3 kPa (60% reduction), than at VPD<1.06 kPa (90–100% control). Reductions in the severity of stem rotting and the sporulation intensity of grey mould were generally not affected by VPD in the range 0.59–1.06 kPa. Survival ofT. harzianum on stems was affected by both temperature and VPD and was greatest at 10 °C at a low VPD and at 26 ° C at a high VPD.  相似文献   

7.
Abstract

Charcoal rot caused by Macrophomina phaseolina (Deuteromycetes: Coelomycetes) is found throughout the tropics and subtropics and has a wide host range. Together with most of the legume crops, the common bean (Phaseolus vulgaris) Is a good host for the fungus which causes a range of symptoms, depending on environmental conditions and age of the plant. In addition to charcoal rot, which is a stem or stalk rot disease, the pathogen also causes damping‐off and seedling blight in beans. Charcoal rot in the mature plant is associated with senescence which is accelerated by water stress. The disease is most damaging in areas of unreliable rainfall and high temperature. In Kenya, beans are usually grown in mixed stands with maize, sorghum or millet. Population pressure has led to the cultivation of beans on land prone to drought. M. phaseolina is one of the most important pathogens affecting all the main crops of the farming systems in the semi‐arid areas of eastern Kenya and resistance to charcoal rot is a priority if beans are to be increasingly grown in these areas. The paper reviews the literature on charcoal rot of beans and on other crops where similar work has not been reported specifically for beans.  相似文献   

8.
A biocontrol agent (Pseudomonas fluorescens) and a phytostimulator (Rhizobium) have been shown to have beneficial effects on plant growth and health. The study of plants inoculated withPseudomonas andRhizobium requires special attention because of the possibility that these agents may influence each other. Our study was conducted to test the effect of these inoculants on co-inoculation in peanut to control root rot, a severe soilborne disease caused byMacrophomina phaseolina. One fluorescent pseudomonad strain, Pf 1, which effectively inhibited the mycelial growth ofM. phaseolina underin vitro conditions, was studied for its compatibility with the biofertilizer bacterial strainRhizobium TNAU 14. Dual culture and colorimetric studies indicated the existence of a positive interaction between the microbial inoculants. However, glasshouse and field studies showed seed treatment and soil application ofPseudomonas fluorescens Pf 1 to be the most effective treatment in reducing root rot incidence and improving the crop vigor index, in comparison with treatments in which both inoculants were applied. http://www.phytoparasitica.org posting Feb. 11, 2002.  相似文献   

9.
The induced resistance potential of eleven compost samples that originated from four different countries (Greece, France, Netherlands and Israel) and were manufactured from various raw materials, was evaluated in an Arabidopsis thalianaVerticillium dahliae pathosystem under greenhouse conditions using a novel Plexiglas chamber. Five out of eleven composts tested showed significant disease suppressiveness compared to the control treatment; three composts exhibited disease severity equal to the control, while in the other three composts, disease severity was higher than the control treatment. Two of the tested composts that showed strong or medium suppressiveness were further evaluated under field conditions against Verticillium wilt of eggplant. Neither of them significantly reduced disease severity or resulted in higher fruit yield in a semi-commercial field test although they could induce a systemic resistance response in the greenhouse. However, as a consequence of a growth-promoting effect, one of the compost samples tested in the field resulted in a significant yield increase compared with the other.  相似文献   

10.
The effects of sublethal heat treatments on heat resistance were studied forFusarium oxysporum f.sp.dianthi (Fod) andVerticillium dahliae (Vd), one isolate of each pathogen. Treatments of propagule suspensions of Fod at 55°C and of Vd at 45°C for 30 min were survived by less than 0.001% and 0.01% of the propagules, respectively. Pretreatment of suspensions of Fod at 45°C increased survival of the 55°C treatment up to 0.73% of the propagules and pretreatment of suspensions of Vd at 40°C increased survival of the 45°C treatment up to 0.40%. Induction of heat resistance was dependent on duration of the exposure to the sublethal temperature. With Fod, this duration was shorter for propagules from old cultures than for those from young cultures. Pretreatment at 45°C of a suspension of an 1-week-old culture of Fod induced resistance when lasting 30 min or longer, but not when 20 min or shorter. With Vd, the duration of the pretreatment inducing heat resistance depended on type of culture — white or black — due to differences in microsclerotia formation. Implications of induced heat resistance for control of plant diseases by thermotherapy are discussed.  相似文献   

11.
The effect of temperature on the in vitro growth rates and pathogenicity of a European Fusarium collection consisting of isolates of Fusarium graminearum, F. culmorum, F. avenaceum, F. poae and Microdochium nivale was examined. Irrespective of geographic origin, the optimum temperature for the growth of F. graminearum, F. culmorum and F. poae was 25 °C, while that for F. avenaceum and M. nivale was 20 °C. In general, the growth rates of F. graminearum, F. culmorum and F. poae increased between 10 and 25 °C and those of F. avenaceum and M. nivale increased between 10 and 20 °C. Pathogenicity tests were carried out by examining the effect of the five species on the in vitro coleoptile growth rate of wheat seedlings (cv. Falstaff). Irrespective of geographic origin, the temperature at which F. avenaceum, F. culmorum and F. graminearum caused the greatest retardation in coleoptile growth ranges 20–25 °C (>89.3% reduction), whilst for F. poae and M. nivale it was 10–15 °C (>45.6% retardation), relative to uninoculated control seedlings. In general, F. culmorum and F. graminearum were the most pathogenic of the five species, causing at least a 69% reduction in coleoptile growth at 10, 15, 20 and 25 °C. General linear model analysis (GLIM) showed that species accounted for 51.3–63.4% of the variation in isolate growth and from 19.5% to 44.3% of the variation in in vitro pathogenicity. Country of origin contributed from 22.6% to 51.9% to growth rate variation and from 0.73% to 7.61% to pathogenicity variation. The only significant correlation between in vitro growth and pathogenicity was that observed for M. nivale at 15 °C (r = -0.803, P < 0.05).  相似文献   

12.
The effect of ammonium nitrate broadcast as a soil or through irrigation, urea applied as a foliar spray, and monoammonium phosphate applied as a planting hole treatment on the incidence ofPhytophthora crown and root rot of apple trees was determined under orchard conditions in the Okanagan Valley of British Columbia, Canada. Results from the eight year study showed that ammonium nitrate applied as a single dose in spring at 240 g tree–1 year–1, as a split dose at 120 g tree–1 each in spring and early autumn, and in irrigation water (fertigation) at 7.5 g tree–1 wk–1 for 10 wk year–1 significantly increasedPhytophthora crown and root rot of Macspur on MM106 rootstock. There was no significant difference inP. cactorum infection between the unfertilized control and treatments with urea applied as a foliar spray at 1.0 kg 100 l–1 of water in spring and early autumn, and monoammonium phosphate applied as a planting hole treatment at 1 g l–1 of soil at planting time.  相似文献   

13.
Potential antagonists ofFusarium solani f. sp.pisi (Fsp) were selected from soil samples with varying degrees of receptivity to this pathogen. They were tested against Fsp isolate 48 (Fs48), in increasingly complex systems. Most species testedin vitro were able to antagonize Fs48. No relation could be establishedin vitro between the receptivity of the soil from which an isolate originated and its antagonism to Fs48. In soils naturally infested with pea root rot pathogens, which were stored humid at 4°C for a period longer than a year, various isolates ofFusarium, Gliocladium andPenicillium spp. were able to reduce root rot. After sterilization of these soils, onlyGliocladium roseum isolates, added at 105 conidia g–1 dry soil, significantly reduced disease severity and prevented root weight losses caused by Fs48 at 104 conidia g–1 dry soil. In soils in which the biota were activated by growing peas before the assays, doses of 106 and 107 ofG. roseum were required to reduce root rot. In these soils, the antagonistic effects of fluorescent pseudomonad strains from soil of low receptivity to Fsp were variable. Some strains of fluorescent pseudomonads, from soil moderately receptive to Fsp and from highly infested soils, were also able to reduce root rot. Disease suppression by pseudomonad strains was more evident in the absence than in the presence ofAphanomyces euteiches in the root rot pathogen complex. The role of receptiveness of the soil with regard to potential antagonists is discussed.  相似文献   

14.

The fungus Macrophomina phaseolina, the causal agent of charcoal rot of common beans, damages the roots, stems, and leaves of seedlings and plants and forms resistant structures, so that chemicals are not sufficient for disease control. Integrated management systems associated with the use of biological control techniques are a sustainable alternative. Here we collected 37 native bacterial isolates from the common bean rhizosphere and screened them for antagonistic activity against M. phaseolina. Four isolates (BA97, BN17, BN20, and BR20) identified as Bacillus spp. showed antagonism in vitro against M. phaseolina, inhibiting its growth by 62.5–85%. In an in planta antagonistic assay, isolate BN20 reduced disease severity the most. Isolates BA97, BN17, BN20, and BR20 produced volatile compounds as a mechanism of antagonism. They also produced indole acetic acid in vitro (1.98–3.87 μg/ml). These results suggest that seed bacterization with the rhizobacterial isolates for field planting may be an effective means to reduce crop damage by M. phaseolina.

  相似文献   

15.
The ubiquitous fungal pathogen Macrophomina phaseolina is best known as causing charcoal rot and premature death when host plants are subject to post‐flowering stress. Overseas reports of M. phaseolina causing a rapid rot during the sprouting of Australian mungbean seed resulted in an investigation of the possible modes of infection of seed. Isolations from serial portions of 10 mungbean plants naturally infected with the pathogen revealed that on most plants there were discrete portions of infected tissue separated by apparently healthy tissue. The results from these studies, together with molecular analysis of isolates collected from infected tissue on two of the plants, suggested that aerial infection of aboveground parts by different isolates is common. Inoculations of roots and aboveground parts of mungbean plants at nine temperature × soil moisture incubation combinations and of detached green pods strongly supported the concept that seed infection results from infection of pods by microsclerotia, rather than from hyphae growing systemically through the plant after root or stem infection. This proposal is reinforced by anecdotal evidence that high levels of seed infection are common when rainfall occurs during pod fill, and by the isolation of M. phaseolina from soil peds collected on pods of mungbean plants in the field. However, other experiments showed that when inoculum was placed within 130 mm of a green developing pod and a herbicide containing paraquat and diquat was sprayed on the inoculated plants, M. phaseolina was capable of some systemic growth from vegetative tissue into the pods and seeds.  相似文献   

16.
The effect of different organic composts on the suppression of wilt disease of spinach caused by Fusarium oxysporum f. sp. spinaciae was evaluated in a continuous cropping system in both containers and in microplot field trials. Test soils infested with the pathogen were amended with wheatbran, wheatbran and sawdust, coffee grounds, chicken manure, or mixture of different composts with and without 5% (w/w) crab shell powder either once (5%, w/w) or continuously (2.5%) into the test soils infested with the pathogen. In the container trials, the soil amended with composts became suppressive to disease development on the second and third cropping. The suppressive effect was notable in the soil amended with the mixture of compost with and without crab shell powder. The coffee compost lowered soil pH but became suppressive to the disease after modifying the soil pH. In the field trial using the mixture of the different composts containing 5% crab shell powder, a combination of 5% before the first cropping and 2.5% every second cropping gave stable disease control and promoted plant growth. After compost amendment, populations of fungi, bacteria and actinomycetes as measured by dilution plate counting and the total microbial activity as evaluated by fluorescein diacetate hydrolysis increased and population of the pathogen gradually decreased. These phenomena were especially notable in soils amended with the mixture of different composts. These results indicate that diversity in the organic materials promotes higher microbial activity and population in the soil thereby enhancing disease suppressiveness.  相似文献   

17.
Alterations in water relations, growth and histopathology caused by Macrophomina phaseolina, causal agent of charcoal rot, and drought stress were characterized in Phaseolus vulgaris L. under controlled conditions.P. vulgaris cultivars BAT 477 and TLP 19 (resistant) and Pinto UI-114 and Rio Tibagi (susceptible) were cultivated under irrigation and drought stress conditions in infested or uninfested pots with a highly virulent isolate ofM. phaseolina . Drought stress showed higher negative effects than M. phaseolina on water relations, vegetative growth and histopathology in P. vulgaris. Drought stress decreased transpiration rate, water potential, osmotic potential, turgor potential, relative water content, leaf area and dry weight of all vegetative structures of P. vulgaris. Drought stress increased charcoal rot development and stomatal resistance, and increased the association among physiological and growth characteristics and charcoal rot development. M. phaseolina invaded between epidermal cells of BAT 477 and Pinto UI-114 hypocotyls. The fungus infected cortex tissues, vascular cylinder, and pith cells of Pinto UI-114, but only epidermal and parenchyma cells of BAT 477. Typical symptoms caused by M. phaseolina were found to be associated with damage caused by the fungus on host tissues, and they were related to drought stress.  相似文献   

18.
Asparagus replant-bound early decline (ARED) was characterized and its etiology was elucidated in experiments under greenhouse and field conditions. Selective soil treatments were used to differentiate between autotoxic compounds and soil-borne pathogens as causal agents. In greenhouse experiments, there were symptoms of ARED within 12—15 weeks. Asparagus plants grown in soil formerly used for asparagus (asparagus soil) showed brown lesions on primary and secondary roots, and many secondary roots had rotted. Root weights of plants grown in asparagus soil were lower than those of plants grown in fresh soil.Fusarium oxysporum f. sp.asparagi (Foa) was by far the most common species among the fungi isolated from roots with lesions. Under greenhouse and field conditions, there were similar symptoms, which indicates that the results obtained under greenhouse conditions are similar to those in the field. The vertical distribution of the ARED-causing factor(s) was studied in a greenhouse experiment in which plants were grown in soil from three layers: 0–30, 30–60, and 60–90 cm. For all four asparagus soils tested, there were ARED symptoms and similar disease severity in samples from all three depths. The causal factor persisted at least 11 years after soil was no longer used for asparagus. When asparagus soil was diluted with fresh soil to give mixtures with 100%, 80%, 50%, 20% and 0% asparagus soil, disease severity did not decrease with increasing dilution of the asparagus soil from 100% to 20%. Disease severity of all mixtures with asparagus soil was significantly higher than that for fresh soil. The results imply that ARED is caused by a pathogen colonizing the soil rather than inhibition by autotoxins released from residues of the preceding asparagus crop. This conclusion is supported by the results of greenhouse and outdoor experiments with heat and fungicide treatments of soil. ARED was nullified by heat treatments of 30 min at 55 or 60 °C but not 45 and 50 °C, eliminating autotoxins as an important cause of ARED because they are heat-stable. Foa is eliminated by a 30-min soil treatment at 55–60 °C but not 50 °C. Prochloraz, known for its toxicity toF. oxysporum, also nullified ARED. Disease severity level was related to the density of Foa in soil. The results provide conclusive evidence thatF. oxysporum f. sp.asparagi is the main cause of ARED in the Netherlands, which largely removes the need to discriminate between early decline and replant-bound early decline, because Foa is the main cause of both diseases.  相似文献   

19.
Inoculum density, temperature, leaf age, and wetness duration were evaluated for their effects on the development of black streak (Itersonilia perplexans) on edible burdock (Arctium lappa L.) in a controlled environment. The effect of relative humidity (RH) on ballistospores production by I. perplexans was also evaluated. Symptoms of black streak on leaves increased in a linear fashion as the inoculum density of I. perplexans increased from 102 to 106 ballistospores/ml. Rugose symptoms on young leaves were observed at densities of ≥104 ballistospores/ml. Disease severity of I. perplexans in relation to leaf age followed a degradation curve when the leaves were inoculated with ballistospores. Disease severity was high in newly emerged leaves up to 5 days old, declined as leaf age increased to 29 days, and was zero when leaf age increased from 30 to 33 days. Disease development of edible burdock plants exposed to ballistospores of I. perplexans was evaluated at various combinations of temperature (10°, 15°, 20°, 25°C) and duration of leaf wetness (12, 24, 36, 48, and 72 h). Disease was most severe when plants were in contact with the ballistospore sources at 15° or 20°C. The least amount of disease occurred at 25°C regardless of wetness duration. Ballistospores required 24–36 h of continuous leaf wetness to cause visible symptoms by infection on edible burdock. Ballistospores production in infected lesions required at least 95.5% RH.  相似文献   

20.
Zusammenfassung Ziel der Untersuchungen war es, die Auswirkungen verschiedener Temperatur- und Strahlungsbedingungen während der Akklimatisationsphase auf das anschließende Wachstum von Ficus benjamina und Schefflera arboricola im Innenraum zu ermitteln. Beide Pflanzenarten wurden sechs Monate Temperaturen von 15, 20 und 25°C kombiniert mit verschiedenen Photonenstromdichten (PFD; F. benjamina bei 40, 80 und 180 µmol m–2s–1 und S. arboricola bei 10, 20 und 80 µmol m–2s–1) ausgesetzt. Nach der Akklimatisationsphase wuchsen die Pflanzen sechs Monate unter Innenraumbedingungen bei 18 µmol m–2s–1 PFD sowie 20°C bei Belichtung und 18°C bei Dunkelheit. Während der Akklimatisationsphase führte bei F. benjamina die Kombination von 15°C und 180 µmol m–2s–1 PFD zu einer geringen Blattbildung, nicht voll entwickelten Internodien sowie zu aufgehellten Blättern ohne sortentypischen Blattglanz. Das Pflanzenwachstum von F. benjamina und S. arboricola im Innenraum wurde durch die gewählten Akklimatisationsbedingungen positiv beeinflusst. Nach dem Überführen der Pflanzen in den Innenraum traten bei keiner untersuchten Temperatur- und Strahlungsbehandlung Wachstumsdepressionen, Schädlingsbefall oder starker Blattfall auf. Nach sechs Monaten Wachstum im Innenraum hatten sich bei beiden Pflanzenarten die untersuchten Merkmale unabhängig von den Akklimatisationsbedingungen annähernd gleich entwickelt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号