首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Current information on the root sucker ability of hybrid aspen (Populus tremula L. × P. tremuloides Michx.) is in most cases based on clone mixtures. In this study, we could separate the performance among clones by using two experimental sites with monoclonal plots of the crossing. The natural regeneration was followed for 2 years after harvest of the formerly planted stands, clear-cut at 22 and 25 years of age, respectively. We found that clonal differences were present in the number of root suckers produced per area unit and their biomass production. However, all included clones produced sufficiently many root suckers for a successful regeneration. To receive a more complete evaluation of the root sucker dynamics for future selection on the clonal level, further studies are needed where vitality, self-thinning and effects of thinning measures are coupled to the goal of the aspen forestry.  相似文献   

2.
Season of harvest has often been suggested as a driver for the erratic success of aspen (Populus tremuloides) sucker regeneration, partially due to root carbohydrate reserves and soil conditions at the time of harvest. A field experiment in western Manitoba, Canada, assessed root suckering and root carbohydrates of aspen in response to season of harvest and machine traffic. Six sites (120 m × 120 m) were selected within two large mature aspen stands slated for summer harvest. Plots (50 m × 50 m) were hand-felled (without machine traffic) in mid-summer, late summer, winter, and one plot was left uncut as a control. Season of cut with no traffic had no effect on sucker density, height or leaf dry mass per sucker. During the dormant season, root starch reserves were highest in the winter cut plots, however, just prior to suckering, this difference in carbohydrate reserves among the three seasons of harvest disappeared and by the end of the first growing season root reserves in all three seasons of cut had recovered to near control levels. Adjacent plots that were conventionally harvested in the summer and impacted by logging traffic had similar sucker densities but had 19% less height growth of suckers and 29% less leaf dry mass per sucker compared to suckers in plots harvested at the same time without traffic. After one growing season, root carbohydrate levels were similar whether or not machine traffic was used; however, the reduction in leaf dry mass in plots with machine traffic could have negative implications for carbohydrate accumulation and growth. The study suggests that the phenological state of the mature aspen plays a very small role in aspen regeneration and that harvesting practices and site conditions are likely the main drivers of aspen regeneration success.  相似文献   

3.
Abstract

In a growth chamber experiment, root suckering of aspen (Populus tremuloides Michx.) was assessed in relation to timing of cutting and soil temperature. Aspen seedlings were grown in large pots for 3 years before experimentation. In a 2×2 factorial experiment, 3-year-old seedlings were cut at the end of the dormant period or after leaf flush and grown at two soil temperatures (8 or 20°C) for 39 days. Root systems were evaluated for suckering response and carbohydrate reserve status. There were no differences between the two soil temperatures and times of cut in the number of sucker buds initiated on the roots, but the number of buds that developed into suckers was much greater at 20°C. Cutting the dormant seedlings delayed suckering by nearly a week, resulting in smaller suckers at the time of harvest. However, cutting the seedlings when dormant produced almost twice the number of suckers than when cutting occurred after leaf-out. Total non-structural carbohydrates (TNC) of roots declined from 35.6% of dry weight at the end of the dormant season to 21.6% at the time of leaf-out, but there were no differences between the soil temperature and timing of cut treatments. After the 39 day growth period, root systems had 7% lower root TNC in the 20°C treatment than in the 8°C treatment, likely to support the development of the emerging suckers and higher respiration demands.  相似文献   

4.
We determined the effects of removal of leaves, stem axillary buds, or the entire shoot on root suckering (adventitious shoot formation by roots) and basal stem sprouts in 3- and 4-year-old potted seedlings of aspen (Populus tremuloides Michx.). The greatest number of root suckers (67.9 +/- 8.5 per plant) emerged after excision of the entire shoot. Defoliated and debudded stems were the major source of inhibitory agents for root suckering, although axillary buds and developing new leaves also exerted a significant inhibitory effect. Removal of mature leaves had only a minor effect on root suckering. Removal of a continuous band of bark (girdling) at the base of the stem consistently stimulated growth of adventitious shoots from the stem below the girdle and occasionally promoted root suckering. Exogenous application of indole-3-acetic acid to excised stumps inhibited root suckering and basal stem sprouting. Naphthylphthalamic acid (NPA), an auxin polar transport inhibitor, had no effect on root suckering or stem sprouting when it was applied to the bark of the basal stem. However, NPA significantly increased root suckering when it was applied to the exposed surface of xylem after girdling. These results suggest that polar transport of auxin in the xylem parenchyma is an important inhibitor of root suckering. On decapitated stems, vacuum extraction of xylem sap from the root system lowered the frequency of root suckering compared with decapitation alone, indicating that substance(s) originating in the root system also play a significant role in controlling root suckering.  相似文献   

5.
This study aims to derive allometric functions to estimate the above- and belowground biomass components of the most important tree species in Latvia. The study material included a total of 81 Norway spruce (Picea abies [L.] Karst), 102 Scots pine (Pinus sylvestris L.), 105 birch spp. (mainly silver birch (Betula pendula Roth)) and 84 European aspen (Populus tremula L.) trees sampled in 124 forest stands. The suitability of three mathematical models for the prediction of total aboveground biomass, stem biomass, total live and dead branch biomass, belowground biomass and small root biomass was evaluated. Our analysis revealed that the use of the Intergovernmental Panel on Climate Change mean default values for the root-to-shoot ratio recommended for temperate and boreal ecological zones leads to the overestimation of root biomass of young trees, especially Scots pine and Norway spruce. Our findings indicate that biomass functions recommended for other Baltic Sea countries are not appropriate for the assessment of the biomass stock in Latvia’s forests because these lead to biased estimates. The biomass functions derived in our study are recommended for reporting the biomass stock in Latvia.  相似文献   

6.
Fire history and stand structure was examined in twelve virgin forest stands situated within forest reserves in northern Sweden. The selected stands represented fire refuges as well as different successional stages after fire. Six of the stands were dominated by Norway spruce (Picea abies L. Karst.), three were dominated by Scots pine (Pinus sylvestris L.), and three were dominated by hairy birch (Betula pubescens Ehrh.) or aspen (Populus tremula L.). In 3 of the southernmost stands, the average fire interval was 34 to 65 years during the late 1600s to late 1800s, but since 1888 no fires had occurred in any of the stands. The absence of fire disturbance since 1888 is probably caused by the fire suppression in the overall landscape. The standing volume of living trees ranged between 87 and 511 m3 ha−1 while the volume of dead trees, including both snags and logs, ranged between 27 and 201 m3 ha−1. The volume of dead trees constituted ca. 30% of the total stem volume. In the conifer dominated stands, there was a statistically significant relationship between total stem volume, including both living and dead trees, and site productivity. A comparison between the amount of dead and living trees indicated substantial changes in tree species composition in several stands. It is suggested that data on the amount of dead trees, especially logs, and its distribution over decay classes could be used to examine the continuity of certain tree species. All stands had a multi-sized tree diameter distribution, which in most cases was similar to a reversed J-shaped distribution. In general spruce was numerous in the seedling cohort and in small diameter classes, indicating that its proportion in the stands was stable, or was increasing at the expense of pioneer tree species such as pine, aspen and silver birch (Betula pendula Roth.). The most numerous species in the seedling cohort, rowan (Sorbus aucuparia L.), was almost totally missing in the tree layer, indicating a high browsing pressure preventing rowan seedlings from growing into trees. The general increase of spruce and the sparse regeneration of pioneer species, in the stands previously affected by fire, are discussed in relation to natural disturbance regimes, biological diversity and nature conservation policies. It is proposed that reintroduction of fire disturbance is a necessity for future management plans of forest reserves. Other management practices to increase species diversity within forest reserves are also discussed.  相似文献   

7.
In the province of Québec, Canada, the majority of planted jack pine (Pinus banksiana Lamb.) seedlings are produced in rigid wall containers. More than 95% of them exhibit deformations of the root system which may induce stem instability. Studies of the root architecture of planted jack pine have been limited to a 30 cm radius from the stem, as barely any studies have been devoted to naturally regenerated stands. Moreover, only a few researches have focused on temporal evolution of root systems. The aim of the present study was to characterize the architectural, spatial, and temporal development of jack pine roots in natural and planted stands. Study sites were located in the continuous boreal forest of Quebec. The plantation was done in 1987, so that the trees were 15 years old at the time of sampling. Trees from natural stand had regenerated after a fire in 1983 and were 13–16 years old. The root systems of 14 jack pine trees per site were manually excavated up to a <5 mm diameter, without regard to their distance from the stem. The number, length, diameter, and the spatial and temporal development of roots were analyzed according to three scales of root architecture: the root system, axes, and segments. Overall, the numbers and lengths of roots were higher with planted pines. However, naturally regenerated trees displayed a better distribution of their roots around the stem and at depth, combined with more rapid length growth during the first years. In natural stands, all the trees had a taproot and 30% of the main roots originated at a depth of more than 20 cm, and they are regularly distributed around the stems. Planted trees did not present a taproot and 97% of the main roots originated in the first 20 cm beneath the soil surface. Moreover, 50% of root length was located in one-third of the area surrounding the stems, an area that corresponded to the furrow. Finally, the annual development of lateral roots in planted stand displayed a 5-year delay when compared with natural stand, which also affected maximum growth length and development of the branching pattern. Root distribution and temporal development are known to play a major role in the stability of aerial parts. Seedling production methods, container type, site preparation and planting techniques need to be examined in greater detail in order to assess their effect throughout the development of the root system. It is necessary to compare different sylvicultural practices and with natural/planted stands to gain a clearer understanding of this problem.  相似文献   

8.
We developed site-specific allometric models for Leucaena leucocephala × pallida var. KX2 trees in a shaded coffee agroecosystem in Hawaii to predict above- and belowground biomass and the regrowth potential of pollarded trees. Models were used to compare tree growth rates in an experimental agroforestry system with different pollarding frequencies and additions of tree pruning residues as mulch. For all allometric equations, a simple power model (Y = aXb) provided the optimal prediction of biomass or regrowth after pollarding. For aboveground biomass components (stem, branches, leaves, and seed and pods), stem diameter alone was the best predictor variable. Stump diameter provided the best prediction of coarse root biomass and aboveground regrowth after pollarding. Predictions of biomass from generalized allometric models often fell outside the 95% confidence intervals of our site-specific models, especially as biomass increased. The combination of pollarding trees once per year plus the addition of tree mulch resulted in the greatest aboveground regrowth rates as well as accumulation of biomass and C in the stump plus coarse roots. Although optimal prediction required the development of site-specific allometric relationships, a simple power model using stem or stump diameter alone can provide an accurate assessment of above- and belowground tree biomass, as well as regrowth potential under specific management scenarios.  相似文献   

9.
Silviculture heading for structural heterogeneity creates many single trees standing at stand margins, inner edges or in remnant tree groups. As they played just a minor role in the age class forest, the growth behaviour of strongly released trees is rather unexplored. Here we show how retention cutting, presently spreading in the boreal of Québec province, affects stem and coarse root growth of remained single black spruce [Picea mariana (Mill.) Britton]. Increment cores from roots and stems of 125 trees show that retention cutting triggers coarse root growth of the remaining trees. Compared with reference trees retention trees accelerate root in relation to stem growth. Mean and variability of the root–stem allometry significantly rise after retention cutting. The found acceleration of root in relation to stem growth means mechanical stabilisation of the retention trees and corroborates the retention cutting method. Evaluation of silvicultural treatments can be incomplete and misleading as long as they are just based on aboveground reactions and neglect root growth.  相似文献   

10.
Aspen and balsam poplar regeneration from root suckers were assessed in boreal mixedwood forests nine years after logging in a variable retention experiment (EMEND Project—Ecosystem Management Emulating Natural Disturbance) located north of Peace River, Alberta, Canada. Five levels of retention of mature trees (2%, 10%, 20%, 50% or 75% of the original basal area) were applied in stands dominated by aspen, white spruce or mixtures of the two species. Basal area of aspen (or that of aspen plus balsam poplar combined) prior to logging strongly influenced sucker density of aspen (or aspen + balsam poplar combined) and in some cases their growth. Nine years after harvest there was a decline in sucker density and volume ha−1 with increasing retention levels of aspen (or both poplars combined); sucker density declined by 50% when only 20% of the original basal area was left in the stand. Retaining mature spruce trees in the stand had little influence on the number of suckers but did affect their total volume ha−1. Thus, we suggest that by knowing stand aspen and balsam poplar density prior to logging and varying levels of retention of aspen and balsam poplar or conifers at harvest, the density of Populus regeneration can be predicted by managers, thereby allowing them to create a range of mixedwood conditions.  相似文献   

11.
In the boreal forest of Alberta, fire and wind often open gaps in the canopy where late-successional species can establish and over time cause a shift in the species distribution from deciduous (e.g., trembling aspen) dominated to mixedwood, to shade-tolerant conifer (e.g., white spruce) dominated stands. This study attempted to understand the change of density-dependent competition in a boreal chronosequence and the role of tree competition in affecting stand structure and mortality. Four 1-ha stem-mapped plots were established to represent a chronosequence comprised of aspen dominated, mixedwood, and spruce dominated stands in Alberta. Second order spatial point-pattern analysis using Ripley's K(t) function showed that intraspecific competition is a prevailing force causing conspecific tree mortality and thus shaping the stand structure. The results of bivariate K(t) function analysis did not reveal sufficient evidence of interspecific competition. This suggested that competitive interaction among heterospecific trees was not strong enough to cause significant tree mortality, but the analysis of marked correlation function revealed that interspecific competition could have a negative impact on tree growth. This study highlights the importance of density-dependent competition in understanding stand dynamics of boreal forests over succession.  相似文献   

12.
In a growth chamber, we tested how the seasonal timing of placing a physical barrier (simulating a possible effect of log storage) and inflicting root damage impacted aspen (Populus tremuloides Michx.) root systems and their suckering capability. Roots from 4-year-old saplings were used, and one half of these root systems had the above-ground portion cut in the winter (dormant) while the other half was cut during the growing season in the summer. Damage was inflicted to the roots by driving a large farm tractor over them, and a covering treatment was applied using a polystyrene board to prevent suckers from emerging from the soil. Soil temperatures for the winter-cut root systems were kept at 5 °C over the growing season, using a water bath, while for the summer-cut root systems soil temperatures were maintained at 17 °C over the growing season. In the winter-cut root systems, both log storage and root wounding caused a 40% reduction in living root mass and carbohydrate reserves, as well as reducing sucker numbers and their growth performance. In the summer-cut root systems log storage and root wounding reduced living root mass by approximately 35% as well as sucker growth, but had less of an impact on the number of suckers produced.  相似文献   

13.
Young trees (4–5 year old) of Betula pubescens Ehrh. growing in a stand in the middle of Sweden (lat. 60°15'N) were cut in early June to stump heights of 0 and 10 cm. The birch stumps were exposed to different relative light intensities (100, 50, 25 and 10%) for 100 days until mid September. Five stumps per treatment were used in a randomized complete block with seven blocks on mesic dwarf‐shrub type with low herbs and three blocks on moist dwarf‐shrub type. The number of sprouting stumps was correlated with relative light intensity and forest type. 2.5 % of the stumps of mesic and 14 % of moist forest type did not produce suckers. On mesic forest type, 7% of the stumps exposed to 10% light did not sprout compared with 1.4, 3.0 and 0% at 25, 50 and 100% light, respectively. At stump height 0 cm fewer sprouting stumps were produced than at 10 cm. The mean height of suckers was significantly lower at 10% light intensity than at other levels. The number of suckers per sprouting stump was not related to light intensity but to forest type. More suckers were produced on mesic than on moist forest type. The dry weight of suckers was significantly lower at 10 and 25% relative light intensity than at 50 and 100%. On moist forest type, the dry weight of suckers was lower than on mesic forest type.  相似文献   

14.
The occurrence of Heterobasidion annosum in stumps and growing trees was investigated on 15 forest sites in southern Finland where the previous tree stand had been Norway spruce (Picea abies) infected by H. annosum, and the present stand was either Scots pine (Pinus sylvestris), lodgepole pine (Pinus contorta), Siberian larch (Larix siberica), silver birch (Betula pendula) or Norway spruce 8–53 years old. Out of 712 spruce stumps investigated of the previous tree stand, 26.3% were infected by the S group and 0.3% by the P group of H. annosum. The fungus was alive and the fruit bodies were active even in stumps cut 46 years ago. In the subsequent stand, the proportion of trees with root rot increased in spruce stands and decreased in stands of other tree species. On average, one S type genet spreading from an old spruce stump had infected 3.0 trees in the following spruce stand, 0.5 trees in lodgepole pine, 0.3 trees in Siberian larch, 0.05 trees in Scots pine and 0.03 trees in silver birch stand. Although silver birch generally was highly resistant to the S type of H. annosum, infected trees were found on one site that was planted with birch of a very northern provenance.  相似文献   

15.
New Forests - Trembling aspen (Populus tremuloides Michx.) is an important early successional species in the boreal region that commonly regenerates via root suckering and, to a lesser extent,...  相似文献   

16.
Abstract

This paper presents estimations of aboveground tree biomass (combined for boles and branches) in Nepal's Schima-Castanopsisdominated warm-temperate forests. The biomass estimations are presented for five forest stands purposively sampled in a larger study to represent different harvesting intensities. Two categories of biomass estimates are provided: (1) for living trees that are standing, and (2) for cut trees that have been removed. Biomass of standing trees were estimated by using diameter at breast height (dbh) and total height measurements as predictor variables in appropriate regression models. Biomass of cut trees were estimated in two steps: measurements of stump diameters and heights were used first to predict dbh and total heights of cut trees; these values were then regressed to obtain biomass estimates for the missing trees. Data were gathered from 2,361 live trees and 2,962 stumps in 170 sample plots across the five forest stands. Estimates of mean standing-alive biomass ranged from a minimum of 16 ton/ha in the severely disturbed forest to a maximum of 479 ton/ha in a relatively undisturbed (reference) forest. Estimates of mean cut biomass ranged from a minimum of 24 ton/ha in a second reference forest to a maximum of 183 ton/ha in the severely disturbed forest. The biomass estimates in the relatively-undisturbed, reference forests are well above the 95% upper confidence interval of the global mean. Similar findings of high productivity have been reported for temperate forests of the Central Himalaya in India and Eastern Himalaya in Sik-kim. The findings of this study in the Nepalese Central Himalaya support the conclusion that productivity potential is high in the temperate Himalayan forests. The study's findings and methodology should be useful for preliminary development of guidelines in the region to regulate forest biomass growth, yield, and harvest.  相似文献   

17.
Aspen (Populus tremuloides Michx) has great potential as a reclamation species for mining sites in the boreal forest, but planting stock has shown poor field performance after outplanting. In this study we tested how different aspen seedling characteristics and planting times affect field outplanting performance on reclamation sites. We produced three different types of aspen planting stock, which varied significantly in seedling size, root-to-shoot ratio (RSR), and total non-structural carbohydrate (TNC) reserves in roots, by artificially manipulating shoot growth during seedling production. All three stock types were then field-planted either in late summer, late fall, or early spring after frozen storage. Seedlings were outplanted onto two reclaimed open-pit mining areas in the boreal forest region of central and east-central Alberta, Canada, which varied significantly in latitude, reclamation history, and soil conditions. Overall, height growth was better in aspen stock types with high RSR and TNC reserves. Differences in field performance among aspen stock types appeared to be more strongly expressed when seedlings were exposed to more stressful environmental site conditions, such as low soil nutrients and moisture. Generally, aspen seedlings planted with leaves in the summer showed the poorest performance, and summer- or fall-planted seedlings with no shoot growth manipulation had much greater stem dieback after the first winter. This indicates that the dormancy and hardening of the stem, as a result of premature bud set treatments, could improve the outplanting performance of aspen seedlings, particularly those planted during summer and fall.  相似文献   

18.
Numerical data are presented that support the proposal mentioned as early as the mid‐19th century that aspen roots may remain alive for a long period after the disappearance of parent trees. The mechanism that makes this possible is the ability of this species to form suckers continuously. In stands the bulk of the suckers live a few years and are then replaced by new ones. If conditions allow some suckers may develop into big trees even in old stands. The conclusions are based on material obtained in experiments comprising chemical control of aspen, including different application methods, herbicides, doses and in some cases control treatment (cleaning).  相似文献   

19.
The objective of this study was to assess the regeneration response oftrembling aspen (Populus tremuloides Michx.) to differentmechanical site preparation (MSP) techniques commonly used in operationalforestry (disc trenching, drag scarifying and blading) and the specificmicrosites created by each treatment. This study was designed to measureregeneration after at least the first two growing seasons, however a largewildfire burned 80% of the study sites at the beginning of the second growingseason. Consequently, only limited second year data were presented, butregeneration from the first growing season following the fire was alsoassessed.Results indicated that microsites where the forest floor was disturbed and theparent root system was only lightly injured were more conducive to suckeringthan undisturbed microsites or where the root system was severely injured.Also,the fire disturbance after the first growing season resulted in increasedsuckering relative to the untreated controls in the first year. These resultssuggest that aspen sites with thick organic layers or vigorous competition fromother species can benefit from MSP when applied before the first growingseason.In addition, if first year suckering is inadequate, subsequent disturbancessuchas prescribed fire have the potential to improve suckering provided the parentroot system remains intact.  相似文献   

20.
To preserve biodiversity in managed forest landscapes dead and living trees are retained at final cuttings. In the present study we evaluated the effect of these practices for saproxylic (wood-dependent) beetles inhabiting dead aspen trees (Populus tremulae). For saproxylic beetles, tree retention at final cuttings can be expected to be especially valuable for species adapted to sun-exposed dead wood, a substrate that only rarely occurs in well managed forest stands. Therefore, the current evaluation was conducted as a comparison of species richness, species density (number of species per sample), assemblage composition and occurrence of individual species between clear-cuts, where aspen trees were retained, and closed forest stands with aspen trees. The study was conducted in central Sweden and the beetles were sampled by sieving of bark from CWD (coarse woody debris) of aspen. There was no significant difference in rarefied species richness between forest and clear-cut sites. Species composition differed significantly between the two stand types. Generalized linear mixed-effects models predicted the species density to be 34% lower in CWD objects in forest sites than on clear-cuts. This pattern could partly be explained by differences in CWD diameter, decay class and bark types between the two stand types (clear-cut/forest). Stand type was a significant predictor of occurrence in individual CWD objects for 30% of analysed individual beetle species. For all species except one, the variable stand type predicted higher occurrence on clear-cuts than in forest stands. To conclude, our results demonstrate that retention of aspen on clear-cuts contributes to population recruitment of a different assemblage of species than CWD within stands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号