首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Almond anthracnose caused by Glomerella cingulata is a major disease of this crop in Israel. The pathogen infects young fruit resulting in fruit rot. Leaf wilting and shoot dieback accompany fruit rot, even though the pathogen cannot be isolated from leaves or twigs. Isolates of G. cingulata from diseased almond fruit were compared using vegetative compatibility grouping (VCG), molecular methods, fungicide sensitivity and pathogenicity assays in order to determine the genetic diversity and host specificity among different populations. Polymerase chain reaction amplification of genomic DNA, using four primers produced uniform banding patterns for all the almond isolates from different geographic locations in Israel. HaeIII digestion patterns of A + T-rich DNA, and Southern hybridization of the repetitive nuclear DNA element (GcpR1) to PstI-digested genomic DNA of almond isolates also revealed no polymorphism. Chlorate-resistant nitrate-nonutilizing (nit) mutants were generated and used in heterokaryon tests. Complementary heterokaryons formed between the mutants of different isolates indicated a single VCG. Isolates of G. cingulata from almond had optimal growth temperatures of 20–22°C as opposed to 26–28°C for avocado isolates. In addition, almond isolates of G. cingulata are insensitive to benzimidazole fungicides in contrast to sensitivity of isolates from avocado. In artificial inoculations, almond isolates infected almond, avocado, apple, mango and nectarine fruit at a slower rate than G. cingulata isolates from avocado, apple and mango. Only the anamorph Colletotrichum gloeosporioides has been detected on almond in Israel, whereas isolates of G. cingulata from other hosts produce ascocarps.  相似文献   

2.
Anthracnose, caused byColletotrichum gloeosporioides, is the major disease of almond in Israel. Pathogen attack of young fruit results in fruit rot and leaf wilting. Seventy isolates ofC. gloeosporioides were obtained from affected almond fruits collected at 11 sites during 1991–2 and 1994. Chlorate-resistant nitrate-nonutilizing (nit) mutants were generated from each isolate and used in complementation (heterokaryon) tests. The formation of complementary stable heterokaryons between mutants from different isolates showed that all the isolates belonged to a single vegetative compatibility group. Representative isolates ofC. gloeosporioides from almond did not form heterokaryons with local isolates ofColletotrichum from anemone and avocado, indicating that the almond isolates constitute a distinct subspecific group withinC. gloeosporioides.  相似文献   

3.
The aim of the present study was to analyse the genetic and pathogenic variability of Colletotrichum spp. isolates from various organs and cultivars of mango with anthracnose symptoms, collected from different municipalities of São Paulo State, Brazil. Colletotrichum gloeosporioides isolates from symptomless citrus leaves and C. acutatum isolates from citrus flowers with post‐bloom fruit drop symptoms were included as controls. Sequencing of the ITS region allowed the identification of 183 C. gloeosporioides isolates from mango; only one isolate was identified as C. acutatum. amova analysis of ITS sequences showed larger genetic variability among isolates from the same municipality than among those from different populations. fAFLP markers indicated high levels of genetic variability among the C. gloeosporioides isolates from mango and no correlation between genetic variability and isolate source. Only one C. gloeosporioides mango isolate had the same genotype as the C. gloeosporioides isolates from citrus leaves, as determined by ITS sequencing and fAFLP analysis. Pathogenicity tests revealed that C. gloeosporioides and C. acutatum isolates from either mango or citrus can cause anthracnose symptoms on leaves of mango cvs Palmer and Tommy Atkins and blossom blight symptoms in citrus flowers. These outcomes indicate a lack of host specificity of the Colletotrichum species and suggest the possibility of host migration.  相似文献   

4.
The relative virulence ofPhytophthora cactorum andP. syringae originating from almond trees, and ofP. citrophthora originating from citrus, to apple, pear, peach, cherry and plum rootstocks, was studiedin vivo andin vitro. Results of the different experiments were in good agreement. All testedPhytophthora isolates showed little virulence to pear rootstocks-causing only minor crown rot symptoms - and no virulence at all to apple rootstocks. In contrast, they were highly virulent to stone fruit rootstocks, causing crown rot disease. The non-pathogenicity of these isolates to pome rootstocks could be interpreted as strict host specificity.  相似文献   

5.
ABSTRACT The causal organism responsible for the recent outbreak of almond and peach anthracnose in California was identified and characterized as Colletotrichum acutatum. Isolates of C. acutatum from almond were found to be similar to California strawberry isolates and South Carolina peach and apple isolates of C. acutatum based on conidial morphology, temperature relationships, fungicide sensitivity, and polymerase chain reaction (PCR) methods using DNA species-specific primers. On almond, blossoms and immature or mature fruit were affected by the disease, causing direct losses of crop. On peach, the disease was observed only on mature fruit. Pathogenicity of almond and peach isolates of C. acutatum was demonstrated on wound- and nonwound-inoculated almond or peach fruit by fulfilling Koch's postulates. Conidial morphology of isolates was variable, depending on the medium or substrate used to culture the isolates. Isolates of C. acutatum from strawberry, almond, and peach were grouped together based on a similar response to temperature, with an optimal growth rate at 25 degrees C (generally less than 10 mm/day), whereas isolates of C. gloeosporioides from citrus and papaya had an optimal growth rate at 30 degrees C (generally greater than 10 mm/day). In fungicide disk assays, isolates of C. acutatum from strawberry, peach, and apple, as well as almond and peach isolates from California, were less sensitive to benomyl at 300, 600, or 1,200 mug/ml. In contrast, C. gloeosporioides isolates from citrus and papaya were very sensitive to benomyl at all concentrations evaluated. All isolates of both species were sensitive to captan (300, 600, or 1,200 mug/ml). Oligonucleotide primers were synthesized for C. acutatum, C. fragariae, or C. gloeosporioides using published DNA sequences from the internal transcribed spacer 1 region of ribosomal DNA. Thirty-two Colletotrichum isolates from almond fruit produced DNA products with a C. acutatum primer (CaInt-2) that matched products and approximate molecular weight of known C. acutatum isolates. No PCR products were produced with primers for C. gloeosporioides or C. fragariae. Isolates from citrus and papaya produced DNA products only with primers from C. gloeosporioides or C. fragariae. Thus, worldwide, anthracnose of almonds may be caused by either C. gloeosporioides, as previously reported, or by C. acutatum, as indicated in this study.  相似文献   

6.
Genetic Diversity Within Colletotrichum acutatum sensu Simmonds   总被引:1,自引:0,他引:1  
ABSTRACT Isolates of Colletotrichum acutatum from several hosts were characterized by various molecular methods in comparison with morphological identification. Species-specific primer analysis was reliable for grouping C. acutatum isolates to their designated species. Arbitrarily primed polymerase chain reaction and A+T-rich DNA analyses identified four subgroups within C. acutatum. Subgroup I contained U.S. isolates from almond, apple, peach, and pecan, subgroup II contained isolates from anemone, olive, and strawberry, subgroup III contained isolates from almond (Israel) and strawberry (Spain), and subgroup IV contained a single isolate from anemone (the Netherlands). Likewise, sequence analysis of the internal transcribed spacer (ITS) 2 region alone or the complete ITS (ITS 1-5.8S-ITS 2) region grouped the isolates into the same four subgroups. Percent similarity of the complete ITS region within each cluster ranged from 99.6 to 100.0, 99.8 to 100.0, and 98.6% among subgroups I, II, and III, respectively. DNA sequence analysis of the ITS 2 region alone or the entire ITS 1-2 region was more informative than that of the ITS 1 region, which could only group the isolates into two main clusters. The molecular methods employed for studying genetic variation in populations of C. acutatum determined that this species is diverse, indicating that isolates within populations of each subgroup are not host specific.  相似文献   

7.
In recent years, anthracnose has become a significant disease affecting avocado fruit in the state of Michoacan, Mexico, where it significantly reduces fruit quality and commercial yield. Anthracnose has been assumed to involve Colletotrichum gloeosporioides and C. acutatum as causal agents. However, because of the increasing incidence of anthracnose, a more precise identification of the Colletotrichum spp. involved in this disease has become desirable. During the years 2004–2007, avocado fruits of different sizes exhibiting brown‐black and reddish spots on the pericarp and soft rot in the mesocarp, were gathered from orchards in nine counties. Fungal isolates were cultured on potato dextrose agar, and among these, 31 were selected for molecular, morphological and pathogenicity analyses. The molecular approaches used sequence typing of the internal transcribed spacer region and the partial nuclear large ribosomal subunit, allowing the unequivocal identification of C. gloeosporioides (71%), C. acutatum (16%) and C. boninense (13%). This last species has not been previously reported as being associated with anthracnose symptoms in avocado fruits anywhere in the world. Various morphological characteristics such as the size and shape of conidia were determined, as well as the conidial mass colour. Pathogenicity tests performed with all three species were conducted by inoculating healthy fruits. In each case, identical symptoms developed within 3 days of inoculation. Knowledge of the Colletotrichum populations in the Michoacan state, including the newly encountered avocado pathogen C. boninense, will facilitate further studies addressing the relationships between these Colletotrichum spp. and their avocado host.  相似文献   

8.
Rumple is a serious peel collapse of Primofiori lemons in the southeast of Spain with an unresolved aetiology. Symptoms typically occur on fruits at ripening under wet conditions as dark sunken lesions producing premature fruit drop and damaged fruits unacceptable for fresh commercialization. A total of 16 Colletotrichum spp. isolates established from rumple-affected lemons collected during the autumn of 2007 from two different orchards were characterized by molecular and phenotypic assays and compared with reference isolates. Species-specific PCR reactions using β-tubulin 2 nucleotide sequences showed Colletotrichum gloeosporioides to predominate (81.5%) with limited occurrence of C. acutatum (18.75%). Among the C. gloeosporioides isolates, five (38.5%) showed benomyl resistance and eight (61.5%) were highly sensitive to the fungicide. The limited occurrence of C. acutatum could be related to factors such as the presence of both species on the same fruit, unfavourable meteorological conditions and low disease incidence. This work reveals an association of C. gloeosporioides and C. acutatum isolates with rumple disease of lemons and expands the range of C. acutatum on citrus.  相似文献   

9.
Citrus post-bloom fruit drop (caused by Colletotrichum acutatum) frequently occurs in the southwestern region of São Paulo State, Brazil. A survey of Colletotrichum isolates associated with symptoms of post-bloom fruit drop in São Paulo State showed C. gloeosporioides in addition to C. acutatum. The objectives of this study were to confirm the identification of C. gloeosporioides isolated from symptomatic citrus flowers, to test the pathogenicity of C. gloeosporioides isolates, to compare the development of disease caused by C. gloeosporioides and C. acutatum, and to determine the frequency of C. gloeosporioides in a sample of isolates obtained from symptomatic flowers in different regions of São Paulo State. Through the use of species-specific primers by PCR, 17.3% of 139 isolates were C. gloeosporioides, and the remaining 82.7% were C. acutatum. The pathogenicity tests, carried out in 3-year old potted plants of sweet oranges indicated that both species caused typical symptoms of the disease including blossom blight and persistent calyces. Incubation periods (3.5 and 3.9 days, respectively, for C. acutatum and C. gloeosporioides) and fruit sets (6.7 and 8.5%, respectively for C. acutatum and C. gloeosporioides) were similar for both species. The incidences of blossom blight and persistent calyces were higher on plants inoculated with C. acutatum than in those inoculated with C. gloeosporioides. Conidial germination was similar for both species under different temperatures and wetness periods. Under optimal conditions, appressorium formation and melanisation were higher for C. gloeosporioides than for C. acutatum. These results indicated that Colletotrichum gloeosporioides is a new causal agent of post-bloom fruit drop.  相似文献   

10.
Colletotrichum isolates (457) were collected from strawberry plant tissues with and without typical anthracnose symptoms and from symptomless weeds in 19 Belgian strawberry fields. The isolates were characterized based on genetic, morphological and pathological features. Isolates were classified according to rDNA‐ITS sequencing: 97% of 211 representative isolates were C. acutatum, 2%C. gloeosporioides and 1%C. coccodes. The C. acutatum isolates belonged to the intraspecific groups A2 (33%), A3 (5%), A4 (50%), A5 (3%) and A7 (6%). Differences in spore morphology, growth rate and colony colour of a selection of 146 isolates confirmed the genetic grouping. Multiple Colletotrichum genotypes were detected in the same field. There was no association between the most common genotypes and geographic origin, presence or absence of symptoms, nor plant species or plant part. Representative Belgian Colletotrichum isolates were used in pathogenicity tests, together with European and American reference isolates. The C. acutatum A2 and the Belgian C. gloeosporioides isolates were the most aggressive on fruits, followed by C. acutatum A3, A4, A5, A7 and C. coccodes isolates. When inoculated into crowns, C. acutatum A2, A5 and American C. gloeosporioides isolates were the most aggressive, followed by C. acutatum A3 isolates. The A4 and A7 isolates and all European C. gloeosporioides isolates were non‐pathogenic on crowns. These data indicate that an unusually diverse Colletotrichum population is present in Belgium. The traditional differentiation between C. acutatum and C. gloeosporioides as causal agents of fruit and crown rot, respectively, proved not to be valid in Belgian strawberry fields.  相似文献   

11.
A collection ofTrichoderma isolates, with different biocontrol capabilities, were identified by molecular methods. Arbitrarily-primed PCR (ap-PCR) using repeat motif primers was performed on DNA from aTrichoderma spp. collection of 76 isolates, and representative isolates were further characterized into three main clades by internal transcribed spacer (ITS) sequence analysis. Consequently, a reliable phylogenetic tree was constructed containing isolates belonging to theT. harzianum clade (comprisingT. aureoviride, T. inhamatum, andT. virens), theT. longibrachiatum andT. saturnisporum cluster, and that including the speciesT. asperellum, T. atroviride, T. koningii andT. viride. http://www.phytoparasitica.org posting July 14, 2004.  相似文献   

12.
Molecular analyses of colletotrichum species from almond and other fruits   总被引:1,自引:0,他引:1  
ABSTRACT Isolates of Colletotrichum spp. from almond, avocado, and strawberry from Israel and isolates of the pink subpopulation from almond from the United States were characterized by various molecular methods and compared with morphological identification. Taxon-specific primer analysis grouped the avocado isolates within the species C. gloeosporioides and the U.S. almond and Israeli strawberry isolates within the species C. acutatum. However, the Israeli almond isolates, previously identified morphologically as C. gloeosporioides, reacted with C. acutatum-specific primers. Arbitrarily primed polymerase chain reaction and A+T-rich DNA analyses determined that each population from almond and strawberry was distinct and clonal. Sequence analysis of the complete internal transcribed spacer (ITS) region (ITS 1-5.8S-ITS 2) revealed a similarity of between 97.03 and 98.72% among almond isolates from Israel, C. acutatum almond isolates from the United States, and C. acutatum strawberry isolates from Israel. Similarity of the above populations to that of C. gloeosporioides of avocado was between 92.42 and 92.86%. DNA sequence analysis of the entire ITS region supported the phylogeny inferred from the ITS 1 tree of 14 different Colletotrichum species. Although morphological criteria indicated that the Israeli isolates from almond are unique, this population was grouped within the C. acutatum species according to molecular analyses.  相似文献   

13.
Twenty-three isolates of Colletotrichum gloeosporioides, five isolates of C. acutatum, two isolates of C. capsici and six isolates of C. boninense associated with anthracnose disease on coffee (Coffea spp.) in Vietnam were identified based on morphology and DNA analysis. Phylogenetic analysis of DNA sequences from the internal transcribed spacer region of nuclear rDNA and a portion of mitochondrial small subunit rRNA were concordant and allowed good separation of the taxa. We found several Colletotrichum isolates of unknown species and their taxonomic position remains unresolved. The majority of Vietnamese isolates belonged to C. gloeosporioides and they grouped together with the coffee berry disease (CBD) fungus, C. kahawae. However, C. kahawae could be distinguished from the Vietnamese C. gloeosporioides isolates based on ammonium tartrate utilization, growth rate and pathogenicity. C. gloeosporioides isolates were more pathogenic on detached green berries than isolates of the other species, i.e. C. acutatum, C capsici and C. boninense. Some of the C. gloeosporioides isolates produced slightly sunken lesions on green berries resembling CBD symptoms but it did not destroy the bean. We did not find any evidence of the presence of C. kahawae in Vietnam.  相似文献   

14.
Pre-harvest fungicidal treatments aimed at reducing inoculum levels in the field include copper oxychloride and benomyl. Pre-harvest applications of benomyl are currently restricted if used on fruit destined for certain export markets. Isolates of Colletotrichum gloeosporioides collected during a three-year market survey were used to determine the incidence of resistance to benomyl, thiabendazole and prochloraz using an in vitro assay. A total of 17.7% of all isolates tested were resistant to benomyl, of which 8.5% were highly and 9.2% moderately resistant. Isolates from certain production areas were less sensitive to benomyl and thiabendazole, and mango isolates were generally more sensitive than avocado isolates. No isolates were resistant to thiabendazole or prochloraz.  相似文献   

15.
ABSTRACT This study was conducted to identify the species of Colletotrichum infecting tamarillo, mango, and passiflora in Colombia and to assess whether cross-infection between host species is occurring. Isolates of Colletotrichum spp. from tamarillo (n = 54), passiflora (n = 26), and mango (n = 15) were characterized by various molecular methods and by morphological criteria. Morphological characterization grouped the tamarillo isolates as C. acutatum and the passiflora and mango isolates as C. gloeosporioides. Species-specific primer analysis was reliable and confirmed grouping of the tamarillo isolates (besides Tom-6) as C. acutatum and the mango isolates (besides Man-76) as C. gloeosporioides. However, DNA of the passiflora isolates was not amplified by either C. acutatum- or C. gloeosporioides-specific primers, but reacted with a new primer, Col1, designed according to the internal transcribed spacer (ITS) 1 region of these isolates. Isolates Tom-6 and Man-76 also reacted positively with the Col1 primer. All the isolates reacting with the C. acutatum- and C. gloeosporioides-specific primers failed to react with primer Col1. Isolate Pass-35 from passiflora did not react with any of the taxon-specific primers. Arbitrarily primed polymerase chain reaction (ap-PCR), random amplified polymerase DNA (RAPD)-PCR, and A+T-rich DNA analyses delineated representative isolates into subgroups within the designated species. Molecular analyses indicated that the C. acutatum tamarillo isolates were uniform or clonal, whereas the C. gloeosporioides mango isolates and Colletotrichum passiflora isolates were heterogeneous. Likewise, sequence analysis of the complete ITS (ITS1-5.8S-ITS2) region identified certain isolates to their respective species: tamarillo isolates as C. acutatum; mango isolates as C. gloeosporioides; passiflora, Tom-6, and Man-76 isolates as a Colletotrichum sp. as yet undefined; and the Pass-35 isolate as an additional undefined Colletot-richum sp. Molecular analyses of the population of Colletotrichum isolates from passiflora, Tom-6 from tamarillo, and Man-76 from mango indicate that this population may not be host specific.  相似文献   

16.
Colletotrichum gloeosporioides and C. acutatum are causal agents of grape ripe rot, but with available methods, sporulation of C. gloeosporioides on plate media has been unstable and inferior to that of C. acutatum. To facilitate studies on C. gloeosporioides, I developed an improved method to induce conidiation of this fungus. Isolates of C. gloeosporioides were pre-cultured in potato dextrose broth for 1 week, then pulverized in whole broth. The homogenate was then spread on diluted oatmeal agar (15–20% commercial oatmeal agar medium, 1.5% agar) plates. After the plates were cultured at 25°C under continuous light for another week, the C. gloeosporioides isolates sporulated stably on the plate medium.  相似文献   

17.
Identification of the causal agent for anthracnose caused by C. acutatum and C. gloeosporioides based on morphological and cultural criteria is problematic as both are morphologically and genetically diverse. To evaluate a qualitative molecular method to readily distinguish between these two species, Restriction fragment length polymorphisms (RFLP) of a 1-kb intron of the glutamine synthetase (GS) gene was evaluated utilizing representative isolates from a world-wide collection. Unique band patterns of the 1-kb GS intron were obtained for C. acutatum (two fragments with 600 and 350 bp) and C. gloeosporioides (four fragments with 238–340, 252–254, 204, and 108–116 bp) based on PstI enzyme digestion of the amplified PCR product. These data were also confirmed by PstI digestion of the intron DNA sequences using BioEdit software. The identification based on RFLPs of the 1-kb GS intron was consistent with the identification based on previously evaluated species-specific primers (CaInt2 and CgInt). In addition, both species can be differentiated by multiplex PCR. CaInt2, CgInt and ITS4 in one PCR will distinguish between C. acutatum and C. gloeosporioides by differences in PCR product fragment size: 490 bp and 470 bp, respectively. Also, a rapid DNA extraction method was developed, which reduced the time for DNA extraction from two hours to five minutes. In summary, RFLP of the 1-kb GS intron is a reliable technique for identification and differentiation between both species, does not require a sequencing step, and may be useful to diagnostic clinics in helping to make disease management recommendations.  相似文献   

18.
An important constraint for crop production in Colombia is the high incidence of anthracnose caused by Colletotrichum species. Although several studies have focused on these fungi, the relationship between the different fungal species within the genus and their hosts and whether they display any host preference or host specificity has yet to be examined. In Colombia, diseases caused by Colletotrichum species are particularly severe in mango (Mangifera indica) and tree tomato (Solanum betaceum) crops. In a previous investigation, the Colletotrichum phylogenetic species attacking these crops were identified. The present study aimed to determine whether isolates collected from tree tomato and mango showed host preference or host specificity by assessing aggressiveness, spore density, latent period, and fitness of each strain on the two hosts. In the departments of Cundinamarca and Tolima, Colombia, isolates were collected from plants that presented typical anthracnose symptoms and were identified as C. acutatum, C. asianum, C. boninense, C. gloeosporioides, C. tamarilloi and C. theobromicola. Inoculation of conidia of each isolate onto both hosts showed isolates had no host preference and only the C. gloeosporioides isolate showed host specificity. However, in general, isolates produced a higher spore density when inoculated on the alternate host, which may indicate a difference in the degree of adaptation to each host. Statistical analyses of the assessed parameter values revealed that isolates use different infection strategies when infecting each host. In light of these results, the implications of using quantitative estimations of fitness when studying fungal pathogens are discussed.  相似文献   

19.
云南葡萄产区葡萄炭疽病病原鉴定及致病力分析   总被引:5,自引:6,他引:5  
为了明确引起云南葡萄产区炭疽病的病原种类,利用形态鉴定和特异性引物分子检测相结合的方法对从云南省主要葡萄产区采集的60株炭疽病菌菌株进行了鉴定。葡萄炭疽病菌菌株的菌落形态和生长速率与对照菌株尖孢炭疽菌Colletotrichum acutatum差异不明显,但其分生孢子大小显著小于尖孢炭疽菌,附着胞深褐色,球形或不规则形。胶孢炭疽菌Colletotrichum gloeosporioides特异性引物CgInt/ITS4从供试葡萄炭疽病菌菌株基因组DNA中扩增出1条约500 bp的特异性条带,而尖孢炭疽菌特异性引物CaInt2/ITS4对葡萄炭疽病菌无扩增条带。研究表明,引起云南葡萄主产区炭疽病的病原为胶孢炭疽菌;供试胶孢炭疽菌对红提葡萄均有致病力,但菌株致病力差异较大,对番茄和草莓存在交叉侵染的能力,且对多菌灵的敏感性较尖孢炭疽菌高。  相似文献   

20.
The virulence ofPhytophthora citrophthora isolated from various host-plants on three peach rootstocks (GF677, PR204, KID I) was examined. There was no significant difference among the rootstocks with respect to their susceptibility to testedP. citrophthora isolates. The most virulent isolate originated from sycamore (Acer pseudoplatanus); isolates from pistachio trees (Pistacia vera) also showed high virulence but were significantly less virulent than the sycamore isolate. Isolates originating from plum (Prunus domestica), almond (Prunus amygdalus) and lemon (Citrus limon) trees were moderately virulent on peach rootstocks; those from cyclamen (Cyclamen persicum) showed the lowest virulence of those tested. There was thus great variation in virulence among the testedP. citrophthora isolates. It is possible that the isolates ofP. citrophthora from sycamore, pistachio, plum, almond and lemon trees are a threat to peach trees, whereas the low virulence of the isolates from cyclamen hosts suggests that these pathogens are not a serious threat to peach trees. http://www.phytoparasitica.org posting Jan. 3, 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号