首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
为探索梅花鹿(Cervus nipponS100A16基因序列及生物学特性,本研究根据GenBank数据库中牛、绵羊S100A16基因序列设计引物,以梅花鹿鹿茸顶端组织cDNA为模板,采用RT-PCR技术和分子克隆技术成功获得梅花鹿S100A16基因的cDNA序列。生物信息学分析发现,梅花鹿S100A16基因CDS区全长312 bp,编码103个氨基酸;蛋白含有11个磷酸化位点,有跨膜结构域,无信号肽,为在细胞内发挥作用的稳定蛋白;蛋白仅在C端含有S100蛋白家族经典的EF螺旋结构域,由12个氨基酸组成,N端EF螺旋结构域由15个氨基酸组成;蛋白C端含有FGF-1蛋白结合位点;梅花鹿S100A16蛋白的二级结构主要由α-螺旋和无规则卷曲构成;三级结构显示该蛋白有2个Ca2+结合位点;梅花鹿S100A16蛋白氨基酸序列与东欧马鹿同源性最高,为100%,与其他部分物种S100A16蛋白氨基酸序列构建系统进化树,分析表明S100A16基因在进化上比较保守,符合功能基因的特点。研究结果为进一步揭示梅花鹿S100A16基因的功能及表达机制提供依据。  相似文献   

2.
We determined the complete nucleotide sequence of the mitochondrial genome of the semidomestic red deer (Cervus elaphus) of New Zealand. The genome was 16 357 bp long and contained 13 protein‐coding genes, 12SrRNA, 16SrRNA, 22 tRNAs and a D‐loop as found in other mammals. Database homology searches showed that the mitochondrial DNA (mtDNA) sequence from the New Zealand semidomestic deer was similar to partial mtDNA sequences from the European, Norwegian (C. e. atlanticus) and Spanish red deer (C. e. hispanicus). Phylogenetic analysis of the mitochondrial protein‐coding regions revealed two well‐defined monophyletic clades in subfamilies Cervinae and Muntiacinae. However, red deer and Sika deer were not found to be close relatives. The analysis did identify the red deer as a sister taxon of a Samber/Sika deer clade, although it was more closely related to the Samber than the Sika group.  相似文献   

3.
In the present study, mitochondrial DNA sequences of the Yeso Sika deer (Cervus nippon yesoensis) were studied. Specifically, protein‐coding genes as mitochondrial NADH dehydrogenase subunits (ND1, ND2, ND3, ND4L, ND4, ND5 and ND6), cytochrome c oxidase subunits (CO I and CO III), ATP synthase subunits (ATPase8 and ATPase6) and cytochrome b. Also, phylogenetic analyses on eight mammalian species were performed, including the Muntjac deer (Muntiacus reevesi). The rate of amino‐acid substitution was lowest (3.74%) between Yeso Sika deer and Muntjac deer, and the values between Yeso Sika deer and other species (sheep, cattle, horse, pig, mouse, human and chimpanzee) were 6.63%, 7.30%, 12.55%, 13.03%, 23.59%, 24.82% and 25.04%, respectively. Among them, the highest value of divergence was recognized in ATPase8, and the second structure of ATPase8 showed a difference between the Yeso Sika deer and Muntjac deer as a result of the substitution of 34His→Tyr and 49Thr→Ile. In addition, we identified a substitution of an amino‐acid sequence (19Thr→Ala) between the Yeso Sika deer and Yakushima Sika deer (C. n. yakushimae). From these results, ATPase8 was also a variable region in Cervidae.  相似文献   

4.
为阐明河南区域隐孢子虫分子流行病学特点,用PCR技术扩增分离虫株的18S rRNA基因全序列和HSP70基因序列,并对扩增片段进行测序。用PAUP 4.0和TREEPUZZLE 4.1构建进化树,试图从分子水平证明河南省不同地区不同宿主来源隐孢子虫的遗传特征,以阐明隐孢子虫病的分子流行病学特点。通过18S rRNA基因全序列和HSP70基因序列分析,其结果:河南人源隐孢子虫分离株为Cryptosporidium parvum鼠基因型;河南鹿源隐孢子虫分离株为C. parvum鹿基因型;河南猪源隐孢子虫的2个分离株均为C. parvum猪基因I型,即C. suis;河南鹌鹑源的隐孢子虫2个分离株分别为C. baileyi和C. meleagridis;河南乌鸡源隐孢子虫和鸵鸟源隐孢子虫分离株均为C. baileyi;河南牛源隐孢子虫分离株为C.andersoni。  相似文献   

5.
The 16S rRNA gene of the SMR strain of cilia-associated respiratory (CAR) bacillus, which was isolated from a spontaneously infected rat at our institute, was sequenced. Its 1,521 nucleotides were determined. On the basis of the results of the sequence analysis, the SMR strain was found to be most closely related to members of the Flavobacter/Flexibacter group. This sequence was compared with the previously determined 16S rRNA gene sequences (rat-origin: three; mouse-origin: one; rabbit-origin: one) of CAR bacillus isolates. The SMR strain showed the highest sequence similarity (99.9%) to the rat-origin CARB-NIH strain (Schoeb et al., 1993), and it was concluded that the strains are identical.  相似文献   

6.
黑龙江省猫旋毛虫18S rRNA基因分子克隆及序列分析   总被引:1,自引:0,他引:1  
本文利用GenBank中发表的(Trichinella spiralis)18S rRNA序列为参考设计引物,对分离自黑龙江省猫体内的旋毛虫及本地毛形线虫(Trichinella nativa)的18S rRNA基因进行扩增,克隆后测序,序列分析结果表明:猫旋毛虫与旋毛形线虫基因同源性更高。  相似文献   

7.
《Veterinary microbiology》2015,175(2-4):294-303
The human oral microbiome is known to play a significant role in human health and disease. While less well studied, the feline oral microbiome is thought to play a similarly important role. To determine roles oral bacteria play in health and disease, one first has to be able to accurately identify bacterial species present. 16S rRNA gene sequence information is widely used for molecular identification of bacteria and is also useful for establishing the taxonomy of novel species.The objective of this research was to obtain full 16S rRNA gene reference sequences for feline oral bacteria, place the sequences in species-level phylotypes, and create a curated 16S rRNA based taxonomy for common feline oral bacteria.Clone libraries were produced using “universal” and phylum-selective PCR primers and DNA from pooled subgingival plaque from healthy and periodontally diseased cats. Bacteria in subgingival samples were also cultivated to obtain isolates. Full-length 16S rDNA sequences were determined for clones and isolates that represent 171 feline oral taxa. A provisional curated taxonomy was developed based on the position of each taxon in 16S rRNA phylogenetic trees.The feline oral microbiome curated taxonomy and 16S rRNA gene reference set will allow investigators to refer to precisely defined bacterial taxa. A provisional name such as “Propionibacterium sp. feline oral taxon FOT-327” is an anchor to which clone, strain or GenBank names or accession numbers can point. Future next-generation-sequencing studies of feline oral bacteria will be able to map reads to taxonomically curated full-length 16S rRNA gene sequences.  相似文献   

8.
Species of the genus Anaplasma (Rickettsiales: Anaplasmataceae) are obligate intracellular tick borne pathogens. Three species of Anaplasma that infect cattle and sheep (A. marginale, A. centrale and A. ovis) are well recognized. Of these erythrocytic Anaplasma, A. marginale can cause diseases in the livestock with high economical losses. Species-specific PCR based on 16S rRNA gene is commonly used for detection of Anaplasma species but can not differentiate A. marginale, A. centrale and A. ovis because of sequence similarity. In this study DNA extraction was performed on 50 blood samples with presence of Anaplasma spp. in marginal point of erythrocytes in their blood smears. The extracted DNA from blood cells was analyzed by PCR and PCR-RFLP using primers derived from 16S rRNA gene and restriction endonuclease Bst1107 I. The restriction endonuclease Bst1107I only recognizes the sequence (GTATAC) in corresponding PCR product of A. marginale and cut it. The nucleotide sequence of the A. marginale 16S rRNA gene was determined and compared with the sequences of A. marginale in GenBank. The 16S rRNA of A. marginale in Iran was completely similar to the related sequence deposited in GenBank at accession number of M60313. In the present study we propose a new PCR-restriction fragment length polymorphism analysis (RFLP) method based on 16S rRNA gene for specific detection of A. marginale.  相似文献   

9.
The influence of rumen protozoa on the composition of rumen methanogens was studied by using seven growing Holstein cattle divided into two groups: four faunated and three unfaunated. 16S ribosomal RNA gene (rDNA) and methyl coenzyme‐M reductase (MCR) α subunit (mcrA) gene clonal libraries were constructed. The results of each analysis showed that Methanobacteriales was dominant in the rumen of both groups. By mcrA gene analysis, 22.1% of unfaunated clones were classified into unfaunated group 1, which was not detected from faunated cattle. The 16S rRNA gene analysis showed that the number of operational taxonomic units was higher in unfaunated than faunated cattle, suggesting the diversity of methanogens tended to be higher by the removal of protozoa. The results of the LIBSHUFF program indicated that the 16S rRNA gene and mcrA gene clone libraries for the faunated group differed from those for the unfaunated group (P = 0.001). It was suggested that the presence of protozoa strongly affected the composition of rumen methanogens.  相似文献   

10.
Ureaplasma diversum infection in bulls may result in seminal vesiculitis, balanoposthitis and alterations in spermatozoids. In cows, it can cause placentitis, fetal alveolitis, abortion and the birth of weak calves. U. diversum ATCC 49782 (serogroups A), ATCC 49783 (serogroup C) and 34 field isolates were used for this study. These microorganisms were submitted to Polymerase Chain Reaction for 16S gene sequence determination using Taq High Fidelity and the products were purified and bi-directionally sequenced. Using the sequence obtained, a fragment containing four hypervariable regions was selected and nucleotide polymorphisms were identified based on their position within the 16S rRNA gene. Forty-four single nucleotide polymorphisms (SNP) were detected. The genotypic variability of the 16S rRNA gene of U. diversum isolates shows that the taxonomy classification of these organisms is likely much more complex than previously described and that 16S rRNA gene sequencing may be used to suggest an epidemiologic pattern of different origin strains.  相似文献   

11.
本研究应用PCR技术扩增来自广东的3株柔嫩艾美耳球虫的28S rRNA基因部分序列,并与GenBankTM登录的柔嫩艾美耳球虫、堆型艾美耳球虫、鼠肉孢子虫和刚地弓形虫虫株的相应序列进行比对分析。试验结果显示,柔嫩艾美耳球虫3个样品均获得1172 bp的28S rRNA基因部分有效序列,不同虫株序列没有差异,与GenBankTM登录的柔嫩艾美耳球虫相应序列只有一个碱基差异,显示种内序列高度保守,而与堆型艾美耳球虫、鼠肉孢子虫、刚地弓形虫相应的序列存在不同程度的差异。结果表明,28S rRNA基因部分序列可作为研究艾美耳球虫种间及其他顶复门原虫遗传变异的标记。  相似文献   

12.
The PA28 activator γ‐subunit encoded by the PSME3 gene is the third component of the PA28 activator complex, which is the 11S regulator of the 20S proteasome. The open reading frame (ORF) sequence of the porcine PSME3 gene encoding the proteasome activator γ‐subunits (or proteasome activator subunit 3) was determined. The deduced amino acid sequence shows 100% identity with the corresponding human and murine sequence. Two single nucleotide substitutions, one located in intron 5 (I5), the other one in exon 8 (E8), were detected using polymerase chain reaction–restriction fragment‐length polymorphism (PCR–RFLP). Analysis on allele frequencies of the two polymorphic sites determined in different pig breeds (Duroc, Tibet, Qingping, Meishan, Erhualian and Mingzhu) showed large differences between Duroc and Chinese indigenous pig breeds investigated. The PSME3 gene was physically assigned to SSC12p11 – (2/3) p13 in the vicinity of the GH gene. This result provides an additional type I marker to the GH linkage group on SSC12.  相似文献   

13.
A molecular epidemiological survey of the protozoal parasites that cause equine piroplasmosis was conducted using samples collected from horses and zebra from different geographical locations in South Africa. A total of 488 samples were tested for the presence of Theileria equi and/or Babesia caballi using the reverse line blot hybridization assay. Ten percent of the samples hybridized to the Theileria/Babesia genus-specific probe and not to the B. caballi or T. equi species-specific probes, suggesting the presence of a novel species or genotype. The small subunit of rRNA gene (18S; ∼1600 bp) was amplified and sequenced from 33 of these 488 samples. Sequences were compared with published sequences from the public sequence databases. Twelve distinct T. equi and six B. caballi 18S rRNA sequences were identified. Alignments demonstrated extensive sequence variation in the V4 hypervariable region of the 18S rRNA gene within T. equi. Sequence variation was also found in B. caballi 18S rRNA genes, although there was less variation than observed for T. equi. Phylogenetic analysis based on 18S rRNA gene sequences revealed three T. equi clades and two B. caballi clades in South Africa. The extent of sequence heterogeneity detected within T. equi and B. caballi 18S rRNA genes was unexpected since concerted evolution is thought to maintain homogeneity within repeated gene families, including rRNA genes, in eukaryotes. The findings reported here show that careful examination of variants of the 18S rRNA gene of T. equi and B. caballi is required prior to the development of molecular diagnostic tests to detect these parasites in horses. Species-specific probes must be in designed in regions of the gene that are both conserved within and unique to each species.  相似文献   

14.
狍18S rRNA基因的克隆测序   总被引:1,自引:1,他引:0  
为了研究狍与鹿种其它动物之间的系统关系和进化历史 ,用所查文献引物 ,对鹿科动物狍的 18SrRNA基因序列进行基因克隆、测序 ,序列测定测得的序列长度为 115 4bp ,并与其它鹿科动物的相应序列进行比较。同时将该序列发送到Genebank上 ,其登录号是AY6 2 6 16 1。  相似文献   

15.
胡静  谢俊仁  王锁民 《草业科学》2012,29(9):1369-1373
为探讨多浆旱生植物霸王(Zygophyllum xanthoxylum)的生物进化历程及与其他植物的亲缘关系,本研究以霸王叶基因组DNA为模板,使用通用引物扩增其18S rRNA 基因片段,并克隆到pGEM T载体,阳性克隆经鉴定后进行测序。核苷酸序列分析结果表明,该片段长1 808 bp,所得序列与GenBank中注册的18S rRNA基因序列的同源性均在96%以上。可见,高等植物18S rRNA 的基因非常保守。同源性分析与Blast比较结果表明,霸王与小盘木(Galearia filiformis)、驱虫苋(Cnidoscolus aconitifolius)及橡胶树(Hevea brasiliensis)同源性最高。系统进化树分析表明,霸王与三七(Panax notoginseng)的亲缘关系最近。  相似文献   

16.
The 18S rRNA gene and the piroplasm major immunodominant protein gene (p33/34) of Theileria from various subspecies of sika deer in 8 different locations of Japan were analyzed. The similarity between 633 bp partial sequences of the 18S rRNA gene among various subspecies of sika deer was found to be between 99.7% and 100%. While the percent identities of the 412 bp partial p33/34 gene sequence and deduced amino acid sequences between Theileria of sika deer from Yamaguchi Prefecture and those found in deer from other Prefectures, were comparatively low, 68.7% to 70.1% and 64.1% to 70.0% respectively. These findings suggest that there are at least two genetically distinct strains of Theileria of sika deer in Japan.  相似文献   

17.
The objective of this study was to assess whether nucleotide substitutions in the 16S rDNA sequence of selected Brachyspira hyodysenteriae isolates could explain differences in doxycycline minimal inhibitory concentrations (MICs). The main part of the 16S rRNA gene was sequenced and compared for 19 isolates with different doxycycline MICs. A mutation in the 16S rRNA gene at the position corresponding to 1058 in Escherichia coli has been shown to cause tetracycline resistance in other bacteria. In the B. hyodysenteriae sequences a G1058C mutation was found for all isolates with increased doxycycline MICs whereas all susceptible isolates had the wild type sequence.  相似文献   

18.
温氏附红细胞体部分16S rRNA基因的序列测定和分析   总被引:2,自引:0,他引:2  
从确诊为附红细胞体感染的黄牛无菌采集血样,抽提附红细胞体基因组DNA,用实验设计的能扩增多种动物血营养菌部分16SrRNA基因的通用引物进行PCR扩增,结果扩增出大小约为370bp的DNA片段。PCR产物序列测定和系统进化分析显示,实验获得的核苷酸序列为温氏附红细胞体的16SrRNA基因,与国外报道的温氏附红细胞体的同源性为97%。反映出不同地理株的温氏附红细胞体存在一定的遗传差异,为牛附红细胞体病的诊断和分子流行病学研究提供科学依据。  相似文献   

19.
Four female Sika deer (mean bodyweight, 48 kg) and three male Holstein cattle (mean bodyweight, 209 kg) were offered alfalfa hay cubes at 2% (deer) and 2.5% (cattle) of bodyweight, respectively. The digestibility of the cell walls and cell wall components (rhamnose, arabinose, xylose, mannose, galactose and glucose) in alfalfa and its retention time of the alfalfa in the digestive tract and rumen parameters were determined. Cell walls and xylose were less digestible in the deer than in the cattle (P < 0.01 and P < 0.05, respectively). The digestibility of galactose in the deer was as high as that in the cattle. The digestibility of the other sugars and total neutral sugars was numerically lower in the deer, but the differences were not significant. In the deer, mannose was most digestible, followed in order by galactose, arabinose, glucose, rhamnose and xylose; whereas, in the cattle, mannose was most digestible, followed in order by arabinose, glucose, galactose, rhamnose and xylose. The retention time in the digestive tract was shorter in the deer than in the cattle. In the deer, the number of ruminal protozoa was somewhat higher, and the concentrations of propionic acid and butyric acid were higher (P < 0.05) than in the cattle. These results indicate that Sika deer might utilize pectic polysaccharides as a carbon source in preference to glucose containing polysaccharides such as cellulose. The lower digestibility of all cell wall components except galactose in the Sika deer might be mainly due to its shorter retention time.  相似文献   

20.
Theileria parva is the causative agent of Corridor disease in cattle in South Africa. The African buffalo (Syncerus caffer) is the reservoir host, and, as these animals are important for eco-tourism in South Africa, it is compulsory to test and certify them disease free prior to translocation. A T. parva-specific real-time polymerase chain reaction (PCR) test based on the small subunit ribosomal RNA (18S rRNA) gene is one of the tests used for the diagnosis of the parasite in buffalo and cattle in South Africa. However, because of the high similarity between the 18S rRNA gene sequences of T. parva and Theileria sp. (buffalo), the latter is also amplified by the real-time PCR primers, although it is not detected by the T. parva-specific hybridization probes. Preliminary sequencing studies have revealed a small number of sequence differences within the 18S rRNA gene in both species but the extent of this sequence variation is unknown. The aim of the current study was to sequence the 18S rRNA genes of T. parva and Theileria sp. (buffalo), and to determine whether all identified genotypes can be correctly detected by the real-time PCR assay. The reverse line blot (RLB) hybridization assay was used to identify T. parva and Theileria sp. (buffalo) positive samples from buffalo blood samples originating from the Kruger National Park, Hluhluwe-iMfolozi Park, the Greater Limpopo Transfrontier Park, and a private game ranch in the Hoedspruit area. T. parva and Theileria sp. (buffalo) were identified in 42% and 28%, respectively, of 252 samples, mainly as mixed infections. The full-length 18S rRNA gene of selected samples was amplified, cloned and sequenced. From a total of 20 sequences obtained, 10 grouped with previously published T. parva sequences from GenBank while 10 sequences grouped with a previously published Theileria sp. (buffalo) sequence. All these formed a monophyletic group with known pathogenic Theileria species. Our phylogenetic analyses confirm the distinction between Theileria sp. (buffalo) and T. parva and indicate the existence of a single group of T. parva and two Theileria sp. (buffalo) 18S rRNA gene variants in the African buffalo. Despite the observed variation in the full-length parasite 18S rRNA gene sequences, the area in the V4 hypervariable region where the RLB and real-time PCR hybridization probes were developed was relatively conserved. The T. parva specific real-time PCR assay was able to successfully detect all T. parva variants and, although amplicons were obtained from Theileria sp. (buffalo) DNA, none of the Theileria sp. (buffalo) 18S rRNA sequence variants were detected by the T. parva-specific hybridization probes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号